Skip to main content

Fact or Fiction-Bacterial Growth Rates and Production as Determined by [methyl-3H]-Thymidine?

  • Chapter
Advances in Microbial Ecology

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 13))

Abstract

Bacteria play key roles in the functioning of natural aquatic systems: they are major decomposers of organic matter and are important in energy and nutrient cycling and transformations. While their importance in the water column and sediments of inland and marine systems is widely acknowledged, there is also growing evidence to their importance in vast regions of the terrestrial subsurface (Ghiorse and Wilson, 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albrechtsen, H.-J., and Winding, A., 1992, Microbial biomass and activity in subsurface sediments from Vejen, Denmark, Microb. Ecol. 23:303–317.

    Google Scholar 

  • Alongi, D. M., 1988, Bacterial productivity and microbial biomass in tropical mangrove sediments, Microb. Ecol. 15:59–79.

    Google Scholar 

  • Austin, H. K., and Findlay, S. E. G., 1989, Benthic bacterial biomass and production in the Hudson River estuary, Microb. Ecol. 18:105–116.

    Google Scholar 

  • Azam, F., and Fuhrman, J. A. 1984, Measurement of bacterioplankton growth in the sea and its regulation by environmental conditions, in: Heterotrophic Activity in the Sea (J. E. Hobbie and P.J. L. Williams, eds.), Plenum Press, New York, pp. 179–196.

    Google Scholar 

  • Bååth, E., 1990, Thymidine incorporation into soil bacteria, Soil Biol. Biochem. 22:803–810.

    Google Scholar 

  • Bååth, E., and Johansson, T., 1990, Measurement of bacterial growth rates on the rhizoplane using 3H-thymidine incorporation into DNA, Plant Soil 126:133–139.

    Google Scholar 

  • Beacham, I. R., Beacham, K., Zaritsky, A., and Pritchard, R. H., 1971, Intracellular thymidine triphosphate concentrations in wild type and in thymine requiring mutants of Escherichia coli 15 and K12, J. Mol. Biol. 60:75–86.

    PubMed  CAS  Google Scholar 

  • Bell, R. T., 1986, Further verification of the isotope dilution approach for estimating the degree of participation of [3H]thymidine in DNA synthesis in studies of aquatic bacterial production, Appl. Environ. Microbiol. 52:1212–1214.

    PubMed  CAS  Google Scholar 

  • Bell, R. T., 1990, An explanation for the variability in the conversion factor deriving bacterial cell production from incorporation of [3H]-thymidine, Limnol. Oceanogr. 35:910–915.

    CAS  Google Scholar 

  • Bell, R. T., 1993, Estimating growth and productivity of heterotrophic bacterioplankton via incorporation of tritiated thymidine, in: Current Methods in Aquatic Microbial Ecology (P. Kemp, B. Sherr, E. Sherr, and J. J. Cole, eds.), Lewis Publ., Chelsea, Mich. (in press).

    Google Scholar 

  • Bell, R. T., and Ahlgren, I., 1987, Thymidine incorporation and microbial respiration in the surface sediment of a hypereutrophic lake, Limnol. Oceanogr. 32:476–482.

    CAS  Google Scholar 

  • Bell, R. T., and Riemann, B., 1989, Adenine incorporation into DNA as a measure of microbial production in freshwaters, Limnol. Oceanogr. 34:435–444.

    CAS  Google Scholar 

  • Bern, L., 1985, Autoradiographic studies of [methyl-3H]thymidine incorporation in a cyanobacterium (Microcystis wesenbergii]-bacterium association and in selected algae and bacteria, Appl. Environ. Microbiol. 49:232–233.

    PubMed  CAS  Google Scholar 

  • Bird, D. F., and Karl, D. M., 1991, Spatial patterns of glutamate and thymidine assimilation in Bransfield Strait, Antarctica during and following the austral spring bloom, Deep-Sea Res.38:1057–1075.

    Google Scholar 

  • Bjømsen, P. K., and Kuparinen, J., 1991, Determination of bacterioplankton biomass, net production and growth efficiency in the Southern Ocean, Mar Ecol. Prog. Ser. 71:185–194.

    Google Scholar 

  • Bloem, J., Starink, M., Bär-Gilissen, M.-J. B., and Cappenberg, T. E., 1988, Protozoan grazing, bacterial activity, and mineralization in two-stage continuous cultures, Appl. Environ. Micro biol. 54:3113–3121.

    CAS  Google Scholar 

  • Bloem, J., Ellenbroek, F. M., Bär-Gilissen, M.-J. B., and Cappenberg, T. E., 1989, Protozoan grazing and bacterial production in stratified Lake Vechten estimated with fluorescently labeled bacteria and by thymidine incorporation, Appl. Environ. Microbiol. 55:1787–1795.

    PubMed  CAS  Google Scholar 

  • Brittain, A. M., and Karl, D. M., 1990, Catabolism of tritiated thymidine by aquatic microbial communities and incorporation of tritium into RNA and protein, Appl. Environ. Microbiol. 56:1245–1254.

    PubMed  CAS  Google Scholar 

  • Brock, T. D., 1967, Bacterial growth rate in the sea: Direct analysis by thymidine autoradiography, Science 155:81–83.

    PubMed  CAS  Google Scholar 

  • Brock, T. D., 1971, Microbial growth rates in nature, Bacteriol. Rev. 35:39–58.

    PubMed  CAS  Google Scholar 

  • Burnison, B. K., and Nuttley, D. J., 1990, Purification of DNA for bacterial productivity estimates, Appl. Environ. Microbiol. 56:362–365.

    PubMed  CAS  Google Scholar 

  • Carlson, C. A., Stewart, G. J., and Ingraham, J. L., 1985, Thymidine salvage in Pseudomonas stutzeri and Pseudomonas aeruginosa provided by heterologous expression of Escherichia coli thymidine kinase gene, J. Bacteriol. 163:291–295.

    PubMed  CAS  Google Scholar 

  • Carmen, K. R., Dobbs, F. C., and Guckert, J. B., 1988, Consequences of thymidine catabolism for estimates of bacterial production: An example for a coastal marine sediment, Limnol. Oceanogr. 33:1595–1606.

    Google Scholar 

  • Cawood, A. H. H., and Savage, J. R. K., 1983, A comparison of the use of bromodeoxyuridine and [3H]thymidine in studies of the cell cycle, Cell Tissue Kinet. 16:51–57.

    PubMed  CAS  Google Scholar 

  • Cho, B. C., and Azam, F., 1988, Heterotrophic bacterioplankton production measurement by the tritiated thymidine incorporation method, Ergebn. Limnol. 31:153–162.

    Google Scholar 

  • Christensen, H., Funck-Jensen, D., and Kjøller, A., 1989, Growth rate of rhizosphere bacteria measured directly by the tritiated thymidine incorporation technique, Soil Biol. Biochem. 21:113–117.

    Google Scholar 

  • Christian, R. R., Hanson, B. B., and Newell, S. Y., 1982, Comparison of methods for measurement of bacterial growth rates in mixed batch cultures, Appl. Environ. Microbiol. 43:1160–1165.

    PubMed  CAS  Google Scholar 

  • Chróst, R., Overbeck, J., and Wcislo, R., 1988, Evaluation of the [3H]thymidine method for estimating bacterial growth rates and production in lake water: Re-examination and methodological comments, Acta Microbiol. Pol. 37:95–112.

    Google Scholar 

  • Chrzanowski, T. H., 1988, Consequences of accounting for isotopic dilution in thymidine incorporation assays, Appl. Environ. Microbiol. 54:1868–1870.

    PubMed  CAS  Google Scholar 

  • Cole, J. J., Caraco, N. F., Strayer, D. L., Ochs, C., and Nolan, S., 1989, A detailed organic carbon budget as an ecosystem-level calibration of bacterial respiration in an oligotrophic lake during summer, Limnol. Oceanogr. 34:286–296.

    CAS  Google Scholar 

  • Coveney, M. F., and Wetzel, R. G., 1988, Experimental evaluation of conversion factors for the [3H]thymidine incorporation assay of bacterial secondary productivity, Appl. Environ. Micro biol. 54:2018–2026.

    CAS  Google Scholar 

  • Davis, C. L., 1989, Uptake and incorporation of thymidine by bacterial isolates from an upwelling environment, Appl. Environ. Microbiol. 55:1267–1272.

    PubMed  CAS  Google Scholar 

  • Douglas, D. J., Novitsky, J. A., and Fournier, R. O., 1987, Microautoradiography-based enumeration of bacteria with estimates of thymidine-specific growth and production rates, Mar. Ecol. Prog. Ser. 36:91–99.

    CAS  Google Scholar 

  • Ducklow, H. W., and Carlson, C. A. 1992, Oceanic bacterial production, Adv. Microb. Ecol. 12:113–181.

    Google Scholar 

  • Ducklow, H. W., and Hill, S. M., 1985, Tritiated thymidine incorporation and the growth of heterotrophic bacteria in warm core rings, Limnol. Oceanogr. 30:260–272.

    CAS  Google Scholar 

  • Ducklow, H. W., Kirchman, D. L., and Quinby, H. L., 1992, Determination of bacterioplankton growth rates during the North Atlantic spring phytoplankton bloom: Cell growth and macro-molecular synthesis in seawater cultures, Microb. Ecol. 24:125–144.

    CAS  Google Scholar 

  • Ellenbroek, F. M., and Cappenberg, T. E., 1991, DNA synthesis and tritiated thymidine incorporation by heterotrophic freshwater bacteria in continuous culture, Appl. Environ. Microbiol. 57:1675–1682.

    PubMed  CAS  Google Scholar 

  • Fallon, R. D., and Newell, S. Y., 1986, Thymidine incorporation by the microbial community of standing dead Spartina alterniflora, Appl. Environ. Microbiol. 52:1206–1208.

    PubMed  CAS  Google Scholar 

  • Fallon, R. D., Newell, S. Y., and Hopkinson, C. S., 1983, Bacterial production in marine sediments: Will cell specific measures agree with whole system metabolism? Mar. Ecol. Prog. Ser. 11:119–127.

    Google Scholar 

  • Findlay, R. H., Pollard, P. C, Moriarty, D. J. W., and White, D. C., 1985, Quantitative determination of microbial activity and community nutritional status in estuarine sediments: Evidence for a disturbance artifact, Can. J. Microbiol. 31:493–498.

    PubMed  CAS  Google Scholar 

  • Findlay, S. E. G., Meyer, J. L., and Edwards, R. T., 1984, Measuring bacterial production via rate of incorporation of [3H]thymidine into DNA, J. Microbiol. Methods 2:57–72.

    CAS  Google Scholar 

  • Findlay, S. E. G., Pace, M. L., Lints, D., Cole, J. J., Caraco, N. F., and Peierls, B., 1991, Weak coupling of bacterial and algal production in a heterotrophic ecosystem: The Hudson River estuary, Limnol. Oceanogr. 36:286–278.

    Google Scholar 

  • Forsdyke, D. R., 1971, Application of the isotope dilution principle to the analysis of factors affecting the incorporation of [3H]uridine and [3H]cytidine into cultured lymphocytes, Biochem. J. 125:721–732.

    PubMed  CAS  Google Scholar 

  • Fuhrman, J. A., and Azam, F., 1980, Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica and California, Appl. Environ. Microbiol. 39:1085–1095.

    PubMed  CAS  Google Scholar 

  • Fuhrman, J. A., and Azam, F., 1982, Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface water: Evaluation and field results, Mar. Biol. 66:109–120.

    Google Scholar 

  • Fuhrman, J. A., Ducklow, H. W., Kirchman, D. L., Hudak, J., McManus, G. B., and Kramer, J., 1986a, Does adenine incorporation into nucleic acids measure total microbial production? Limnol. Oceanogr. 31:627–636.

    CAS  Google Scholar 

  • Fuhrman, J. A,. Ducklow, H. W., Kirchman, D. L., and McManus, G. B., 1986b, Adenine and total microbial production: A reply, Limnol. Oceanogr. 31:1395–1400.

    CAS  Google Scholar 

  • Gabriel, O., 1987, Biosynthesis of sugar residues for glycogen, peptidoglycan, lipopolysaccharide, and related systems, in: Escherichia coli and Salmonella typhimurium (F. C. Neuhard, J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaechter, and H. E. Umbargar, eds.), Volume 1, American Society for Microbiology, Washington, D.C., pp. 504–511.

    Google Scholar 

  • Ghiorse, W. C., and Wilson, J. T., 1988, Microbial ecology of the terrestrial subsurface, Adv. Appl. Microbiol. 33:107–172.

    PubMed  CAS  Google Scholar 

  • Gilmour, C. C., Leavitt, M. E., and Shiaris, M. P., 1990, Evidence against incorporation of exogenous thymidine by sulfate-reducing bacteria, Limnol. Oceanogr. 35:1401–1409.

    CAS  Google Scholar 

  • Grivell, A., and Jackson, J., 1968, Thymidine kinase: Evidence for its absence from Neurospora crassa and some other microorganisms, and the relevance of this to specific labelling of deox-yribonucleic acid, J. Gen. Microbiol. 54:307–317.

    PubMed  CAS  Google Scholar 

  • Güde, H., 1984, Test for validity of different radioisotope activity measurements by microbial pure and mixed cultures, Ergebn. Limnol. 19:257–266.

    Google Scholar 

  • Heldal, M., and Bratbak, G., 1991, Production and decay of viruses in aquatic environments, Mar. Ecol. Prog. Ser.72:205–212.

    Google Scholar 

  • Hobbie, J. E., 1988, A comparison of the ecology of planktonic bacteria in fresh and salt water, Limnol. Oceanogr. 33:750–764.

    CAS  Google Scholar 

  • Hobbie, J. E., and Crawford, C. C, 1969, Respiration corrections for bacterial uptake of dissolved organic compounds in natural waters, Limnol. Oceanogr. 14:528–532.

    CAS  Google Scholar 

  • Hollibaugh, J. T., 1988, Limitations of the [3H]thymidine method for estimating bacterial productivity due to thymidine metabolism, Mar. Ecol. Prog. Ser. 43:19–30.

    CAS  Google Scholar 

  • Hollibaugh, J. T., and Wong, P. S., 1992, Ethanol extractable substrate pools and the incorporation and metabolism of thymidine, L-leucine and other low molecular weight substrates by bacte-rioplankton, Can. J. Microbiol. 38:605–613.

    CAS  Google Scholar 

  • Hollibaugh, J. T., Fuhrman, J. A., and Azam, F. 1980, Radioactive labeling of natural assemblages of bacterioplankton for use in trophic studies, Limnol. Oceanogr. 25:172–181.

    CAS  Google Scholar 

  • Hood, M. A., Guckert, J. B., White, D. C., and Deck, F., 1986, Effect of nutrient deprivation on lipid, carbohydrate, DNA, RNA, and protein levels in Vibrio cholerae, Appl. Environ. Microbiol. 52:788–793.

    PubMed  CAS  Google Scholar 

  • Hudson, J. J., Roff, J. C., and Burnison, B. K., 1990, Measuring epilithic bacterial production in streams, Can. J. Fish. Aquat. Sci. 47:1813–1820.

    Google Scholar 

  • Hutchinson, W. C., and Munro, H. N., 1961, The determination of nucleic acids in biological materials, Analyst 86:768–813.

    Google Scholar 

  • Jeffrey, W. H., and Paul, J. H., 1988a, Effect of 5-fluoro-2′-deoxyuridine on [3H]thymidine incorporation by bacterioplankton in the waters of southwest Florida, Appl. Environ. Microbiol. 54:331–336.

    PubMed  CAS  Google Scholar 

  • Jeffrey, W. H., and Paul, J. H., 1988b, Underestimation of DNA synthesis by [3H]thymidine incorporation in marine bacteria, Appl. Environ. Microbiol. 54:3165–3168.

    PubMed  CAS  Google Scholar 

  • Jeffrey, W. H., and Paul, J. H., 1990, Thymidine uptake, thymidine incorporation, and thymidine kinase activity in marine bacterium isolates, Appl. Environ. Microbiol. 56:1367–1372.

    PubMed  CAS  Google Scholar 

  • Jeffrey, W. H., Paul, J. H., Cazares, L. H., DeFlaun, M. F., and David, A. W., 1990, Correlation of nonspecific macromolecular labeling with environmental parameters during [3H]thymidine incorporation in the waters of southwest Florida, Microb. Ecol. 20:21–35.

    CAS  Google Scholar 

  • Johnstone, B. H., and Jones, R. D., 1989, A study on the lack of [methyl-3H]thymidine and uptake and incorporation by chemolithotrophic bacteria, Microb. Ecol. 18:73–77.

    CAS  Google Scholar 

  • Kaplan, L. A., Bott, T. L., and Bielicki, J. K., 1992, Assessment of [3H]thymidine incorporation into DNA as a method to determine bacterial productivity in stream bed sediments, Appl. Environ. Microbiol.58:3614–3621.

    PubMed  CAS  Google Scholar 

  • Karl, D. M., 1980, Cellular nucleotide measurements and applications in microbial ecology, Micro biol. Rev. 44:739–796.

    CAS  Google Scholar 

  • Karl, D. M., 1982, Selected nucleic acid precursors in studies of aquatic microbial ecology, Appl. Environ. Microbiol.44:891–902.

    PubMed  CAS  Google Scholar 

  • Karl, D. M., and Bailiff, M. D., 1989, The measurement and distribution of dissolved nucleic acids in aquatic environments, Limnol. Oceanogr. 34:543–558.

    CAS  Google Scholar 

  • Karl, D. M., and Winn, C. D., 1986, Does adenine incorporation into nucleic acids measure total microbial production?: A response to comments by Fuhrman et al., Limnol. Oceanogr. 31:1384–1394.

    CAS  Google Scholar 

  • Kemp, P. F., 1990, The fate of benthic bacterial production, Rev. Aquat. Sci. 2:109–124.

    Google Scholar 

  • Kirchman, D. L., Ducklow, H. W., and Mitchell, R., 1982, Estimates of bacterial growth from changes in uptake rates and biomass, Appl. Environ. Microbiol. 44:1296–1307.

    PubMed  CAS  Google Scholar 

  • Kirchman, D. L., K’Nees, E., and Hodson, R., 1985, Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems, Appl. Environ. Microbiol. 49:599–607.

    PubMed  CAS  Google Scholar 

  • Kirchman, D. L., Newell, S. Y., and Hodson, R. E., 1986, Incorporation versus biosynthesis of leucine: Implication for measuring rates of protein synthesis and biomass production by bacteria in marine systems, Mar. Ecol. Prog. Ser. 32:47–59.

    CAS  Google Scholar 

  • Kornberg, A., and Baker, T. A., 1992, DNA Replication ,2nd ed., Freeman, San Francisco.

    Google Scholar 

  • Kraffzik, B., and Conrad, R., 1991, Thymidine incorporation into lake water bacterioplankton and pure cultures of chemolithotrophic (CO, H2) and methanotrophic bacteria, FEMS Microbiol. Ecol. 23:7–14.

    Google Scholar 

  • Kunicka-Goldfinger, W., 1976, Determination of growth of aquatic bacteria by measurements of incorporation of tritiated thymidine, Acta Microbiol. Pol. 25:279–286.

    PubMed  CAS  Google Scholar 

  • Lark, K. G., 1969, Initiation and control of DNA synthesis, Annu. Rev. Biochem. 38:569–604.

    PubMed  CAS  Google Scholar 

  • Lee, S., and Fuhrman, J. A., 1991, Spatial and temporal variation of natural bacterioplankton assemblages studied by total genomic DNA cross-hybridization, Limnol. Oceanogr. 36:1277–1287.

    Google Scholar 

  • Li, W. K. W., 1983, Consideration of errors in estimating kinetic parameters based on Michaelis-Menten formalism in microbial ecology, Limnol. Oceanogr. 28:185–190.

    CAS  Google Scholar 

  • Lovell, C. R., and Konopka, A., 1985, Primary and bacterial production in two dimictic Indiana lakes, Appl. Environ. Microbiol. 49:485–491.

    PubMed  CAS  Google Scholar 

  • McDonough, R. J., Sanders, R. W., Porter, K. G., and Kirchman, D. L., 1986, Depth distribution of bacterial production in a stratified lake with an anoxic hypolimnion, Appl. Environ. Microbiol. 52:992–1000.

    PubMed  CAS  Google Scholar 

  • Maniatis, T., Fritsch, E. F., and Sambrook, J., 1982, Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • MÃ¥rden, P., Hermansson, M., and Kjelleberg, S., 1988, Incorporation of tritiated thymidine by marine bacterial isolates when undergoing a starvation survival response, Arch. Microbiol. 149:427–432.

    Google Scholar 

  • Moriarty, D. J. W., 1984, Measurement of bacterial growth rates in some marine systems using the incorporation of tritiated thymidine into DNA, in: Heterotrophic Activity in the Sea (J. E. Hobbie and P.J. L. Williams, eds.), Plenum Press, New York, pp. 217–231.

    Google Scholar 

  • Moriarty, D. J. W., 1986, Measurement of bacterial growth rates in aquatic systems from rates of nucleic acid synthesis, Adv. Microb. Ecol. 9:246–292.

    Google Scholar 

  • Moriarty, D. J. W., and Pollard, P. C., 1981, DNA synthesis as a measure of bacterial productivity in seagrass sediments, Mar. Ecol. Prog. Ser. 5:151–156.

    Google Scholar 

  • Moriarty, D. J. W., and Pollard, P. C., 1990, Effects of radioactive labelling of macromolecules, disturbance of bacteria and adsorption of thymidine to sediment on the determination of bacterial growth rates in sediments with tritiated thymidine, J. Microbiol. Methods 11:127–139.

    CAS  Google Scholar 

  • Munch-Petersen, A., and Mygind, B., 1983, Transport of nucleic acid precursors, in: Metabolism of Nucleotides, Nucleosides and Nucleobases in Microorganisms (A. Munch-Petersen, ed.), Academic Press, New York, pp. 259–305.

    Google Scholar 

  • Munro, H. N., and Fleck, A., 1966, The determination of nucleic acids, in: Methods of Biochemical Analysis (D. Glick, ed.), Interscience, New York, pp. 113–176.

    Google Scholar 

  • Murray, R. E., Cooksey, K. E., and Priscu, J. C, 1986, Stimulation of bacterial DNA synthesis by algal exudates in attached algal-bacterial consortia, Appl. Environ. Microbiol. 52:1177–1182.

    PubMed  CAS  Google Scholar 

  • Murray, R. E., Cooksey, K. E., and Priscu, J. C., 1987, Influence of physical disruption on growth of attached bacteria, Appl. Environ. Microbiol. 53:2997–2999.

    PubMed  CAS  Google Scholar 

  • Novitsky, J. A., 1983a, Heterotrophic activity throughout a vertical profile of seawater and sediment in Halifax Harbour, Canada, Appl. Environ. Microbiol. 45:1753–1760.

    CAS  Google Scholar 

  • Novitsky, J. A., 1983b, Microbial activity at the sediment-water interface in Halifax Harbour, Canada, Appl. Environ. Microbiol. 45:1761–1766.

    PubMed  CAS  Google Scholar 

  • Novitsky, J. A., 1986, Degradation of dead microbial biomass in a marine sediment, Appl. Environ. Microbiol. 52:504–509.

    PubMed  CAS  Google Scholar 

  • O’Donovan, G. A., 1978, Thymidine metabolism in bacteria (and ‘How, or how not, to label DNA’), in: DNA Synthesis: Present and Future (I. Molineux and M. Kohiyama, eds.), Plenum Press, New York, pp. 219–253.

    Google Scholar 

  • O’Donovan, G. A., and Neuhard, J., 1970, Pyrimidine metabolism in microorganisms, Bacteriol. Rev. 34:278–343.

    PubMed  Google Scholar 

  • Oren, A., 1990, Thymidine incorporation in saltern ponds of different salinities: Estimation of in situ growth rates of halophilic archaeobacteria and eubacteria, Microb. Ecol. 19:43–51.

    Google Scholar 

  • Painting, S. J., Lucas, M. I., and Muir, D. G., 1989, Fluctuations in heterotrophic bacterial community structure, activity and production in response to development and decay of phy-toplankton in a microcosm, Mar. Ecol. Prog. Ser. 53:129–141.

    Google Scholar 

  • Parsons, T. R., and Strickland, J. D. H., 1962, On the production of particulate organic carbon by heterotrophic processes in sea water, Deep Sea Res. 8:211–222.

    Google Scholar 

  • Paul, J. H., and Carlson, D. J., 1984, Genetic material in the marine environment: Implication for bacterial DNA, Limnol. Oceanogr. 29:1091–1097.

    CAS  Google Scholar 

  • Paul, J. H., Jeffrey, W. H., and DeFlaun, M. F., 1985, Particulate DNA in subtropical oceanic and estuarine planktonic environments, Mar. Biol. 90:95–101.

    CAS  Google Scholar 

  • Paul, J. H., Jeffrey, W. H., and DeFlaun, M. F., 1987, Dynamics of extracellular DNA in the marine environment, Appl. Environ. Microbiol. 53:170–179.

    PubMed  CAS  Google Scholar 

  • Paul, J. H., Jeffrey, W. H., and DeFlaun, M. F., 1988, Mechanisms of DNA utilization by estaurine microbial populations, Appl. Environ. Microbiol. 54:1682–1688.

    PubMed  CAS  Google Scholar 

  • Paul, J. H., Jeffrey, W. H., and Cannon, J. P., 1990, Production of dissolved DNA, RNA, and protein by microbial populations in a Florida reservoir, Appl. Environ. Microbiol. 56:2957–2962.

    PubMed  CAS  Google Scholar 

  • Pedrós-Alió, C., and Newell, S. Y., 1989, Microautoradiographic study of thymidine uptake in brackish waters around Sapelo Island, Georgia, USA, Mar. Ecol. Prog. Ser. 55:83–94.

    Google Scholar 

  • Pollard, P. C, 1987, Dialysis: A simple method of separating labelled bacterial DNA and tritiated thymidine from aquatic sediments, J. Microbiol. Methods 7:91–101.

    CAS  Google Scholar 

  • Pollard, P. C., and Kogure, K., 1993, Bacterial decomposition of detritus in a tropical seagrass (Syringodium isoetifolium) ecosystem, measured with [methyl-3H]thymidine, Aust. J. Mar. Freshwater Res. 44:155–172.

    CAS  Google Scholar 

  • Pollard, P. C., and Moriarty, D. J. W., 1984, Validity of the tritiated thymidine method for estimating bacterial growth rates: Measurement of isotope dilution during DNA synthesis, Appl. Environ. Microbiol. 48:1076–1083.

    PubMed  CAS  Google Scholar 

  • Psenner, R., 1990, From image analysis to chemical analysis of bacteria: A long-term study? Limnol. Oceanogr. 35:234–237.

    CAS  Google Scholar 

  • Ramsay, A. J., 1974, The use of autoradiography to determine the proportion of bacteria metabolizing in an aquatic environment, J. Gen. Microbiol. 80:363–373.

    Google Scholar 

  • Riemann, B., 1984, Determining growth rates of natural assemblages of freshwater bacteria by means of 3H-thymidine incorporation into DNA: Comments on methodology, Arch. Hydrobiol. Beih. 19:67–80.

    CAS  Google Scholar 

  • Riemann, B., and Bell, R. T., 1990, Advances in estimating bacterial biomass and growth in aquatic systems, Arch. Hydrobiol. 118:385–402.

    CAS  Google Scholar 

  • Riemann, B., and Lingaard-Jørgensen, P., 1990, Effects of toxic substances on natural bacterial assemblages determined by means of [3H]thymidine incorporation, Appl. Environ. Microbiol. 56:75–80.

    PubMed  CAS  Google Scholar 

  • Riemann, B., Fuhrman, J., and Azam, F., 1982, Bacterial secondary production in freshwater bacteria by means of 3H-thymidine incorporation method, Microb. Ecol. 8:101–114.

    CAS  Google Scholar 

  • Riemann, B., Bjørnsen, P. K., Newell, S. Y., and Fallon, R., 1987, Calculation of cell production of coastal marine bacteria based on measured incorporation of [3H]-thymidine, Limnol. Oceanogr. 32:471–476.

    CAS  Google Scholar 

  • Rivkin, R. B., 1986, Incorporation of tritiated thymidine by eucaryotic microalgae, J. Phycol. 22:193–198.

    CAS  Google Scholar 

  • Rivkin, R. B., and Voytek, M. A., 1986, Cell division rates of eucaryotic algae measured by tritiated thymidine incorporation into DNA: Coincident measurements of photosynthesis and cell division of individual species of phytoplankton isolated from natural populations, J. Phycol. 22:199–205.

    Google Scholar 

  • Robarts, R. D., 1986, Decomposition in freshwater ecosystems, J. Limnol. Soc. S. Afr. 12:72–89.

    CAS  Google Scholar 

  • Robarts, R. D., and Wicks, R. J., 1989, [Methyl-3H]thymidine macromolecular incorporation and lipid labeling: Their significance to DNA labeling during measurements of aquatic bacterial growth rate, Limnol. Oceanogr. 34:213–222.

    CAS  Google Scholar 

  • Robarts, R. D., and Wicks, R. J., 1990, Heterotrophic bacterial production and its dependence on autotrophic production in a hypertrophic African reservoir, Can. J. Fish. Aquat. Sci. 47:1027–1037.

    Google Scholar 

  • Robarts, R. D., Wicks, R. J., and Sephton, L. M., 1986, Spatial and temporal variations in bacterial macromolecule labeling with [methyl-3H]thymidine in a hypertrophic lake, Appl. Environ. Microbiol. 52:1368–1373.

    PubMed  CAS  Google Scholar 

  • Roberts, R. B., Abelson, P. H., Cowrie, D. B., Bolton, E. T., and Britten, R. J., 1963, Studies of biosynthesis in Escherichia coli ,Carnegie Institute, Washington, D.C.

    Google Scholar 

  • Roodyn, D. B., and Mandel, H. G., 1960, A simple membrane fractionation method for determining the distribution of radioactivity in chemical fractions of Bacillus cereus, Biochim. Biophys. Acta 41:80–88.

    PubMed  CAS  Google Scholar 

  • Rosenbaum-Oliver, D., and Zamenhof, S., 1972, Degree of participation of exogenous thymidine in the overall deoxyribonucleic acid synthesis in Escherichia coli, J. Bacteriol. 110:585–591.

    PubMed  CAS  Google Scholar 

  • Saito, H., Tomioka, H., and Ohkido, S., 1985, Further studies on thymidine kinase: Distribution pattern of the enzyme in bacteria, J. Gen. Microbiol. 131:3091–3098.

    PubMed  CAS  Google Scholar 

  • Sanders, R. W., and Porter, K. G., 1986, Use of metabolic inhibitors to estimate protozooplankton grazing and bacterial production in a monomictic eutrophic lake with an anaerobic hypolimnion, Appl. Environ. Microbiol. 52:101–107.

    PubMed  CAS  Google Scholar 

  • Schmidt, G., and Thannhauser, S. J., 1945, A method for the determination of deoxyribonucleic acid, ribonucleic acid, and phosphoproteins in animal tissues, J. Biol. Chem. 161:83–89.

    PubMed  CAS  Google Scholar 

  • Schneider, W. C, 1945, Phosphorus compounds in animal tissues: Extraction and estimation of deoxypentose nucleic acid and of pentose nucleic acid, J. Biol. Chem. 161:293–303.

    PubMed  CAS  Google Scholar 

  • Servais, P., Billen, G., and Vives-Rego, J., 1985, Rate of bacterial mortality in aquatic environments, Appl. Environ. Microbiol. 49:1448–1454.

    PubMed  CAS  Google Scholar 

  • Servais, P., Martinez, J., Billen, G., and Vives-Rego, J., 1987, Determining [3H]thymidine incorporation into bacterioplankton DNA: Improvement of the method by DNase treatment, Appl. Environ. Microbiol. 53:1977–1979.

    PubMed  CAS  Google Scholar 

  • Simon, M., and Azam, F., 1989, Protein content and protein synthesis rates of planktonic marine bacteria, Mar. Ecol. Prog. Ser. 51:201–213.

    CAS  Google Scholar 

  • Smits, J. D., and Riemann, B., 1988, Calculation of cell production from [3H]thymidine incorporation with freshwater bacteria, Appl. Environ. Microbiol. 54:2213–2219.

    PubMed  CAS  Google Scholar 

  • Staley, J. T., and Konopka, A., 1985, Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats, Annu. Rev. Microbiol. 39:321–346.

    PubMed  CAS  Google Scholar 

  • Stock, M. S., and Ward, A. K., 1989, Establishment of a bedrock epilithic community in a small stream: Microbial (algal and bacterial) metabolism and physical structure, Can. J. Fish. Aquat. Sci. 46:1874–1883.

    Google Scholar 

  • Thomas, D. R., Richardson, J. A., and Dicker, R. J., 1974, The incorporation of tritiated thymidine into DNA as a measure of the activity of soil micro-organisms, Soil Biol. Biochem. 6:293–296.

    CAS  Google Scholar 

  • Thorn, P. M., and Ventullo, R. M., 1988, Measurement of bacterial growth rates in subsurface sediments using the incorporation of tritiated thymidine into DNA, Microb. Ecol. 16:3–16.

    CAS  Google Scholar 

  • Tibbies, B. J., Davis, C. L., Harris, J. M., and Lucas, M. I., 1992, Estimates of bacterial productivity in marine sediments and water from a temperature saltmarsh lagoon, Microb. Ecol. 23:195–209.

    Google Scholar 

  • Tobin, R. S., and Anthony, D. H. J., 1978, Tritiated thymidine incorporation as a measure of microbial activity in lake sediments, Limnol. Oceanogr. 23:161–165.

    CAS  Google Scholar 

  • Torréton, J. P., and Bouvy, M., 1991, Estimating bacterial DNA synthesis from [3H]thymidine incorporation: Discrepancies among macromolecular extraction procedures, Limnol. Oceanogr. 36:299–306.

    Google Scholar 

  • Van Es, F. B., and Meyer-Reil, L.-A., 1982, Biomass and metabolic activity of heterotrophic marine bacteria, Adv. Microb. Ecol. 6:111–170.

    Google Scholar 

  • Vincent, W. F., and Howard-Williams, C., 1989, Microbial communities in southern Victoria Land streams (Antarctica). II. The effects of low temperature, Hydrobiologia 172:39–49.

    Google Scholar 

  • Vogels, G. D., and van der Drift, C, 1976, Degradation of purines and pyrimidines by microorganisms, Bacteriol. Rev. 40:403–468.

    PubMed  CAS  Google Scholar 

  • Wetzel, R. G., and Likens, G. E., 1991, Limnological Analyses ,2nd ed., Springer-Verlag, Berlin.

    Google Scholar 

  • Wicks, R. J., and Robarts, R. D., 1987, The extraction and purification of DNA labelled with [methyl-3H]thymidine in aquatic bacterial production studies, J. Plankton Res. 9:1159–1166.

    CAS  Google Scholar 

  • Winding, A., 1992, [3H]thymidine incorporation to estimate growth rates of anaerobic bacterial strains, Appl. Environ. Microbiol. 58:2660–2662.

    PubMed  CAS  Google Scholar 

  • Witzel, K.-P., and Graf, G., 1984, On the use of different nucleic acid precursors for the measurement of microbial nucleic acid turnover, Arch. Hydrobiol. Beih. 19:59–65.

    CAS  Google Scholar 

  • Wright, R. T., and Hobbie, J. E., 1965, The uptake of organic solutes in lake water, Limnol.Oceanogr. 10:22–28.

    CAS  Google Scholar 

  • Zehr, J. P., Harvey, R. W., Oremland, R. S., Cloern, J. E., and George, L. H., 1987, Big Soda Lake (Nevada). 1. Pelagic bacterial heterotrophy and biomass, Limnol. Oceanogr. 32:781–793.

    CAS  Google Scholar 

  • Zohary, T., and Robarts, R. D., 1992, Bacterial numbers, bacterial production, and heterotrophic nanoplankton abundance in a warm core eddy in the Eastern Mediterranean, Mar. Ecol. Prog. Ser. 84:133–137.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Robarts, R.D., Zohary, T. (1993). Fact or Fiction-Bacterial Growth Rates and Production as Determined by [methyl-3H]-Thymidine?. In: Jones, J.G. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2858-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2858-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6238-8

  • Online ISBN: 978-1-4615-2858-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics