Skip to main content

The Transferrin Receptor and the Release of Iron from Transferrin

  • Chapter
Progress in Iron Research

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 356))

Abstract

In a classic report detailing the role of transferrin in providing iron to human reticulocytes, Jand1 and coworkers noted that uptake of transferrin-borne iron was saturable as the concentration of transferrin in the culture medium increased, and that uptake was essentially abolished if cells were first exposed to trypsin. 1 On the basis of these observations, the existence of a cell-surface receptor for transferrin was first postulated. Numerous attempts to solubilize, isolate and characterize the transferrin receptor inevitably followed, but at first with little concordance in reported findings. Ultimately, however, such efforts led to the recognition that the transferrin receptor was a disulfide-linked homodimer of 95,000 KDa glycosylated subunits’2-4 still capable of binding transferrin when solubilized in non-denaturing detergent. 5 Cloning of receptor then definitively established that its cDNA coded for an amino acid sequence of 760 residues with a calculated molecular weight of 84, 910. 6 The two chains comprising the intact receptor are joined by a pair of disulfide bonds within the intramembranous portion of the receptor, with anchoring to the membrane facilitated by a covalently-bound fatty acid residue. 7 Hydropathy analysis suggests that this intramembranous segment consists of 28 amino acids (residues 62 to 89 in the sequence); the remainder of the N-terminal sequence would then lie within the cytoplasm. The bulk of the C-terminal region bearing the transferrin-binding site is disposed extracellularly, accessible to the extracellular space. N- and O-linked oligosaccharides8,9 may serve to maintain the extracellular domain in free contact with the bathing fluid, and thereby poised to capture transferrin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.H. Jandi, J.K. Inman, R.L. Simmons, and D.W. Allen, Transfer of iron from serum iron-binding protein to human reticulocytes, J. Clin.Invest. 38: 161 (1959).

    Article  Google Scholar 

  2. H.-Y.Y. Hu and P. Aisen, Molecular characteristics of the transferrin-receptor complex of the rabbit reticulocyte, J.Supramol.Struct. 8: 349 (1978).

    Article  PubMed  CAS  Google Scholar 

  3. P.A. Seligman, R.B. Schleicher, and R.H. Allen, Isolation and characterization of the transferrin receptor from human placenta, J.Biol. Chem. 254: 9943 (1979).

    PubMed  CAS  Google Scholar 

  4. I.S. Trowbridge and M.B. Omary, Human cell surface glycoprotein related to cell proliferation is the receptor for transferrin, Proc.Natl. Acad.Sci.USA 78: 3039 (1981).

    Article  PubMed  CAS  Google Scholar 

  5. F.M. van Bockxmeer, G.K. Yates, and E.H. Morgan, Interaction of transferrin with solubilized receptors from reticulocytes, Eur.J.Biochem. 92: 147 (1978).

    Article  PubMed  Google Scholar 

  6. L.C KĂĽhn, A. McClelland, and F.H. Ruddle, Gene transfer, expression and molecular cloning of the human transferrin receptor gene, Cell 37: 95 (1984).

    Article  PubMed  Google Scholar 

  7. M.B. Omary and I.S. Trowbridge, Covalent binding of fatty acid to the transferrin receptor in cultured human cells, J.Biol. Chem. 256: 4715 (1981).

    PubMed  CAS  Google Scholar 

  8. S.-I. Do, C. Enns, and R.D. Cummings, Human transferrin receptor contains O-linked oligosaccharides, J.Biol. Chem. 265: 114 (1990).

    PubMed  CAS  Google Scholar 

  9. C.A. Enns, E.M. Clinton, C.L. Reckhow, B.J. Root, S.-I. Do, and C. Cook, Acquisition of the functional properties of the transferrin receptor during its biosynthesis, J.BioLChem. 266: 13272 (1991).

    CAS  Google Scholar 

  10. E.H. Morgan and T.C. Appleton, Autoradiographic localization of 125 I-labelled transferrin in rabbit reticulocytes, Nature 223: 1371 (1969).

    Article  PubMed  CAS  Google Scholar 

  11. A. Dautry-Varsat, A. Ciechanover, and H.F. Lodish, pH and the recycling of transferrin during receptor-mediated endocytosis, Proc.Natl.Acad.Sci. USA 80: 2258 (1983).

    Article  PubMed  CAS  Google Scholar 

  12. R.D Klausner, J.V. Ashwell, J.B. van Renswoude, J. Harford, and K. Bridges, Binding of apotransferrin to K562 cells: explanation of the transferrin cycle, Proc.Natl.Acad.Sci. USA 80: 2263 (1983).

    Article  PubMed  CAS  Google Scholar 

  13. S.P. Young, A. Bomford, and R. Williams, The effect of the iron saturation of transferrin on its binding and uptake by rabbit reticulocytes, Biochem.J. 219: 505 (1984).

    PubMed  CAS  Google Scholar 

  14. J.A. Watkins, J.D. Altazan, P. Elder, et al, Kinetic characterization of reductant dependent processes of iron mobilization from endocytic vesicles, Biochemistry 31: 5820 (1992).

    Article  PubMed  CAS  Google Scholar 

  15. B. Iacopetta and E.H. Morgan, The kinetics of transferrin endocytosis and iron uptake from transferrin in rabbit reticulocytes, J.Biol. Chem. 258: 9108 (1983).

    PubMed  CAS  Google Scholar 

  16. Q Zak and P. Aisen, Evidence for functional difference between the two sites of rabbit transferrin: effects of serum and carbon dioxide, Biochim.Biophys.Acta 1052: 24 (1990).

    Article  PubMed  CAS  Google Scholar 

  17. I.L. Sun, P. Navas, F.L. Crane, D.J. Morre, and H. Low, NADH:diferric transferrin reductase in liver plasma membranes, J.Biol.Chem. 262: 15915 (1987).

    PubMed  CAS  Google Scholar 

  18. S.S. Lehrer, Fluorescence and absorption studies of the binding of copper and iron to transferrin, J.Biol. Chem. 244: 3613 (1969).

    PubMed  CAS  Google Scholar 

  19. S.P. Young and P. Aisen, Transferrin receptors and the uptake and release of iron by isolated hepatocytes, Hepatology 1: 114 (1981).

    Article  PubMed  CAS  Google Scholar 

  20. K. Thorstensen and P. Aisen, Release of iron from diferric transferrin in the presence of rat liver plasma membranes: no evidence of a plasma membrane diferric transferrin reductase, Biochim.Biophys.Acta 1052: 29 (1990).

    Article  PubMed  CAS  Google Scholar 

  21. W.R. Harris, A.B. Rezvani, and P.K. Bali, Removal of iron from transferrin by pyrophosphate and tripodal phosphonate ligands, Inorg.Chem. 26: 2711 (1987).

    Article  CAS  Google Scholar 

  22. P.K. Bali, O. Zak, and P. Aisen, A new role for the transferrin receptor in the release of iron from transferrin, Biochemistry 30: 324 (1991).

    Article  PubMed  CAS  Google Scholar 

  23. D.C Harris and P. Aisen, Physical biochemistry of the transferrins. In: Iron Carriers and Iron Proteins, T.M. Loehr, H.B. Gray and A.B.P. Lever, eds., VCH Publishers, Weinheim (1989).

    Google Scholar 

  24. B.F. Anderson, H.M. Baker, G.E. Norris, S.V. Rumball, and E.N. Baker, Apolactoferrin structure demonstrates ligand-induced conformational change in transferrins, Nature 344: 784 (1990).

    Article  PubMed  CAS  Google Scholar 

  25. C.A. Smith, B.F. Anderson, H.M. Baker, and E.N. Baker, Metal substitution in transferrins: The crystal structure of human copper-lactoferrin at 2.1-Ă… resolution, Biochemistry 31: 4527 (1992).

    Article  PubMed  CAS  Google Scholar 

  26. S. Bailey, R.W. Evans, R.C. Garratt, et al, Molecular structure of serum transferrin at 3.3-Ă… resolution, Biochemistry 27: 5804 (1988).

    Article  PubMed  CAS  Google Scholar 

  27. R. Sarra, R. Garratt, B. Gorinsky, H. Jhoti, and P. Lindley, High-resolution X-ray studies on rabbit serum transferrin: preliminary structure analysis of the N-terminal half-molecule at 2.3 Å resolution, Acta Cryst. B46: 763–771 (1990).

    CAS  Google Scholar 

  28. P.K. Bali and P. Aisen, Receptor-modulated iron release from transferrin: Differential effects on N-and C-terminal sites, Biochemistry 30: 9947 (1991).

    Article  PubMed  CAS  Google Scholar 

  29. P.K. Bali, W.R. Harris, and D. Nesset-Tollefson, Kinetics of iron removal from monoferric and cobalt-labeled monoferrìc human serum transferrin by nitrilotris (methylenephosphonic acid) and nitrilotriacetic acid, Inorg.Chem. 30: 502 (1991).

    Article  CAS  Google Scholar 

  30. P. Aisen, A. Leibman, and J. Zweier, Stoichiometric and site characteristics of the binding of iron to human transferrin, J.Biol.Chem. 253: 1930 (1978).

    PubMed  CAS  Google Scholar 

  31. P.K. Bali and W.R. Harris, Cooperativity and heterogeneity between the two binding sites of diferric transferrin during iron removal by pyrophosphate, J.Am.Chem.Soc. 111: 4457 (1989).

    Article  CAS  Google Scholar 

  32. P.K. Bali and P. Aisen, Receptor-induced switch in site-site cooperativity during iron release by transferrin, Biochemistry 31: 3963 (1992).

    Article  PubMed  CAS  Google Scholar 

  33. T.J. Egan, D.C. Ross, L.R. Purves, and P.A. Adams, Mechanism of iron release from human serum C-terminal monoferric transferrin to pyrophosphate: Kinetic discrimination between alternative mechanisms, Inorg.Chem. 31: 1994 (1992).

    Article  CAS  Google Scholar 

  34. S.A. Kretchmar and K.N. Raymond, Effects of ionic strength on iron removal from transferrin, Inorg.Chem. 27: 1436 (1988).

    Article  CAS  Google Scholar 

  35. P. Aisen, G. Cohen, and J.O. Kang, Iron toxicosis, Int.Rev.Exp.Pathol. 31: 1 (1990).

    PubMed  CAS  Google Scholar 

  36. D. Hemmaplardh, R.G.H. Morgan, and E.H. Morgan, Role of plasma membrane phospholipids in the uptake and release of transferrin and its iron by reticulocytes, J.Membr.Biol. 33: 195 (1977).

    Article  PubMed  CAS  Google Scholar 

  37. F. Ursini, M. Maiorino, P. Hochstein, and L. Ernster, Microsomal lipid peroxidation: Mechanisms of initiation. The role of iron and iron chelators, Free Radic.Biol.Med. 6: 31 (1989).

    Article  PubMed  CAS  Google Scholar 

  38. D.M. Sipe and R.F. Murphy, Binding to cellular receptors results in increased iron release from transferrin at mildly acidic pH, J.Biol.Chem. 266: 8002 (1991).

    PubMed  CAS  Google Scholar 

  39. T.J. Egan, O. Zak, and P. Aisen, The anion requirement for iron release from transferrin is preserved in the receptor-transferrin complex, Biochemistry 32: in press (1993).

    Google Scholar 

  40. A. Egyed, Carrier mediated iron transport through erythroid cell membrane, Br.J.Haematol. 68: 483 (1988).

    Article  PubMed  CAS  Google Scholar 

  41. E.H. Morgan, Membrane transport of non-transferrin-bound iron by reticulocytes, Biochim.Biophys.Acta 943: 428 (1988).

    Article  PubMed  CAS  Google Scholar 

  42. J. Fletcher and E.R. Huehns, Function of Transferrin, Nature 218: 1211 (1968).

    Article  PubMed  CAS  Google Scholar 

  43. E.N. Baker and P.F. Lindley, New perspectives on the structure and function of transferrins, J.Inorg.Biochem. 47: 147 (1992).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Aisen, P. (1994). The Transferrin Receptor and the Release of Iron from Transferrin. In: Hershko, C., Konijn, A.M., Aisen, P. (eds) Progress in Iron Research. Advances in Experimental Medicine and Biology, vol 356. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2554-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2554-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6090-2

  • Online ISBN: 978-1-4615-2554-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics