Skip to main content

Transport of Proteins Across the Blood-Brain Barrier via the Transferrin Receptor

  • Chapter
Frontiers in Cerebral Vascular Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 331))

Abstract

Unlike most other organs in the body, the brain is separated from the blood by a protective cellular barrier known as the blood-brain barrier (BBB). The BBB, although essential in maintaining a defined biochemical environment within the brain, represents a formidable obstacle to the effective delivery of neuropharmaceutical agents from the bloodstream. The capillaries that supply blood to the tissues of the brain constitute this barrier (1,2). Brain capillary endothelial cells are joined together by tight intercellular junctions that form a continuous wall against the passive movement of substances from the blood to the brain. Also characteristic of these cells is a paucity of pinocytic vesicles, which limits the amount of non-selective fluid-phase transport across the capillary wall. Together, these features limit the penetration of blood-borne hydrophilic molecules into brain tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brightman, M.W., Morphology of blood-brain interfaces, Exp. Eye Res. 25: 1–25, 1977.

    Article  PubMed  Google Scholar 

  2. Reese, T.S., and Karnovsky, M.J., Fine structural localization of a blood-brain barrier to exogenous peroxidase, J. Cell Biol 34: 207–217, 1967.

    Article  PubMed  CAS  Google Scholar 

  3. Pardridge, W.M., Receptor-mediated peptide transport through the blood-brain barrier, Endocrine Rev. 7: 314–330, 1986.

    Article  CAS  Google Scholar 

  4. Fishman, J.B., Rubin, J.B., Handrahan, J.V., Connor, J.R., and Fine, R.E., Receptor-mediated transcytosis of transferrin across the blood-brain barrier, J. Neurosci. Res. 18: 299–304, 1987.

    Article  PubMed  CAS  Google Scholar 

  5. Pardridge, W.M., Eisenberg, J., and Yang, J., Human blood-brain barrier insulin receptor, J. Neurochem. 44, 1771–1778 (1985).

    Google Scholar 

  6. Pardridge, W.M., Eisenberg, J., and Yang, J., Human blood-brain barrier transferrin receptor, Metabolism 36: 892–895, 1987.

    Article  PubMed  CAS  Google Scholar 

  7. Aisen, P., and Listowsky, I., Iron transport and storage proteins, Ann. Rev. Biochem. 49: 357–393, 1980.

    Article  PubMed  CAS  Google Scholar 

  8. MacGillivray, R.T.A., Mendez, E., Shewale, J.G., Sinha, S.K., Lineback-Zins, J., and Brew, K., The primary structure of human serum transferrin, J. Biol. Chem. 258: 3543–3553, 1981.

    Google Scholar 

  9. McClelland, A., Kuhn, L.C., and Ruddle, F.H., The human transferrin receptor gene: Genomic organization, and the complete primary structure of the receptor deduced from a cDNA sequence, Cell 39: 267–274, 1984.

    Article  PubMed  CAS  Google Scholar 

  10. Omary, M.B., and Trowbridge, I.S., Covalent binding of fatty acid to the transferrin receptor in human cells in vitro, J. Biol. Chem. 256: 12888–12895, 1981.

    PubMed  CAS  Google Scholar 

  11. Dautry-Varsat, A., Ciechanover, A., and Lodish, H.F., pH and recycling of transferrin during receptor-mediated endocytosis, Proc. Natl. Acad. Sci. USA 80: 2258–2262, 1983.

    Article  PubMed  CAS  Google Scholar 

  12. Jefferies, W.A., Brandon, M.R., Hunt, S.V., Williams, A.F., Gatter, K.C., and Mason, D.Y., Transferrin receptor on endothelium of brain capillaries, Nature 312: 162–163, 1984.

    Article  PubMed  CAS  Google Scholar 

  13. Friden, P.M., Walus, L.R., Musso, G.F., Taylor, M.A., Malfroy, B., and Starzyk, R.M., Anti-transferrin receptor antibody and antibody-drug conjugates cross the blood-brain barrier, Proc. Nail. Acad. Sci. USA 88: 4771–4775, 1991.

    Article  CAS  Google Scholar 

  14. Greene, L.A., and Shooter, E.M., The nerve growth factor receptor: biochemistry, synthesis and mechanism of action, Annu. Rev. Neurosci. 3: 353–402, 1980.

    Article  PubMed  CAS  Google Scholar 

  15. Hartikka, J., and Hefti, F., Development of septal cholinergic neurons in culture: Plating density and glial cells modulate effects of NGF on survival, fiber growth and expression of transmitter-specific enzymes, J. Neurosci. 8: 2967–2985, 1988.

    PubMed  CAS  Google Scholar 

  16. Hagg, T., Manthorpe, M., Vahlsing, H.L., and Varon, S., Delayed treatment with nerve growth factor reverses the apparent loss of cholinergic neurons after acute brain damage, Exp. Neurol. 101: 303–312, 1988.

    Article  PubMed  CAS  Google Scholar 

  17. Kromer, L.F., Nerve growth factor treatment after brain injury prevents neuronal death, Science 235: 214–216, 1987.

    Article  PubMed  CAS  Google Scholar 

  18. Whittemore, S.R., and Seiger, A., The expression, localization and functional significance of beta-nerve growth factor in the central nervous system, Brain Res. Rev. 12: 439–464, 1987.

    Article  CAS  Google Scholar 

  19. Coyle, J.T., Price, D.L., and Delong, M.R., Alzheimer’s disease: a disorder of cortical cholinergic innervation, Science 219: 1184–1190, 1983.

    Article  PubMed  CAS  Google Scholar 

  20. Hefti, F., Hartikka, J., and Knusel, B., Function of neurotrophic factors in the adult and aging brain and their possible use in treatment of neurodegenerative diseases, Neurobiol. Aging 10: 515–533, 1989.

    Article  PubMed  CAS  Google Scholar 

  21. Junard, E.O., Montera, C.N., and Hefti, F., Long-term administration of mouse nerve growth factor to adult rats with partial lesions of the cholinergic septohippocampal pathway, Exp. Neurol. 110: 25–38, 1990.

    Article  PubMed  CAS  Google Scholar 

  22. Hagg, T., Vahlsing, H.L., Manthorpe, M., and Varon, S., Nerve growth factor infusion into the denervated adult rat hippocampal formation promotes its cholinergic reinnervation, J. Neurosci. 10: 3087–3092, 1990.

    PubMed  CAS  Google Scholar 

  23. Hoffman, D., Wahlberg, L., and Aebischer, P., NGF released from a polymer matrix prevents loss of ChAT expression in basal forebrain neurons following a fimbria fomix lesion, Exp. Neurol. 110: 39–44, 1990.

    Article  PubMed  CAS  Google Scholar 

  24. Price, D. L., New perspectives on Alzheimer’s disease, Annu. Rev. Neurosci. 9: 489–512, 1986.

    Article  PubMed  CAS  Google Scholar 

  25. Whitehouse, P.J., Price, D.L., Stuble, R.G., Clar, A.W., Coyle, J.T., and Delong, M.R., Alzheimer’s disease and senile dementia: Loss of neurons in the basal forebrain, Science 215: 1237–1239, 1982.

    Article  PubMed  CAS  Google Scholar 

  26. Fischer, W., Wictorin, K., Bjorklund, A., Williams, L.R., Varon, S., and Gage, F.H., Amelioration of cholinergic neuron atrophy and spatial memory impairment in aged rats by nerve growth factor, Nature 329: 65–68, 1987.

    Article  PubMed  CAS  Google Scholar 

  27. Friden, P.M., Walus, L.R., Watson, P., Doctrow, S.R., Kozarich, J.W., Backman, C., Bergman, H., Hoffer, B., Bloom, F., and Granholm, A.-C., NGF-anti-transferrin receptor antibody conjugate crosses the blood-brain barrier and enhances survival of medial septal nucleus neurons, submitted, 1992.

    Google Scholar 

  28. Carlsson, J., Drevin, H., and Axen, R., Protein thiolation and reversible protein-protein conjugation, Biochem.J. 173: 723–737, 1978.

    PubMed  CAS  Google Scholar 

  29. Greene, L.A., and Tischler, A.S., Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor, Proc. Natl. Acad. Sci. USA 73: 2424–2428, 1976.

    Article  PubMed  CAS  Google Scholar 

  30. Buxser, S., et al., Single-step purification and biological activity of human nerve growth factor produced from insect cells, J. Neurochem. 56: 1012–1018, 1991.

    Article  PubMed  CAS  Google Scholar 

  31. Triguero, D., Buciak, J., and Pardridge, W.M., Capillary depletion method for quantification of blood-brain barrier transport of circulating peptides and plasma proteins, J. Neurochem. 54: 1882–1888, 1990.

    Article  PubMed  CAS  Google Scholar 

  32. Giacobini, M.M.J., Olson, L., Hoffer, B., and Sara, V.R., Truncated IGF-I exerts trophic effects on fetal brain tissue grafts, Exp. Neurol. 108: 33–37, 1990.

    Article  PubMed  CAS  Google Scholar 

  33. Olson, L., and Seiger, A., Brain tissue transplanted to the anterior chamber of the eye. I. Fluorescence histochemistry of immature catecholamine and 5-hydroxytryptamine neurons reinnervating the rat iris, Z. Zellforsch. Mikrosk. Anat. 135: 175–194, 1972.

    Article  CAS  Google Scholar 

  34. Olson, L., Seiger, A., and Stomberg, I., Intraocular transplantation in rodents: a detailed account of the procedure and examples of its use in neurobiology with special reference to brain tissue grafting, in: “Advances in Cellular Neurobiology,” S. Federoff, L. Hertz, eds., Academic Press, New York, vol. 4, pp. 401–442, 1983.

    Google Scholar 

  35. Eriksdotter-Nilsson, M., Skirbol, S., Ebendal, T., Hersh, L., Grassi, J., Massoulie, J., and Olson, L., NGF treatment promotes development of basal forebrain tissue grafts in the anterior chamber of the eye, Exp. Brain Res. 74: 89–98, 1989.

    Article  PubMed  CAS  Google Scholar 

  36. Eriksdotter-Nilsson, M., Skirboll, S., Ebendal, T., and Olson, L., Nerve growth factor can influence growth of cortex cerebri and hippocampus: evidence from intraocular grafts, Neurosci. 30: 755–766, 1989.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Friden, P.M., Walus, L.R. (1993). Transport of Proteins Across the Blood-Brain Barrier via the Transferrin Receptor. In: Drewes, L.R., Betz, A.L. (eds) Frontiers in Cerebral Vascular Biology. Advances in Experimental Medicine and Biology, vol 331. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2920-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2920-0_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6267-8

  • Online ISBN: 978-1-4615-2920-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics