Skip to main content

Determinants of Etoposide Cytotoxicity in Vitro

  • Chapter
  • 149 Accesses

Part of the book series: Developments in Oncology ((DION,volume 74))

Abstract

The epipodophyllotoxin etoposide, which has a broad range of antitumor activity (1,2), is used in combination chemotherapy regimens for the treatment of a variety of solid tumors, lymphomas and leukemias (3). Based almost exclusively on in vitro data, the mechanism of etoposide cytotoxicity has been defined to involve primarily the induction of protein-associated DNA strand breaks (cleavable complexes) via interaction with the nuclear enzyme, DNA topoisomerase II (topo II). These data are summarized as follows: Intracellular topo II levels and activity, or the expression of drug resistant forms of topo II, show a good correlation with the quantity of etoposide-induced DNA strand breaks and cytotoxicity in a variety of mammalian cell lines (4–8); etoposide inhibits the activity of topo II in vitro (9) and causes extensive DNA fragmentation in the presence of purified calf thymus topo II (10,11) with the enzyme attached to the 5′ phosphoryl end of the broken DNA strand (10); overexpression of plasmid-borne topo II in yeast leads to etoposide hypersensitivity (12).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Issell BF, Rudolph AR, Louie AC: Etoposide (VP-16-213): An overview. In: Etoposide (VP-16): Current Status and New Developments. B Issell, F Muggia, S Carter (eds), Academic Press, New York, pp. 1–14, 1984.

    Google Scholar 

  2. O’Dwyer PJ, Leyland-Jones B, Alonso MT, et al: Etoposide (VP-16-213): Current status of an active anticancer drug. N. Eng. J. Med. 312:692–700, 1985.

    Article  Google Scholar 

  3. DeVita VTJ, Hellman S, Rosenberg SA: Cancer: Principles and Practice of Oncology. JB Lippincott Co., Philadelphia, 1989.

    Google Scholar 

  4. Fry AM, Chresta CM, Davies SM, et al: Relationship between topoisomerase II level and chemosensitivity in human tumor cell lines. Cancer Res. 51:6592–6595, 1991.

    PubMed  CAS  Google Scholar 

  5. Sullivan DM, Ross WE: Resistance to inhibitors of DNA topoisomerases. In: Molecular and Clinical Advances in Anticancer Drug Resistance. R Ozols (ed), Springer Science+Business Media New York, Boston, pp. 57–99, 1991.

    Chapter  Google Scholar 

  6. Sullivan DM, Latham MD, Ross WE: Proliferation-dependent topoisomerase II content as a determinant of anti-neoplastic drug action in human, mouse, and Chinese hamster ovary cells. Cancer Res. 47: 3973–3979, 1987.

    PubMed  CAS  Google Scholar 

  7. Davies SM, Harris AL, Hickson ID: Overproduction of topoisomerase II in an ataxia telangiectasia fibroblast cell line: Comparison with a topoisomerase II-overproducing hamster cell mutant. Nucleic Acids Res. 17:1337–1352, 1989.

    Article  PubMed  CAS  Google Scholar 

  8. Webb CD, Latham MD, Lock RB, Sullivan DM: Attenuated topoisomerase II content directly correlates with a low level of drug resistance in a Chinese hamster ovary cell line. Cancer Res. 51:6543–6549, 1991.

    PubMed  CAS  Google Scholar 

  9. Minocha A, Long BH: Inhibition of the DNA catenation activity of type II topoisomerase by VP16-213 and VM2 6. Biochem. Biophys. Res. Comm. 122:165–170, 1984.

    Article  PubMed  CAS  Google Scholar 

  10. Chen GL, Yang L, Rowe TC, et al: Nonintercalative antitumor drugs interfere with the breakage-reunion reaction of mammalian DNA topoisomerase II. J. Biol. Chem. 259: 13560–13566, 1984.

    PubMed  CAS  Google Scholar 

  11. Ross W, Rowe T, Glisson B, et al: Role of topoisomerase II in mediating epipodophyllotoxin-induced DNA cleavage. Cancer Res. 44:5857–5860, 1984.

    PubMed  CAS  Google Scholar 

  12. Nitiss JL, Liu Y-X, Harbury P, et al: Amsacrine and etoposide hypersensitivity of yeast cells over-expressing DNA topoisomerase II. Cancer Res. 52: 4467–4472, 1992.

    PubMed  CAS  Google Scholar 

  13. Edwards CM, Glisson BS, King CK, et al: Etoposide-induced DNA cleavage in human leukemia cells. Cancer Chemother. Pharmacol. 20:162–168, 1987.

    Article  PubMed  CAS  Google Scholar 

  14. Epstein RJ, Smith PJ: Estrogen-induced potentiation of DNA damage and cytotoxicity in human breast cancer cells treated with topoisomerase II-interactive antitumor drugs. Cancer Res. 48:297–303, 1988.

    PubMed  CAS  Google Scholar 

  15. Fry DW: Cytotoxic synergism between trimetrexate and etoposide. Evidence that trimetrexate potentiates etoposide-induced protein-associated DNA strand breaks in L1210 leukemia cells through alterations in intracellular ATP concentrations. Biochem. Pharmacol. 40:1981–1988, 1990.

    Article  PubMed  CAS  Google Scholar 

  16. Kim R, Hirabayashi N, Nishiyama M, et al: Experimental studies on biochemical modulation targeting topoisomerase I and II in human tumor xenographs in nude mice. Int. J. Cancer 50:760–766, 1992.

    Article  PubMed  CAS  Google Scholar 

  17. Utsugi T, Mattern MR, Mirabelli CK, Hanna N: Potentiation of topoisomerase inhibitor-induced DNA strand breakage and cytotoxicity by tumor necrosis factor: Enhancement of topoisomerase activity as a mechanism of potentiation. Cancer Res. 50:2636–2640, 1990.

    PubMed  CAS  Google Scholar 

  18. Shen JW, Subjeck JR, Lock RB, Ross WE: Depletion of topoisomerase II in isolated nuclei during a glucose-regulated stress response. Mol. Cell. Biol. 9:3284–3291, 1989.

    PubMed  CAS  Google Scholar 

  19. Hochhauser D, Stanway CA, Harris AL, Hickson ID: Cloning and characterization of the 5’-flanking region of the human topoisomerase IIα gene. J. Biol. Chem. 267:18961–18965, 1992.

    PubMed  CAS  Google Scholar 

  20. Long BH, Musial ST, Brattain MG: Single- and double-stand DNA breakage and repair in human lung adenocarcinoma cells exposed to etoposide and teniposide. Cancer Res. 45:3106–3112, 1985.

    PubMed  CAS  Google Scholar 

  21. Bertrand R, Kerrigan D, Sarang M, Pommier Y: Cell death induced by topoisomerase inhibitors. Role of calcium in mammalian cells. Biochem. Pharmacol. 42:77–85, 1991.

    Article  PubMed  CAS  Google Scholar 

  22. D’Arpa P, Beardmore C, Liu LF: Involvement of nucleic acid synthesis in cell killing mechanisms of topoisomerase poisons. Cancer Res. 50:6919–6924, 1990.

    PubMed  Google Scholar 

  23. Holm C, Covey JM, Kerrigan D, Pommier Y: Differential requirement of DNA replication for the cytotoxicity of DNA topoisomerase I and II inhibitors in Chinese hamster DC3F cells. Cancer Res. 49: 6365–6368, 1989.

    PubMed  CAS  Google Scholar 

  24. Kupfer G, Bodley A, Liu LF: Involvement of intracellular ATP in the cytotoxicity of topoisomerase II-targetting antitumor drugs. N.C.I. Monog. 4:37–40, 1987.

    Google Scholar 

  25. Shibuya ML, Buddenbaum WE, Don AL, et al: Amsacrine-induced lesions in DNA and their modulation by novobiocin and 2,4-dinitrophenol. Cancer Res. 51:573–580, 1991.

    PubMed  CAS  Google Scholar 

  26. Chatterjee S, Trivedi D, Petzold SJ, Berger NA: Mechanism of epipodophyllotoxin-induced cell death in poly (adenosine diphosphate-ribose) synthesis-deficient V79 Chinese hamster cell lines. Cancer Res. 50:2713–2718, 1990.

    PubMed  CAS  Google Scholar 

  27. Kaufman SH: Induction of endonucleolytic DNA cleavage in human acute myelogenous leukemia cells by etoposide, camptothecin, and other cytotoxic anticancer drugs: A cautionary note. Cancer Res. 49: 5870–5878, 1989.

    Google Scholar 

  28. Lock RB, Ross WE: Inhibition of p34cdc2 kinase activity by etoposide or irradiation as a mechanism of G2 arrest in Chinese hamster ovary cells. Cancer Res. 50:3761–3766, 1990.

    PubMed  CAS  Google Scholar 

  29. Lock RB, Ross WE: Possible role for p34cdc2 kinase in etoposide-induced cell death of Chinese hamster ovary cells. Cancer Res. 50:3767–3771, 1990.

    PubMed  CAS  Google Scholar 

  30. Bertrand R, Sarang M, Jenkin J, et al: Differential induction of secondary DNA fragmentation by topoisomerase II inhibitors in human tumor cell lines with amplified c-myc expression. Cancer Res. 51: 6280–6285, 1991.

    PubMed  CAS  Google Scholar 

  31. Lock RB: Inhibition of p34cdc2 kinase activation, p34cdc2 tyrosine dephosphorylation, and mitotic progression in Chinese hamster ovary cells exposed to etoposide. Cancer Res. 52:1817–1822, 1992.

    PubMed  CAS  Google Scholar 

  32. Grieder A, Maurer R, Stahelin H: Effect of an epipodophyllotoxin derivative (VP 16-213) on macromolecular synthesis and mitosis in mastocytoma cells in vitro. Cancer Res. 34:1788–1793, 1974.

    PubMed  CAS  Google Scholar 

  33. Krishan A, Paika K, Frei EJ: Cytofluorometric studies on the action of podophyllotoxin and epipodophyllotoxins (VM-26, VP-16-213) on the cell cycle traverse of human lymphoblasts. Cell Biol. 66:521–530, 1975.

    Article  CAS  Google Scholar 

  34. Misra NC, Roberts D: Inhibition by 4’-demethylepipodophyllotoxin 9-(4,6-O-2-thenylidene-ß-D-glucopyranoside) of human lymphoblast cultures in G2 phase of the cell cycle. Cancer Res. 35:99–105, 1975.

    PubMed  CAS  Google Scholar 

  35. Barlogie B, Drewinko B, Johnston DA, Freireich EJ: The effect of adriamycin on the cell cycle traverse of a human lymphoid cell line. Cancer Res. 36: 1975–1979, 1976.

    PubMed  CAS  Google Scholar 

  36. Drewinko B, Barlogie B: Survival and cycle-progression delay of human lymphoma cells in vitro exposed to VP-16-213. Cancer Treat. Rep. 60:1295–1306, 1976.

    PubMed  CAS  Google Scholar 

  37. Kimler BF, Leeper DB, Schneiderman MH: Radiation-induced division delay in Chinese hamster ovary fibroblast carcinoma cells: Dose effect and ploidy. Radiat. Res. 74:430–438, 1981.

    Google Scholar 

  38. Konopa J: G2 block induced by DNA crosslinking agents and its possible consequences. Biochem. Pharmacol. 37:2303–2309, 1988.

    Article  PubMed  CAS  Google Scholar 

  39. Tobey RA: Different drugs arrest cells at a number of distinct stages in G2. Nature 254:245–247, 1975.

    Article  PubMed  CAS  Google Scholar 

  40. Weinert TA, Hartwell LH: The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science 241:317–322, 1988.

    Article  PubMed  CAS  Google Scholar 

  41. Busse PM, Bose SK, Jones RW, Tolmach LJ: The ac tion of caffeine on X-irradiated HeLa cells. III. Enhancement of X-ray-induced killing during G2 arrest. Radiat. Res. 76:292–307, 1978.

    Article  PubMed  CAS  Google Scholar 

  42. Labanowska J, Beetham KL, Tolmach LJ: Caffeineinduced modulation of the lethal action of X rays on Chinese hamster V79 cells. Radiat. Res. 115: 176–186, 1988.

    Article  PubMed  CAS  Google Scholar 

  43. Lau CC, Pardee AB: Mechanism by which caffeine potentiates lethality of nitrogen mustard. Proc. Natl. Acad. Sci. USA 79:2942–2946, 1982.

    Article  PubMed  CAS  Google Scholar 

  44. Chow KC, King CK, Ross WE: Abrogation of etoposide-mediated cytotoxicity by cycloheximide. Biochem. Pharmacol. 37:1117–1122, 1988.

    Article  PubMed  CAS  Google Scholar 

  45. Hayashi M, Sofuni T, Ishidate MJ: Kinetics of micronucleus formation in relation to chromosomal aberrations in mouse bone marrow. Mutat. Res. 127: 129–137, 1984.

    Article  PubMed  CAS  Google Scholar 

  46. Kenne K, Ljungquist S, Ringertz NR: Effects of asbestos fibers on cell division, cell survival and formation thioguanine-resistant mutants in Chinese hamster ovary cells. Environ. Res. 39:448–464, 1986.

    Article  PubMed  CAS  Google Scholar 

  47. Schlegel R, MacGregor JT, Everson RB: Assessment of cytogenetic damage by quantitation of micronuclei in human peripheral blood erythrocytes. Cancer Res. 46:3717–3721, 1986.

    PubMed  CAS  Google Scholar 

  48. Sorsa M: Monitoring of sister chromatid exchange in micronuclei as biological endpoints. I.A.R.C. Sci. Publ. 59:339–349, 1984.

    CAS  Google Scholar 

  49. Weissenborn U, Streffer C: The 1-cell mouse embryo: Cell cycle-dependent radiosensitivity and development of chromosomal anomalies in postradiation cell cycles. Int. J. Radial. Biol. 54:659–674, 1988.

    Article  CAS  Google Scholar 

  50. Compton MM: A biochemical hallmark of apoptosis: Internucleosomal degradation of the genome. Cancer Met. Rev. 11:105–119, 1992.

    Article  CAS  Google Scholar 

  51. Field JK, Spandidos DA: The role of ras and myc oncogenes in human solid tumours and their relevance in diagnosis and prognosis. Anticancer Res. 10:1–22, 1990.

    PubMed  CAS  Google Scholar 

  52. Evan GI, Wyllie AH, Gilbert CS, et al: Induction of apoptosis in fibroblasts by c-myc protein. Cell 69:119–128, 1992.

    Article  PubMed  CAS  Google Scholar 

  53. Pallavicini MG, Rosette C, Reitsma M, et al: Relationship of c-myc gene copy number and gene expression: Cellular effects of elevated c-myc protein. J. Cell. Physiol. 143:372–380, 1990.

    Article  PubMed  CAS  Google Scholar 

  54. Sentman CL, Shutter JR, Hockenbery D, et al: bcl-2 inhibits multiple forms of apoptosis but not negative selection in thymocytes. Cell 67:879–888, 1991.

    Article  PubMed  CAS  Google Scholar 

  55. Strasser A, Harris AW, Cory S: bcl-2 transgene inhibits T cell death and perturbs thymic self-censorship. Cell 67:889–899, 1991.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lock, R.B. (1994). Determinants of Etoposide Cytotoxicity in Vitro. In: Valeriote, F.A., Corbett, T.H., Baker, L.H. (eds) Anticancer Drug Discovery and Development: Natural Products and New Molecular Models. Developments in Oncology, vol 74. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2610-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2610-0_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6118-3

  • Online ISBN: 978-1-4615-2610-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics