Skip to main content

Autoregulation of the Heat-Shock Response

  • Chapter
Translational Regulation of Gene Expression 2

Abstract

The heat-shock proteins (hsps) were initially defined as a small set of proteins that are rapidly and dramatically induced when cells or whole organisms are exposed to high temperatures1–5 (see Fig. 1). The same proteins are induced by a wide variety of other types of stress—ethanol, heavy metal ions, and anoxia being among the most common inducing agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lindquist,S., 1986, The heat-shock response, Ann. Rev. Biochem. 55:1151–1191.

    Article  PubMed  CAS  Google Scholar 

  2. Lindquist,S., and Craig, E. A., 1988, The heat-shock proteins, Annu. Rev. Genet. 22:631–677.

    Article  PubMed  CAS  Google Scholar 

  3. Morimoto, R. I., Tissieres, A., and Georgopoulos, C., 1990 (eds.), Stress Proteins in Biology and Medicine, Cold Spring Harbor Laboratory Press,Cold Spring Harbor, New York.

    Google Scholar 

  4. Nover,L., 1991, Heat Shock Response, CRC Press, Boca Raton, Florida.

    Google Scholar 

  5. Maresca,B., and Lindquist, S., 1991, Heat Shock, Springer-Verlag, Berlin.

    Book  Google Scholar 

  6. Plesset, J.,Palm, C., and McLaughlin, C. S., 1982, Induction of heat shock proteins and thermotolerance by ethanol in Saccharomycescerevisiae, Biochem. Biophys. Res. Commun. 108: 1340–1345.

    Article  PubMed  CAS  Google Scholar 

  7. Hahn, G. M., and Li, G. C., 1982, Thermotolerance and heat shockproteins in mammalian cells, Radiat. Res. 92:452–457.

    Article  PubMed  CAS  Google Scholar 

  8. Li, G. C., and Laszlo, A., 1985, Amino acid analogs while inducing heatshock proteins sensitize CHOcells to thermal damage, J. Cell. Physiol. 122:91–97.

    Article  PubMed  CAS  Google Scholar 

  9. Hahn, G. M., and Li, G. C., 1990, Thermotolerance, thermoresistance,and thermosensitization, in: Stress Proteins in Biology and Medicine (R. I.Morimoto, A. Tissieres, and C. Georgopoulos, eds.), pp. 79–100, Cold SpringHarbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  10. Hall, B. G., 1983, Yeast thermotolerance does notrequire protein synthesis, J. Bacteriol. 156: 1363–1365.

    PubMed  CAS  Google Scholar 

  11. Watson,K., Dunlop, G., and Cavicchioli, R., 1984, Mitochondrial and cytoplasmicprotein syntheses are not required for heatshock acquisition of ethanol and thermotolerance in yeast, FEBS Lett.172:299–302.

    Article  PubMed  CAS  Google Scholar 

  12. Hallberg,R. L., Kraus, K. W., and Hallberg, E. M., 1985, Induction of acquired thermotolerance in Tetrahymena thermophila: Effectsof protein synthesis inhibitors, Mol. Cell. Biol. 5: 2061–2069.

    PubMed  CAS  Google Scholar 

  13. Widelitz,R. B., Magun, B. E., and Gerner, E. W., 1986, Effects of cycloheximide onthermotolerance expression, heat shock protein synthesis, and heat shockprotein mRNA accumulation in rat fibroblasts, Mol. Cell. Biol. 6:1088–1094.

    PubMed  CAS  Google Scholar 

  14. Carper, S. W., Duffy, J. J., and Gerner, E. W., 1987,Heat shock proteins in thermotolerance and other cellular processes, Cancer Res.47:5249–5255.

    PubMed  CAS  Google Scholar 

  15. Barnes,C. A., Johnston, G. C., and Singer, R. A., 1990, Thermotolerance is independentof induction of the full spectrum of heatshock proteins and of cell cycle blockage in the yeast Saccharomycescerevisiae, J. Bacteriol. 172:4352–4358.

    PubMed  CAS  Google Scholar 

  16. Sanchez, Y., and Lindquist, S. L., 1990, HSP104 requiredfor induced thermotolerance, Science 248:1112–1115.

    Article  PubMed  CAS  Google Scholar 

  17. Li,G. C., Li, L. G., Liu, Y. K., Mak, J. Y., Chen, L. L., and Lee, W. M., 1991,Thermal response of rat fibroblasts stablytransfected with the human 70-kDa heat shock protein-encoding gene, Proc.Natl. Acad. Sci. USA 88:1681–1685.

    Article  PubMed  CAS  Google Scholar 

  18. Lindquist, S., 1980, Translational efficiency ofheat-induced messages in Drosophila melanogas ter cells, J.Mol. Biol. 137:151–158.

    Article  PubMed  CAS  Google Scholar 

  19. Lindquist, S., 1980, Varying patterns of proteinsynthesis in Drosophila during heat shock: Implications forregulation, Dev. Biol. 77:463–479.

    Article  PubMed  CAS  Google Scholar 

  20. Lindquist, S.,and Petersen, R., 1990, Selective translation and degradation of heat-shockmessenger RNAs in Drosophila, Enzyme 44:147–166.

    PubMed  CAS  Google Scholar 

  21. Yost, H. J., Petersen, R. B., and Lindquist, S., 1990, RNA metabolism:Strategies for regulation inthe heat shock response, Trends Genet. 6:223–227.

    Article  PubMed  CAS  Google Scholar 

  22. DiDomenico, B. J., Bugaisky, G. E., andLindquist, S., 1982, The heat shock response is self-regulated at boththe transcriptional and posttranscriptional levels, Cell 31:593–603.

    Article  PubMed  CAS  Google Scholar 

  23. Tilly, K., McKittrick, N., Zylicz, M., and Georgopoulos, C., 1983, The dnaKprotein modulates theheat-shock response of Escherichia coli, Cell 34:641–646.

    Article  PubMed  CAS  Google Scholar 

  24. Mizzen, L. A., and Welch, W. J., 1988, Characterization of thethermotolerant cell. I. Effects on protein synthesisactivity and the regulation of heat-shock protein 70 expression, J. CellBiol. 106: 1105–1116.

    Article  CAS  Google Scholar 

  25. Gross, C., andCraig, E. A., 1991, Trends Biochem. Sci. 16:135–140.

    Article  PubMed  Google Scholar 

  26. McMullin, T. W., and Hallberg, R. L., 1988, A highly evolutionarilyconserved mitochondrial protein is structurally related to the protein encodedby the Escherichia coli groEL gene, Mol. Cell. Biol. 8:371–380.

    PubMed  CAS  Google Scholar 

  27. Blumberg, H., and Silver, P. A., 1991, A homologue of the bacterialheat-shock gene DnaJ that alters protein sorting in yeast, Nature349:627–630.

    Article  PubMed  CAS  Google Scholar 

  28. Trent, J. D.,Nimmesgern, E., Wall, J. S., Hartl, F.-U., and Horwich, A. L., 1991, Amolecular chaperone from a thermophilicarchaebacterium is related to the eukaryotic protein t-complex polypeptide-1,Nature 354:490–493.

    Article  PubMed  CAS  Google Scholar 

  29. Gething, M.-J.,and Sambrook, J., 1992, Protein folding in the cell, Nature 355:33–45.

    Article  PubMed  CAS  Google Scholar 

  30. Hightower, L. E., 1980, Cultured animal cells exposed to amino acidanalogues or puromycin rapidlysynthesize several polypeptides, J. Cell. Physiol. 102:407–427.

    Article  PubMed  CAS  Google Scholar 

  31. Ellis, R. J., and van der Vies, S. M., 1991, Molecular chaperones, Annu.Rev. Biochem. 60:321–347.

    Article  PubMed  CAS  Google Scholar 

  32. Bardwell, J. C.,and Craig, E. A., 1984, Major heat shock gene of Drosophila and the Escherichia coli heat-inducible dnaK gene are homologous, Proc.Natl. Acad. Sci. USA 81: 848–852.

    Article  PubMed  CAS  Google Scholar 

  33. Ingolia, T. D., and Craig, E. A., 1982, Drosophila gene relatedto the major heat shock-induced gene is transcribed at normaltemperatures and not induced by heat shock, Proc. Natl. Acad. Sci. USA 79:525–529.

    Article  PubMed  CAS  Google Scholar 

  34. Wadsworth, S. C., 1982, A family of related proteins is encoded by themajor Drosophila heat shock gene family, Mol. Cell. Biol. 2:286–292.

    PubMed  CAS  Google Scholar 

  35. Craig, E. A., and Jacobsen, K., 1985, Mutations in cognate genes of Saccharomycescerevisiae hsp70result in reduced growth rates at low temperatures, Mol. Cell. Biol. 5:3517–3524.

    PubMed  CAS  Google Scholar 

  36. Watowich, S. S., and Morimoto, R. I., 1988, Complex regulation of heatshock- and glucose- responsivegenes in human cells, Mol. Cell. Biol. 8:393–405.

    PubMed  CAS  Google Scholar 

  37. Craig, E. A.,Kramer, J., Shilling, J., Werner-Washburne, M., Holmes, S., Kosic, D.,Smithers, J., and Nicolet, C. M., 1989,SSC1, an essential member of the yeast HSP70 multigene family, encodes amitochondrial protein, Mol. Cell. Biol. 9:3000–3008.

    PubMed  CAS  Google Scholar 

  38. Mizzen, L. A,Chang, C., Garrels, J. I., and Welch, W. J., 1989, Identification,characterization, and purification of twomammalian stress proteins present in mitochondria, grp 75, a member of the hsp 70 family and hsp 58, a homolog of thebacterial groEL protein, J. Biol. Chem. 264: 20664–20675.

    PubMed  CAS  Google Scholar 

  39. Velazquez, J. M., and Lindquist, S., 1984, hsp70: Nuclear concentrationduring environmental stressand cytoplasmic storage during recovery, Cell 36:655–662.

    Article  PubMed  CAS  Google Scholar 

  40. Welch, W. J., and Feramisco, J. R., 1984, Nuclear and nucleolarlocalization of the 72,000-dalton heat shock protein in heat-shockedmammalian cells, J. Biol. Chem. 259:4501–4513.

    PubMed  CAS  Google Scholar 

  41. Werner, W. M., and Craig, E. A., 1989, Expression of members of the Saccharomycescerevisiae hsp70multigene family, Genome 31:684–689.

    Article  Google Scholar 

  42. Allen, R. L., OBrein, D. A., and Eddy, E. M., 1988, A novel hsp70-likeprotein (P70) is present inmouse spermatogenic cells, Mol. Cell. Biol. 8:828–832.

    PubMed  CAS  Google Scholar 

  43. Zakeri, Z. F., Wolgemuth, D. J., and Hunt, C. R., 1988, Identification and sequence analysis of a new member of the mouse HSP70gene family and characterization of its unique cellular and developmentalpattern of expression in the male germ line, Mol. Cell. Biol. 8:2925–2932.

    PubMed  CAS  Google Scholar 

  44. Craig, E. A., and Jacobsen, K., 1984, Mutations of the heat inducible70 kilodalton genes of yeast confer temperature sensitive growth, Cell 38:841–849.

    Article  PubMed  CAS  Google Scholar 

  45. Craig, E. A.,1989, Essential roles of 70kDa heat inducible proteins, Bioessays 11:48–52.

    Article  PubMed  CAS  Google Scholar 

  46. Welch, W. J., and Feramisco, J. R., 1985, Rapid purification ofmammalian 70,000-dalton stress proteins: Affinity of the proteins for nucleotides, Mol.Cell. Biol. 5:1229–1237.

    PubMed  CAS  Google Scholar 

  47. Rothman, J. E.,1989, Polypeptide chain binding proteins: Catalysts of protein folding andrelated processes in cells, Cell 59:591–601.

    Article  PubMed  CAS  Google Scholar 

  48. Yamamoto, T., McIntyre, J., Sell, S. M., Georgopoulos, C., Skowyra, D.,and Zylicz, M., 1987, Enzymology of the pre-priming steps in lambda DNAreplication in vitro, J. Biol. Chem. 262: 7996–7999.

    PubMed  CAS  Google Scholar 

  49. Flynn, G. C.,Pohl, J., Flocco, M. T., and Rothman, J. E., 1991, Peptide-binding specificityof the molecular chaperone BiP, Nature 353:726–730.

    Article  PubMed  CAS  Google Scholar 

  50. Pelham,H. R., 1986, Speculations on the functions of the major heat shock andglucose-regulated proteins, Cell 46:959–961.

    Article  PubMed  CAS  Google Scholar 

  51. Ungewickell, E., 1985, The 70-kd mammalian heat shock proteins arestructurally and functionallyrelated to the uncoating protein that releases clathrin triskelia from coatedvisicles, EMBO J. 4:3385–3391.

    PubMed  CAS  Google Scholar 

  52. Chappell, T. G.,Welch, W. J., Schlossman, D. M., Palter, K. B., Schlesinger, M. J., andRothman, J. E., 1986, Uncoating ATPase is a member of the 70 kilodalton familyof stress proteins, Cell 45:3–13.

    Article  PubMed  CAS  Google Scholar 

  53. Chirico, W. I.,Waters, M. G., and Blobel, G., 1988, 70K heat shock related proteins stimulateprotein translocation into microsomes, Nature 332:805–810.

    Article  PubMed  CAS  Google Scholar 

  54. Sanchez, E. R., Toft, D. O., Schlesinger, M. J., and Pratt, W. B., 1985,Evidence that the 90-kDa phosphoproteinassociated with the untransformed L-cell glucocorticoid receptor is a murineheat shock protein, J. Biol. Chem. 86:1123–1127.

    Google Scholar 

  55. Munro, S., andPelham, H. R., 1986, An Hsp70-like protein in the ER: Identity with the 78 kdglucose-regulated protein and immunoglobulin heavy chain binding protein, Cell46:291–300.

    Article  PubMed  CAS  Google Scholar 

  56. Gething, M. J.,McCammon, K., and Sambrook, J., 1986, Cell 46:939–950.

    Article  PubMed  CAS  Google Scholar 

  57. Skowyra, D., Georgopoulos, C., and Zylicz, M., 1990, The E. coli dnaKgene product, the hsp70 homolog, can reactivate heat-inactivated RNApolymerase in an ATP hydrolysis-dependent manner, Cell 62:939–944.

    Article  PubMed  CAS  Google Scholar 

  58. Neidhardt, F. C., VanBogelen, R. A., and Vaughn,V, 1984, The genetics and regulation of heat-shock proteins, Annu.Rev. Genet. 18:295–329.

    Article  PubMed  CAS  Google Scholar 

  59. Fayet, O., Ziegelhoffer, T., and Georgopoulos, C., 1989, The groES andgroEL heat shock gene products of Escherichia coli are essentialfor bacterial growth at all temperatures, J. Bacteriol. 171:1379–1385.

    PubMed  CAS  Google Scholar 

  60. Hemmingsen, S.M., Woolford, C., van der Vies, S. M., Tilly, K., Dennis, D. T., Georgopoulos, C. P., Hendrix, R. W., and Ellis, R. J., 1988,Homologous plant and bacterial proteins chaperone oligomeric proteinassembly, Nature 333:330–334.

    Article  PubMed  CAS  Google Scholar 

  61. Prevelige, P.,Thomas, D., and King, J., 1988, J. Mol. Biol. 202:743–757.

    Article  PubMed  CAS  Google Scholar 

  62. Goloubinoff, P., Gatenby, A. A., and Lorimer, G. H., 1989, GroE heat-shockproteins promote assembly of foreign prokaryotic ribulose bisphosphatecarboxylase oligomers in Escherichia coli, Nature 337:44–47.

    Article  PubMed  CAS  Google Scholar 

  63. Martin, J.,Langer, T., Boteva, R., Schramel, A., Horwich, A. L., and Hartl, F. U., 1991, Chaperonin-mediated protein folding at thesurface of groEL through a ’molten globule’-like intermediate, Nature352:36–42.

    Article  PubMed  CAS  Google Scholar 

  64. Viitanen, P. V.,Lubben, T. H., Reed, J., Goloubinoff, R., O’Keefe, D. P., and Lorimer, G. H., 1990, Chaperonin-facilitated refolding ofribulosebisphosphate carboxylase and ATP hydrolysis by chaperonin 60(groEL) are K+ dependent, Biochemistry 29:5665–5671.

    Article  PubMed  CAS  Google Scholar 

  65. Gottesman, S., 1990, Conservation of the regulatory subunit for the ClpATP-dependent protease inprokaryotes and eukaryotes, Proc. Natl. Acad. Sci. USA 87:3513–3517.

    Article  PubMed  CAS  Google Scholar 

  66. Parsell, D. A., Sanchez, Y., Stitzel, J. D., and Lindquist, S., 1991,Hspl04 is a highly conserved protein with two essential nucleotide-binding sites,Nature 353:270–273.

    Article  PubMed  CAS  Google Scholar 

  67. Sanchez, Y.,Taulien, J., Borkovich, K., and Lindquist, S. L., 1990, Hspl04 is required fortolerance to many forms of stress, Science 248:1112–1115.

    Article  PubMed  CAS  Google Scholar 

  68. Squires, C. L.,Pedersen, S., Ross, B. M., and Squires, C., 1991, ClpB is the Escherichiacoli heat shock protein F84.1, J. Bacteriol. 173:4254–4262.

    PubMed  CAS  Google Scholar 

  69. Sanchez, Y.,Taulien, J., Borkovich, K. A., and Lindquist, S., 1992, Hspl04 is required fortolerance to many forms of stress, EMBO J. 11:2357–2364.

    PubMed  CAS  Google Scholar 

  70. Borkovich, K. A., Farrelly, F. W., Finkelstein, D. B., Taulien, J., andLindquist, S., 1989, Hsp82 is an essential protein that is required in higherconcentrations for growth of cells at higher temperatures, Mol. Cell. Biol. 9:3919–3930.

    PubMed  CAS  Google Scholar 

  71. Mazzarella, R. A., and Green, M., 1987, ERp99, an abundant, conservedglycoprotein of the endoplasmic reticulum, is homologous to the 90-kDa heatshock protein (hsp90) and the 94-kDa glucose regulated protein (GRP94), J.Biol. Chem. 262:8875–8883.

    PubMed  CAS  Google Scholar 

  72. Sorger, P. K., and Pelham, H. R., 1987, The glucose-regulated proteingrp94 is related to heat shockprotein hsp90, J. Mol. Biol. 194:341–344.

    Article  PubMed  CAS  Google Scholar 

  73. Pratt, W. B.,1990, Interaction of hsp90 with steroid receptors: Organizing some diverseobservations and presenting the newest concepts, Mol. Cell. Endocrinol. 74:69–76.

    Article  Google Scholar 

  74. Brugge, J. S., Erikson, E., and Erikson, R. L., 1981, The specificinteraction of the Rous sarcoma virus transforming protein, pp60 src, with twocellular proteins, Cell 25:363–372.

    Article  PubMed  CAS  Google Scholar 

  75. Lipsich, L. A.,Cutt, J. R., and Brugge, J. S., 1982, Association of the transforming proteinsof Rous Fujinami, and Y73 avian sarcomaviruses with the same two cellular proteins, Mol. Cell. Biol. 2:2875–2880.

    Google Scholar 

  76. Ziemiecki, A.,Catelli, M. G., Joab, I., and Moncharmont, B., 1986, Association of the heat shock protein hsp90 with steroid hormone receptorsand tyrosine kinase oncogene products, Biochem. Biophys. Res. Commun.138:1298–1307.

    Article  PubMed  CAS  Google Scholar 

  77. Rose,D. W., Wettenhall, R. E., Kudlicki, W., Kramer, G., and Hardesty, B., 1987, The90-kilodalton peptide of the heme-regulatedeIF-2 alpha kinase has sequence similarity with the 90-kilodalton heatshock protein, Biochemistry 26:6583–6587.

    Article  PubMed  CAS  Google Scholar 

  78. Nishida, E., Koyasu, S., Sakai, H., and Yahara,I., 1986, Calmodulin-regulated binding of the 90-kDa heat shock proteinto actin filaments, J. Biol. Chem. 261:16033–16036.

    PubMed  CAS  Google Scholar 

  79. Pratt, W. B.,Sanchez, E. R., Bresnick, E. H., Meshinchi, S., Scherrer, L. C., Dalman, F. C.,and Welsh, M. J., 1989, Interaction of theglucocorticoid receptor with the Mr 90,000 heat shock protein: Anevolving model of ligand-mediated receptor transformation and translocation, CancerRes. 49:2222s–2229s.

    CAS  Google Scholar 

  80. Dougherty, J. J.,Rabideau, D. A., Iannotti, A. M., Sullivan, W. P., and Toft, D. O., 1987, Identification of the 90 kDa substrate of ratliver type II casein kinase with the heat shock protein which bindssteroid receptors, Biochim. Biophys. Acta 927:74–80.

    Article  PubMed  CAS  Google Scholar 

  81. Jentsch, S., 1992, The ubiquitin-conjugation system, Annu. Rev. Genet. 26:179–207.

    Article  PubMed  CAS  Google Scholar 

  82. Picard, D., Khursheed, B., Garabedian, M., Fortin, M. G., Lindquist,S., and Yamamoto, K. R., 1990, Reduced levels of hsp90 compromise steroid receptoraction in vivo, Nature 348:166–168.

    Article  PubMed  CAS  Google Scholar 

  83. Finley, D., Ozkaynak, E, and Varshavsky, A., 1987, The yeastpolyubiquitin gene is essential for resistance to high temperatures,starvation, and other stresses, Cell 48:1035–1046.

    Article  PubMed  CAS  Google Scholar 

  84. Seufert, W., and Jentsch, S., 1990, Ubiquitin-conjugating enzymes UBC4and UBC5 mediate selectivedegradation of short-lived and abnormal proteins, EMBO J. 9:543–550.

    PubMed  CAS  Google Scholar 

  85. Zylicz, M., Ang,D., Liberek, K., and Georgopoulos, C., 1989, Initiation of Lambda DNA replication with purified host- andbacteriophage-encoded proteins: The role of the dnaK, dnaJ and grpEheat shock proteins, EMBO J. 8:1601–1608.

    PubMed  CAS  Google Scholar 

  86. Dodson, M., McMacken, R., and Echols, H., 1989, Specializednucleoprotein structures at the origin of replication of bacteriophage Lambda.Protein association and disassociation reactions responsible for localizedinitiation of replication, J. Biol. Chem. 264:10719–10725.

    PubMed  CAS  Google Scholar 

  87. Alfano, C., and McMacken, R., 1989, Ordered assembly of nucleoproteinstructures at the bacteriophage Lambda replication origin during theinitiation of DNA replication, J. Biol. Chem. 264:10699–10708.

    PubMed  CAS  Google Scholar 

  88. Wickner, S., Hoskins, J., and McKenney, K., 1991, Function of DnaJ andDnaK as chaperones in origin-specificDNA binding by RepA, Nature 350:165–167.

    Article  PubMed  CAS  Google Scholar 

  89. Liberek, K.,Marszalek, J., Ang, D., Georgopoulos, C., and Zylicz, M., 1991, Escherichiacoli DnaJ and GrpE heat shock proteinsjointly stimulate ATPase activity of DnaK, Proc. Natl. Acad. Sci.USA 88:2874–2878.

    Article  PubMed  CAS  Google Scholar 

  90. Horwich, A., 1990, Protein import into mitochondria and peroxisomes, Curr.Opin. Cell. Biol. 2: 625–633.

    Article  PubMed  CAS  Google Scholar 

  91. Smith, D. F.,Stensgard, B. A., Welch, W. J., and Toft, D. O., 1992, Assembly of progesteronereceptor with heat shock proteins andreceptor activation are ATP mediated events, J. Biol. Chem. 267:1350–1356.

    PubMed  CAS  Google Scholar 

  92. Wu, C., 1980, The 5’ ends of Drosophila heat shock genes inchromatin are hypersensitive to DNase J., Nature 286:854–860.

    Article  PubMed  CAS  Google Scholar 

  93. Keene, M. A.,Corces, V., Lowenhaupt, K., and Elgin, S. C., 1981, DNase I hypersensitivesites in Drosophila chromatin occurat the 5’ ends of regions of transcription, Proc. Natl. Acad. Sci. USA78:143–146.

    Article  PubMed  CAS  Google Scholar 

  94. Gilmour, D. S., and Lis, J. T., 1986, RNA polymerase II interacts withthe promoter region of the noninduced hsp70 gene in Drosophila melanogaster cells,Mol. Cell. Biol. 6:3984–3989.

    PubMed  CAS  Google Scholar 

  95. Sorger, P. K., Lewis, M. J., and Pelham, sH. R., 1987, Heat shock factor is regulated differently in yeast and HeLa cells, Nature 329:81–84.

    Article  PubMed  CAS  Google Scholar 

  96. Wu, C., Wilson,S., Walker, B., Dawid, I., Paisley, T., Zimarino, V., and Ueda, H., 1987, Purification and properties of Drosophila heatshock activator protein, Science 238:1247–1253.

    Article  PubMed  CAS  Google Scholar 

  97. Perisic, O., Xiao, H., and Lis, J. T., 1989, Stable binding of Drosophilaheat shock factor to head- to-head and tail-to-tail repeats of a conserved 5 bpunit, Cell 59:797–806.

    Article  PubMed  CAS  Google Scholar 

  98. Sorger, P. K.,and Nelson, H. C., 1989, Trimerization of a yeast transcriptional activator viaa coiled-coil motif, Cell 59:807–813.

    Article  PubMed  CAS  Google Scholar 

  99. Clos, J.,Westwood, J. T., Becker, P. B., Wilson, S., Lambert, K., and Wu, C., 1990,Molecular cloning and expression of a hexameric Drosophila heat shockfactor subject to negative regulation, Cell 63:1085–1097.

    Article  PubMed  CAS  Google Scholar 

  100. Xiao, H., Perisic, O., and Lis, J. T., 1991, Cooperative binding ofDrosophila heat shock factor to arrays of a conserved 5 bp unit, Cell64:585–593.

    Article  PubMed  CAS  Google Scholar 

  101. Nieto, S. J.,Wiederrecht, G., Okuda, A., and Parker, C. S., 1990, The yeast heat shock transcription factor contains a transcriptionalactivation domain whose activity is repressed under nonshock conditions,Cell 62:807–817.

    Article  Google Scholar 

  102. Grossman, A. D., Erickson, J. W., and Gross, C. A., 1984, The htpR geneproduct of E. coli is a sigma factor for heat-shock promoters, Cell 38:383–390.

    Article  PubMed  CAS  Google Scholar 

  103. Landick, R.,Vaughn, V, Lau, E. T., VanBogelen, R., Erickson, J. W., and Neidhardt, F. C.,1984, Nucleotide sequence of the heat shock regulatory gene of E. coli suggestsits protein product may be a transcription factor, Cell 38:175–182.

    Article  PubMed  CAS  Google Scholar 

  104. Straus, D. B.,Walter, W. A., and Gross, C. A., 1987, The heat shock response of E. coli isregulated by changes in the concentration of sigma 32, Nature 329:348–351.

    Article  PubMed  CAS  Google Scholar 

  105. Straus, D. B., Walter, W. A., and Gross, C. A., 1989, The activity ofsigma 32 is reduced under conditions of excess heat shock protein production in Escherichiacoli, Genes Dev. 3:2003–2010.

    Article  PubMed  CAS  Google Scholar 

  106. Erickson, J. W., and Gross, C. A., 1989, Identification of the sigma Esubunit of Escherichia coli RNA polymerase: Asecond alternate sigma factor involved in high-temperature gene expression, Genes Dev. 3:1462–1471.

    Article  PubMed  CAS  Google Scholar 

  107. Yost, H. J., and Lindquist, S., 1986, RNA splicing is interrupted byheat shock and is rescued by heat shock protein synthesis, Cell 45:185–193.

    Article  PubMed  CAS  Google Scholar 

  108. Blackman, R. K., and Meselson, M., 1986, Interspecific nucleotidesequence comparisons used toidentify regulatory and structural features of the Drosophila hsp82gene, J. Mol. Biol. 188: 499–515.

    Article  PubMed  CAS  Google Scholar 

  109. Bond, U., andSchlesinger, M. J., 1986, The chicken ubiquitin gene contains a heat shock promoter and expresses an unstable mRNA inheat-shocked cells, Mol. Cell. Biol. 6:4602–4610.

    PubMed  CAS  Google Scholar 

  110. Kay, R. J.,Russnak, R. H., Jones, D., Mathias, C., and Candido, E. P., 1987, Expression ofintron-containing C. elegans heat shock genes in mouse cellsdemonstrates divergence of 3’ splice siterecognition sequences between nematodes and vertebrates, and an inhibitoryeffect of heat shock on the mammalian splicing apparatus, NucleicAcids Res. 15:3723–3741.

    Article  CAS  Google Scholar 

  111. Maniak, M., and Nellen, W., 1988, A developmentally regulated membraneprotein gene in Dictyosteliumdiscoideum isalso induced by heat shock and cold shock, Mol. Cell. Biol. 8: 153–159.

    PubMed  CAS  Google Scholar 

  112. Yost, H. J., and Lindquist, S., 1991, Heat shock proteins affect RNAprocessing during the heat shock response of Saccharomycescerevisiae, Mol. Cell. Biol. 11:1062–1068.

    PubMed  CAS  Google Scholar 

  113. Muhich, M. L.,Hsu, M. P., and Boothroyd, J. C., 1989, Heat-shock disruption of trans-splicingin trypanosomes: Effect on Hsp70, Hsp85 and tubulin synthesis, Gene 82:169–175.

    CAS  Google Scholar 

  114. Sutton, R. E.,and Boothroyd, J. C., 1988, Trypanosome trans-splicing utilizes 2–5branches and a corresponding debranching activity, EMBO J. 71:1431–1437.

    Google Scholar 

  115. Muhich, M. L., and Boothroyd, J. C., 1989, Synthesis of trypanosomehsp70 mRNA is resistant todisruption of trans-splicing by heat shock, J. Biol. Chem. 264:7107–7110.

    PubMed  CAS  Google Scholar 

  116. Fini, M. E., Bendena, W. G., and Pardue, M. L., 1989, Unusual behaviorof the cytoplasmic transcriptof hsr omega: An abundant, stress-inducible RNA that is translated but yieldsno detectable protein product, J. Cell Biol. 108:2045–2057.

    Article  PubMed  CAS  Google Scholar 

  117. Mayrand, S., and Pederson, T., 1983, Heat shock alters nuclearribonucleoprotein assembly in Drosophila cells, Mol.Cell. Biol. 3:161–171.

    PubMed  CAS  Google Scholar 

  118. Beyer, A. L., and Osheim, Y. M., 1988, Splice siteselection, rate of splicing, and alternative splicing on nascent transcripts, GenesDev. 2:754–765.

    Article  CAS  Google Scholar 

  119. Bond, U., 1988, Heat shock but not other stress inducers leads to the disruption of a sub-set of snRNPs and inhibition of in vitro splicing inHeLa cells, EMBO J. 7:3509–3518.

    PubMed  CAS  Google Scholar 

  120. Wright,S. L. G., Reichlin, M., and Tobin, S. L., 1989, Alteration by heat shock and immunological characterization of Drosophila smallnuclear ribonucleoproteins, J. Cell Biol, 108:2007–2016.

    Article  Google Scholar 

  121. Dworniczak,B., and Mirault, M. E., 1987, Structure and expression of a human gene codingfor a 71 kd heat shock ’cognate’ protein, Nucleic Acids Res. 15:5181–5197.

    Article  PubMed  CAS  Google Scholar 

  122. Yost,H. L., and Lindquist, S., 1988, Translation of unspliced transcripts after heatshock, Science 242:1544–1548.

    Article  PubMed  CAS  Google Scholar 

  123. Westwood,J. T., Clos, J., and Wu, C., 1991, Stress-induced oligomerization andchromosomal relocalization of heat-shock factor, Nature 353:822–827.

    Article  PubMed  CAS  Google Scholar 

  124. Hickey, E., and Weber, L. A. (eds.), 1982, PreferentialTranslation of Heat-Shock mRNAs in HeLa Cells, Cold SpringHarbor Press, Cold Spring Harbor, New York.

    Google Scholar 

  125. Duncan, R., and Hershey, J. W., 1984, Heat shock-induced translational alterations in HeLa cells. Initiation factormodifications and the inhibition of translation, J. Biol. Chem. 259:11882–11889.

    PubMed  CAS  Google Scholar 

  126. Scorsone, K. A., Panniers, R., Rowlands, A. G. andHenshaw, E. C., 1987, Phosphorylation of eukaryoticinitiation factor 2 during physiological stresses which affect proteinsynthesis, J. Biol. Chem. 262:14538–14543.

    PubMed  CAS  Google Scholar 

  127. Duncan, R. F., and Hershey, J. W., 1989, Protein synthesis and proteinphosphorylation during heatstress, recovery, and adaptation, J. Cell Biol. 109:1467–1481.

    Article  PubMed  CAS  Google Scholar 

  128. Panniers,R., Stewart, E. B., Merrick, W. C., and Henshaw, E. C., 1985, Mechanism of inhibition of polypeptide chain initiation inheat-shocked Ehrlich cells involves reduction of eukaryotic initiationfactor 4F activity, J. Biol. Chem. 260:9648–9653.

    PubMed  CAS  Google Scholar 

  129. Lindquist,S., 1981, Regulation of protein synthesis during heat shock, Nature 293:311–314.

    Article  PubMed  CAS  Google Scholar 

  130. Finkelstein,D. B., Strausberg, S., and McAlister, L., 1982, Alterations of transcriptionduring heat shock of Saccharomyces cerevisiae, J. Biol. Chem. 257:8405–8411.

    PubMed  CAS  Google Scholar 

  131. Storti, R. V., Scott, M. P., Rich, A., and Pardue, M. L., 1980,Translational control of protein synthesis in response to heat shock in D.melanogaster cells, Cell 22:825–834.

    Article  PubMed  CAS  Google Scholar 

  132. DiDomenico, B.J., Bugaisky, G. E., and Lindquist, S., 1982, Heat shock and recovery aremediated by different translational mechanisms, Proc. Natl. Acad. Sci. USA 79:6181–6185.

    Article  PubMed  CAS  Google Scholar 

  133. Kruger, C., and Benecke, B. J., 1981, In vitro translation of Drosophila heat-shock and non-heat-shock mRNAs in heterologousand homologous cell-free systems, Cell 23:595–603.

    Article  PubMed  CAS  Google Scholar 

  134. Sanders, M. M., Triemer, D. F., and Olsen, A. S.,1986, Regulation of protein synthesis in heat-shocked Drosophila cells.Soluble factors control translation in vitro, J. Biol. Chem. 261:2189–2196.

    PubMed  CAS  Google Scholar 

  135. Di Nocera, P. P., and Dawid, I. B., 1983,Transient expression of genes introduced into cultured cells of Drosophila,Proc. Natl. Acad. Sci. USA 80:7095–7098.

    Article  PubMed  Google Scholar 

  136. Bonner,J. J., Parks, C., Parker, T. J., Mortin, M. A., and Pelham, H. R., 1984, Theuse of promoter fusions in Drosophila genetics: Isolation of mutationsaffecting the heat shock response, Cell 37:979–991.

    Article  PubMed  CAS  Google Scholar 

  137. Klemenz, R., Hultmark, D., and Gehring, W. J., 1985,Selective translation of heat shock mRNA in Drosophila melanogaster depends on sequence information inthe leader, EMBO J. 4:2053–2060.

    PubMed  CAS  Google Scholar 

  138. Petersen, R., and Lindquist, S., 1988, The Drosophilahsp70 message is rapidly degraded at normal temperatures and stabilized byheat shock, Gene 72:161–168.

    Article  PubMed  CAS  Google Scholar 

  139. McGarry, T. J., and Lindquist, S., 1985, The preferentialtranslation of Drosophila hsp70 mRNA requires sequences in the untranslatedleader, Cell 42:903–911.

    Article  PubMed  CAS  Google Scholar 

  140. Hultmark, D., Klemenz, R., and Gehring, W. J., 1986,Translational and transcriptional control elements in the untranslated leader ofthe heat-shock gene hsp22, Cell 44:429–438.

    Article  PubMed  CAS  Google Scholar 

  141. Solomon, J. M., Rossi, J. M., Golic, K., McGarry, T., andLindquist, S., 1991, Changes in Hsp70 alter thermotolerance and heat-shockregulation in Drosophila, New Biol. 3:1106–1120.

    PubMed  CAS  Google Scholar 

  142. McGarry,T. J., 1986, Genetic analysis of heat shock protein synthesis, Ph.D.Dissertation, University of Chicago, Chicago, Illinois.

    Google Scholar 

  143. Holmgren, R., Corces, V., Morimoto, R., Blackman, R.,and Meselson, M., 1981, Sequence homologies in the5 regions of four Drosophila heat-shock genes. Proc. Natl. Acad.Sci. USA 78: 3775–3778.

    Article  PubMed  CAS  Google Scholar 

  144. Lindquist, S.,1987, Translational Regulation in the Heat-Shock Response of Drosophila Cells, TranslationalRegulation of Gene Expression (J. Ilan, ed.), Plenum Press, New York, pp.187–207.

    Chapter  Google Scholar 

  145. Zapata, J. M., Maroto, F. G., and Sierra, J. M.,1991, Inactivation of mRNA cap-binding protein complex in Drosophilamelanogaster embryos under heat shock, J. Biol. Chem. 266:16007–16014.

    PubMed  CAS  Google Scholar 

  146. Lindquist, S., andPetersen, R., 1990, Selective translation and degradation of heat shockmessenger RNAs in Drosophila, Enzyme 44:147–166.

    PubMed  CAS  Google Scholar 

  147. Lindquist,S., and DiDomenico, B., 1985, Coordinate and Noncoordinate Gene Expressionduring Heat Shock: A Model for Regulation, Academic Press, New York.

    Google Scholar 

  148. Ballinger, D. G., and Pardue, M. L., 1983, The control of proteinsynthesis during heat shock in Drosophila cells involvesaltered polypeptide elongation rates, Cell 33:103–113.

    Article  PubMed  CAS  Google Scholar 

  149. Jackson, R. J., 1986, The heat-shock response in Drosophila KC161 cells: mRNA competition is the main explanation forreduction of normal protein synthesis, Eur. J. Biochem. 158:623–634.

    Article  PubMed  CAS  Google Scholar 

  150. Scott, M. P., and Pardue, M. L., 1981,Translational control in lysates of Drosophila melanogas ter cells,Proc. Natl. Acad. Sci. USA 78:3353–3357.

    Article  PubMed  CAS  Google Scholar 

  151. Maroto, F. G.,and Sierra, J. M., 1988, Translational control in heat-shocked Drosophila embryos. Evidence for the inactivation ofinitiation factor(s) involved in the recognition of mRNA cap structure,J. Biol. Chem. 263:15720–15725.

    PubMed  CAS  Google Scholar 

  152. Maroto, F. G., and Sierra, J. M., 1989, Purification andcharacterization of mRNA cap-binding protein from Drosophila melanogaster embryos,Mol. Cell. Biol. 9:2181–2190.

    PubMed  CAS  Google Scholar 

  153. Sarnow, P., 1989,Translation of glucose-regulated protein 78/immunoglobulin heavy-chain binding protein mRNA is increased inpoliovirus-infected cells at a time when cap-dependent translation ofcellular mRNAs is inhibited, Proc. Natl. Acad. Sci. USA 86:5795–5799.

    Article  PubMed  CAS  Google Scholar 

  154. Munoz, A.,Alonso, M. A., and Carrasco, L., 1984, Synthesis of heat-shock proteins in HeLacells: Inhibition by virus infection, Virology 137:150–159.

    Article  PubMed  CAS  Google Scholar 

  155. Petersen, R. B., and Lindquist, S., 1989, Regulation of Hsp70 synthesisby messenger RNA degradation,Cell Regulat. 1:135–149.

    CAS  Google Scholar 

  156. Shaw, G., and Kamen, R., 1986, A conserved AU sequencefrom the 3’ untranslated region of GM-CSF mRNA mediates selective mRNAdegradation, Cell 46:659–667.

    Article  PubMed  CAS  Google Scholar 

  157. Sadis, S., Hickey, E., and Weber, L. A., 1988, Effect of heat shock onRNA metabolism in HeLa cells,J. Cell. Physiol. 135:377–386.

    Article  PubMed  CAS  Google Scholar 

  158. Theodorakis, N.G., and Morimoto, R. I., 1987, Posttranscriptional regulation of hsp70 expression in human cells: Effects of heat shock,inhibition of protein synthesis, and adenovirus infection on translationand mRNA stability, Mol. Cell. Biol. 7:4357–4368.

    PubMed  CAS  Google Scholar 

  159. Feder, J. H., Rossi, J. M., Solomon, J., Solomon, N., andLindquist, S., 1992, The consequences of expressing hsp70 in Drosophila cellsat normal temperatures, Genes Dev. 6:1402–1403.

    Article  PubMed  CAS  Google Scholar 

  160. Bugaisky, G. E., 1981, RNA metabolism during heat shock andrecovery in Drosophila, Ph.D. Dissertation, University of Chicago, Chicago,Illinois.

    Google Scholar 

  161. Lindquist, S., McGarry, T J., and Golic, K., 1988, Use of AntisenseRNA in Studies of the Heat- Shock Response, Cold SpringHarbor Press, Cold Spring Harbor, New York.

    Google Scholar 

  162. Liberek,K., Georgopoulos, C., and Zylicz, M., 1988, Role of the Escherichia coli DnaKand DnaJ heat shock proteins in theinitiation of bacteriophage lambda DNA replication, Proc. Natl. Acad.Sci. USA 85:6632–6636.

    Article  PubMed  CAS  Google Scholar 

  163. Liberek, K.,Osipiuk, J., Zylicz, M., Ang, D., Skorko, J., and Georgopoulos, C., 1990,Physical interactions between bacteriophage and Escherichia coli proteinsrequired for initiation of lambda DNA replication, J. Biol. Chem. 265:3022–3029.

    PubMed  CAS  Google Scholar 

  164. Wickner, S. H.,1990, Three Escherichia coli heat shock proteins are required for P1plasmid DNA replication: Formation of an active complex between E. coli DnaJprotein and the P1 initiator protein, Proc. Natl. Acad. Sci. USA 87:2690–2694.

    Article  PubMed  CAS  Google Scholar 

  165. Gaitanaris, G.A., Papavassiliou, A. G., Rubock, P., Silverstein, S. J., and Gottesman, M. E.,1990, Renaturation of denatured λ repressor requires heat shock proteins, Cell61:1013–1020.

    Article  PubMed  CAS  Google Scholar 

  166. Straus, D.,Walter, W., and Gross, C. A., 1990, DnaK, DnaJ, and GrpE heat shock proteins negatively regulate heat shock gene expression bycontrolling the synthesis and stability of sigma 32, Genes Dev. 4:2202–2209.

    Article  PubMed  CAS  Google Scholar 

  167. Tilly, K., Spence, J., and Georgopoulos, C., 1989, Modulation ofstability of the Escherichia coli heat shock regulatory factor sigma, J.Bacteriol. 171:1585–1589.

    PubMed  CAS  Google Scholar 

  168. Yura, T., Kawasaki, Y., Kusukawa, N., Nagai, H., Wada, C., and Yano,R., 1990, Roles and regulation of the heat shock sigma factor sigma 32 in Escherichiacoli, Antonie Van Leeuwenhoek 58:187–190.

    Article  PubMed  CAS  Google Scholar 

  169. Kamath, L. A. S.,and Gross, C. A., 1991, Translational regulation of sigma 32 synthesis:Requirement for an internal control element, J. Bacteriol. 173:3904–3906.

    Google Scholar 

  170. Bukau, B., and Walker, G. C., 1989,Cellular defects caused by deletion of the Escherichia coli dnaK geneindicate roles for heat shock protein in normal metabolism, J. Bacteriol. 171:2337–2346.

    PubMed  CAS  Google Scholar 

  171. Bukau, B., and Walker, G. C., 1990, Mutations altering heat shockspecific subunit of RNA polymerase suppress major cellular defects of E.coli mutants lacking the DnaK chaperone, EMBO J. 9:4027–4036.

    PubMed  CAS  Google Scholar 

  172. Stone, D. E., and Craig, E. A., 1990, Self-regulation of 70-kilodaltonheat shock proteins in Saccharomycescerevisiae, Mol. Cell. Biol. 10:1622–1632.

    PubMed  CAS  Google Scholar 

  173. Lee, K. J., and Hahn, G. M., 1988, Abnormal proteins as the trigger forthe induction of stress responses:Heat, diamide, and sodium arsenite, J. Cell. Physiol. 136:411–420.

    Article  PubMed  CAS  Google Scholar 

  174. Hightower, L. E., 1991, Heat shock, stress proteins, chaperones, andproteotoxicity, Cell 66: 191–197.

    Article  PubMed  CAS  Google Scholar 

  175. Ananthan, J., Goldberg, A. L., and Voellmy, R., 1986, Abnormal proteinsserve as eukaryotic stresssignals and trigger the activation of heat shock genes, Science 232:522–524.

    Article  PubMed  CAS  Google Scholar 

  176. Parsell, D. A., and Sauer, R. T., 1989, Inductionof a heat shock-like response by unfolded protein in Escherichia coli: Dependence on proteinlevel not protein degradation, Genes Dev. 31:1226–1232.

    Article  Google Scholar 

  177. Harti, F. U., Martin, J., and Neupert, W., 1992, Protein folding in thecell: The role of molecular chaperones Hsp70 and Hsp60, Annu. Rev.Biophys. Biomol. Struct. 21:293–322.

    Article  Google Scholar 

  178. Parsell, D. A., and Lindquist, S., 1993, The function of heat-shockproteins in stess tolerance: Degradation and reactivation of damaged proteins, Ann.Rev. Genet. in press.

    Google Scholar 

  179. Gamer, J., Bujard, H., and Bukau, B., 1992, Physical interactionbetween heat shock proteins DnaK, DnaJ, and GrpE and thebacterial heat shock transcription factor sigma 32, Cell 69:833–842.

    Article  PubMed  CAS  Google Scholar 

  180. Liberek, K.,Galitski, T. P., Zylicz, M., and Georgopoulos, C., 1992, The DnaK chaperone modulates the heat shock response of Escherichiacoli by binding to sigma 32 transcription factor, Proc. Natl.Acad. Sci. USA 89:3516–3520.

    Article  PubMed  CAS  Google Scholar 

  181. Bukau, B., 1993,Regulation of the E. coli heat shock response, Mol. Microbiol. inpress.

    Google Scholar 

  182. Morimoto, R. I., 1993, Cell in stress: Transcriptional activation ofheat shock genes, Science 259: 1409–1410.

    Article  PubMed  CAS  Google Scholar 

  183. Sorger, P. K.,1991, Heat shock factor and the heat shock response, Cell 65:363–366.

    Article  PubMed  CAS  Google Scholar 

  184. Abravaya, K., Myers, M. P., Murphy, S. P., and Morimoto, R. I., 1992,The human heat shock proteinhsp70 interacts with HSF, the transcription factor that regulates heat shockgene expression, Genes Dev. 6:1153–1164.

    Article  PubMed  CAS  Google Scholar 

  185. Nadeau,K., Das, A., and Walsh, C. T., 1993, Hsp90 chaperonins possess ATPase activityand bind heat shock transcription factorsand peptidyl prolyl isomerases, J. Biol. Chem. 268:1479–1487.

    PubMed  CAS  Google Scholar 

  186. Picard, D. et al., 1990,Reduced level of hsp90 compromise steroid receptor action in vivo, Nature 348:166–168.

    Article  PubMed  CAS  Google Scholar 

  187. Pratt, W. B.,Scherrer, L. C., Hutchison, K. A., and Dalman, F. C., 1992, A model of glucocorticoid receptor unfolding andstabilization by a heat shock protein complex, J. Steroid Biochem.Mol. Biol. 41:223–229.

    Article  PubMed  CAS  Google Scholar 

  188. Pratt, W. B., Hutchison, K. A., and Scherrer, L. C., 1992, Steroidreceptor folding by heat-shock proteins and composition of the receptorheterocomplex, TEM 3:326–333.

    PubMed  CAS  Google Scholar 

  189. Rabindran, S. K.,Haroun, R. I., Clos, J., Wisniewski, J., and Wu, C., 1993, Regulation of heatshock factor trimer formation: Role of a conserved leucine zipper, Science 259:230–234.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lindquist, S. (1993). Autoregulation of the Heat-Shock Response. In: Ilan, J. (eds) Translational Regulation of Gene Expression 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2894-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2894-4_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6254-8

  • Online ISBN: 978-1-4615-2894-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics