Skip to main content

Genetic Manipulation of Lignin and Phenylpropanoid Compounds Involved in Interactions with Microorganisms

  • Chapter
Genetic Engineering of Plant Secondary Metabolism

Part of the book series: Recent Advances in Phytochemistry ((RAPT,volume 28))

Abstract

Increasing knowledge of the biochemistry of plant secondary product synthesis, and the cloning of biosynthetic pathway genes, has opened up the possibility of engineering novel pathways or reducing unwanted metabolites by genetic engineering strategies. Such approaches should lead to significant improvements in agronomic performance and post-harvest processing. At present, the necessary knowledge base is most advanced in the area of phenylpropanoid derivatives and certain alkaloids. Further advances in our understanding of terpenoid biochemistry, and our ability to genetically transform cereals and large seeded legumes, are required to underpin fuller exploitation of genetic manipulation of secondary metabolism for plant improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DIXON, R.A., CHOUDHARY, A.D., DALKIN, K., EDWARDS, R., FAHRENDORF, T., GOWRI, G., HARRISON, M.J., LAMB, C.J., LOAKE, G.J., MAXWELL, C.A., ORR, J., PAIVA, N.L. 1992. Molecular biology of stress-induced phenylpropanoid and isoflavonoid biosynthesis in alfalfa. In: Phenolic Metabolism in Plants, (H.A. Stafford, R.K. Ibrahim, eds), Plenum Press, New York, pp 91–138.

    Chapter  Google Scholar 

  2. FAHRENDORF, T., DIXON, R.A. 1993. Stress responses in alfalfa (Medicago sativa L.). XVIII. Molecular cloning and expression of the elicitor-inducible cinnamic acid 4-hydroxylase cytochrome P450. Arch. Biochem. Biophys.305:509–515.

    Article  PubMed  CAS  Google Scholar 

  3. GUNIA, W., HINDERER, W., WITTKAMPF, U., BARZ, W. 1991.Elicitor induction of cytochrome P450 monooxygenases in cell suspension cultures of chickpea (Cicer arietinum L.) and their involvement in pterocarpan phytoalexin biosynthesis. Z. Naturforsch. 46C: 58–66.

    Google Scholar 

  4. DIXON, R.A., BHATTACHARYYA, M.K., HARRISON, M.J.,FAKTOR, O., LAMB, C.J., LOAKE, G.J., NI, W., OOMMEN, A., PAIVA, N.L., STERMER, B., YU, L.M. 1993. Transcriptional regulation of phytoalexin biosynthetic genes. In: Advances in Molecular Genetics of Plant-Microbe Interactions, (E.W. Nester, D.P.S. Verma, eds), Kluwer Academic Publishers, Dordrecht, pp 497–509.

    Chapter  Google Scholar 

  5. LINDSAY, W.P., LAMB, C.J., DIXON, R.A. 1993. Microbial recognition and activation of plant defense systems. Trends in Microbiol. 1:181–187.

    Article  CAS  Google Scholar 

  6. WALTER, M.H. 1992. Regulation of lignification in defense. In: Plant Gene Research. Genes Involved in Plant Defense (T. Boller, F. Meins, eds.), Springer, Wien, pp 327–353.

    Chapter  Google Scholar 

  7. CASLER, M.D. 1987. In vitro digestibility of dry matter and cell wall constituents of smooth bromegrass forage. Crop Sci. 27: 931–934.

    Article  CAS  Google Scholar 

  8. ALBRECHT, K.A., WEDIN, W.F., BUXTON, D.R. 1987. Cell wall- composition and digestibility of alfalfa stems and leaves. Crop Sci. 27:735–741.

    Article  CAS  Google Scholar 

  9. ELKIND, Y., EDWARDS, R., MAVANDAD, M., HEDRICK, S.A.,RIBAK, O., DIXON, R.A., LAMB, C.J. 1990. Abnormal plant development and down regulation of phenylpropanoid biosynthesis in transgenic tobacco containing a heterologous phenylalanine ammonia-lyase gene. Proc. Natl. Acad. Sci. USA 87: 9057–9061.

    Article  PubMed  CAS  Google Scholar 

  10. CRAMER, C.L., EDWARDS, K., DRON, M., LIANG, X., DILDINE, S.L., BOLWELL, G.P., DIXON, R.A., LAMB, C.J., SCHUCH, W. 1989. Phenylalanine ammonia-lyase gene organization and structure. Plant Mol. Biol. 12: 367–383.

    Article  CAS  Google Scholar 

  11. GOWRI, G., BUGOS, R.C., CAMPBELL, W.H., MAXWELL, C.A.,DIXON, R.A. 1991. Stress responses in alfalfa (Medicago sativa L.). X. Molecular cloning and expression of S-adenosyl-L-methionine: caffeic acid 3-O-methyltransferase, a key enzyme of lignin biosynthesis. Plant Physiol. 97: 7–14.

    Article  PubMed  CAS  Google Scholar 

  12. JAECK, E., DUMAS, B., GEOFFROY, P., FAVET, N., INZE, D.,VAN MONTAGU, M., FRITIG, B., LEGRAND, M. 1992. Regulation of enzymes involved in lignin biosynthesis: induction of O-methyltransferase mRNAs during the hypersensitive reaction of tobacco to tobacco mosaic virus. Mol. Plant Microbe. Interact. 5: 294–300.

    Article  PubMed  CAS  Google Scholar 

  13. NI, W., PAIVA, N.L., DIXON, R.A. 1993. Reduced lignin in transgenic plants containing an engineered caffeic acid O-methyltransferase antisense gene. Transgenic Pres., in press.

    Google Scholar 

  14. LEROUGE, P., ROCHE, P., FAUCHER, C., MAILLET, F.,TRUCHET, G., PROME’, J.C., DEBNARIE’, J. 1990. Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344: 781–784.

    Article  PubMed  CAS  Google Scholar 

  15. TRUCHET, G., ROCHE, P., LEROUGE, P., VASSE, J., CAMUT, S.,DE BILLY, F., PROME’, J.C., DENARIE’, J. 1991. Sulphated lipo-oligosaccharide signals of Rhizobium meliloti elicit root nodule organogenesis in alfalfa. Nature 351: 670–673.

    Article  CAS  Google Scholar 

  16. HARTWIG, U.A., MAXWELL, C.A., JOSEPH, C.M., PHILLIPS,D.A. 1990. Chrysoeriol and luteolin released from alfalfa seeds induce nod genes in Rhizobium meliloti. Plant Physiol., 92: 116–122.

    Article  PubMed  CAS  Google Scholar 

  17. MAXWELL, C.A., HARTWIG, U.A., JOSEPH, C.M., PHILLIPS,D.A. 1989. A chalcone and two related flavonoids released from alfalfa roots induce nod genes in Rhizobium meliloti. Plant Physiol. 91: 842–847.

    Article  PubMed  CAS  Google Scholar 

  18. DAKORA, F., JOSEPH, C.M., PHILLIPS, D.A. 1993. Alfalfa (Medicago sativa L.) root exudates contain isoflavonoids in the presence of Rhizobium meliloti. Plant Physiol. 101: 819–824.

    PubMed  CAS  Google Scholar 

  19. FIRMIN, J.L., WILSON, K.E., ROSSEN, L., JOHNSTON, A.W.B.1986. Flavonoid activation of nodulation genes in Rhizobium reversed by other compounds present in plants. Nature 324: 90–92.

    Article  CAS  Google Scholar 

  20. KOSSLAK, R.M., BOOKLAND, R., BARKEI, J., PAAREN, H.E.,APPELBAUM, E.R. 1987. Induction of Bradyrhizobium japonicum common nod genes by isoflavones isolated from Glycine max. Proc. Natl. Acad. Sci. USA 84: 7428–7432.

    Article  PubMed  CAS  Google Scholar 

  21. HARTWIG, U.A., JOSEPH, C.M., PHILLIPS, D.A. 1991. Flavonoids released naturally from alfalfa seeds enhance growth rate of Rhizobium meliloti. Plant Physiol. 95: 797–803.

    Article  PubMed  CAS  Google Scholar 

  22. WELLE, R., SCHRODER, G., SCHILTZ, E., GRISEBACH, H.,SCHRODER, J. 1991. Induced plant responses to pathogen attack. Analysis and heterologous expression of the key enzyme in the biosynthesis of phytoalexins in soybean (Glycine max L. Merr. cv. Harosoy 63). Eur. J. Biochem. 196: 423–430.

    Article  PubMed  CAS  Google Scholar 

  23. HARTWIG, U.A., MAXWELL, C.A., JOSEPH, C.M., PHILLIPS, D.A. 1990. Effects of alfalfa nod gene-inducing flavonoids on nodABC transcription in Rhizobium meliloti strains containing different nodD genes. J. Bacteriol. 172: 2769–2773.

    PubMed  CAS  Google Scholar 

  24. KAPULNIK, Y., JOSEPH, C.M., PHILLIPS, D.A. 1987. Flavone limitations to root nodulation and symbiotic nitrogen fixation. Plant Physiol. 84: 1193–1196.

    Article  PubMed  CAS  Google Scholar 

  25. JAIN, V., GARG, N., NAINAWATEE, H.S. 1990. Naringenin enhanced efficiency of Rhizobium meliloti-alfalfa symbiosis. World J. Microbiol. 6: 434–436.

    Article  CAS  Google Scholar 

  26. MAXWELL, C.A., EDWARDS, R., DIXON, R.A. 1992. Identification, purification, and characterization of S-adenosyl-L-methionine: isoliquiritigenin 2’-O-methyltransferase from alfalfa (Medicago sativa L.). Arch. Biochem. Biophys. 293: 158–166.

    Article  PubMed  CAS  Google Scholar 

  27. MAXWELL, C.A., HARRISON, M.J., DIXON, R.A. 1993. Molecular characterization and expression of alfalfa isoliquiritigenin 2’-O-methyltransferase, an enzyme specifically involved in the biosynthesis of an inducer of Rhizobium meliloti nodulation genes. Plant J., in press.

    Google Scholar 

  28. BHATTACHARYYA, M.K., WARD, E.W.B. 1986. Resistance, susceptibility, and accumulation of glyceollins I-III in soybean organs inoculated with Phytophthora megasperma f.sp. glycinea. Physiol. Mol. Plant Pathol. 29: 227–237.

    Article  CAS  Google Scholar 

  29. VAN ETTEN, H.D., MATTHEWS, D.E., MATTHEWS, P.S. 1989.Phytoalexin detoxification: Importance for pathogenicity and practical implications. Annu. Rev. Phytopathol. 27: 143–164.

    Article  Google Scholar 

  30. INGHAM, J.L., KEEN, N.T., HYMOWITZ, T. 1977. A new isoflavone phytoalexin from fungus-inoculated stems of Glycine wightii. Phytochemistry 16: 1943–1946.

    Article  CAS  Google Scholar 

  31. WOODWARD, M.D. 1979. Phaseoluteone and other 5- hydroxyisoflavonoids from Phaseolus vulgaris. Phytochemistry 18: 363–365.

    Article  CAS  Google Scholar 

  32. ADESANYA, S.A., O’NEILL, M.J., ROBERTS, M.F. 1986. Structure- related fungitoxicity of isoflavonoids. Physiol. Mol. Plant Pathol. 29: 95–103.

    Article  CAS  Google Scholar 

  33. BIGGS, D.R.M., WELLE, R., VISSER, F.R., GRISEBACH, H. 1987.Dimethylallylpyrophosphate: 3,9-dihydroxypterocarpan 10-dimethylallyl transferase from Phaseolus vulgaris. FEBS Lett. 220: 223–226.

    Article  CAS  Google Scholar 

  34. ATTUCCI, S., GULICK, P., IBRAHIM, R.K. 1993. Differential hybridization strategy for cloning plant isoflavone prenyltransferases. (Abstr) Plant Physiol. Supplement 102: 114.

    Google Scholar 

  35. EDWARDS, R., DIXON, R.A. 1991. Isoflavone O-methyltransferase activities in elicitor-treated cell suspension cultures of Medicago sativa. Phytochemistry 30: 2597–2606.

    Article  CAS  Google Scholar 

  36. PREISIG, C.L., MATTHEWS, D.E., VAN ETTEN, H.D. 1991. Purification and characterization of S-adenosyl-L-methionine: 6a-hydroxymaackiain 3-O-methyltransferase from Pisum sativum. Plant Physiol. 91: 559–566

    Article  Google Scholar 

  37. DEWICK, P. 1988. Isoflavonoids. In: The Flavonoids: Advances in Research Since 1980, (J.B. Harborne, ed), Chapman and Hall, New York, p 166.

    Google Scholar 

  38. DELSERONE, L.M., MATTHEWS, D.E., VAN ETTEN, H.D. 1992. Differential toxicity of enantiomers of maackiain and pisatin to phytopathogenic fungi. Phytochemistry 31: 3813–3819.

    Article  CAS  Google Scholar 

  39. VAN ETTEN, H.D., MATTHEWS, P.S., MERCER, E.H. 1983. (+)-Maackiain and (+) medicarpin as phytoalexins in Sophora japonica and identification of the (-) isomers by biotransformation. Phytochemistry 22: 2291–2295.

    Article  Google Scholar 

  40. PAIVA, N.L., EDWARDS, R., SUN, Y., HRAZDINA, G., DIXON, R.A. 1991. Molecular cloning and expression of alfalfa isoflavone reductase, a key enzyme of isoflavonoid phytoalexin biosynthesis. Plant Mol. Biol. 17: 653–667.

    Article  PubMed  CAS  Google Scholar 

  41. SMITH, D.A. 1982. Toxicity of phytoalexins. In: Phytoalexins, (J.A.Bailey, J.W. Mansfield, eds), John Wiley and Sons, New York, pp 218–252.

    Google Scholar 

  42. HAIN, R., REIF, H.-J., KRAUSE, E., LANGEBARTELS, R., KINDL,H., VORNAM, B., WIESE, W., SCHMELZER, E., SCHREIER, P.H., STOCKER, R.H., STENZEL, K. 1993. Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361: 153–156.

    Article  PubMed  CAS  Google Scholar 

  43. DIXON, R.A., LAMB, C.J. 1990. Regulation of secondary metabolism at the biochemical and genetic levels. In: Secondary Products from Plant Tissue Culture, (B.V. Charlwood and M.J.C. Rhodes eds), Clarendon Press, Oxford, pp 103–118.

    Google Scholar 

  44. YU, L.M., LAMB, C.J., DIXON, R.A. 1993. Purification and biochemical characterization of proteins which bind to the H-box cis-element implicated in transcriptional activation of plant defense genes. Plant J. 3:805–816.

    Article  PubMed  CAS  Google Scholar 

  45. DANIEL, S., TIEMANN, K., WITTKAMPF, U., BLESS, W.,HINDERER, W., BARZ, W. 1990. Elicitor-induced metabolic changes in cell cultures of chickpea (Cicer arietinum L.) cultivars resistant and susceptible to Ascochyta rabiei. Planta 182: 270–278.

    Article  CAS  Google Scholar 

  46. PARNISKE, M., AHLBORN, B., WERNER, D. 1991. Isoflavonoid-inducible resistance to the phytoalexin glyceollin in soybean Rhizobia. J. Bacteriol. 173: 3432–3439.

    PubMed  CAS  Google Scholar 

  47. PARNISKE, M.C., FISCHER, H.-M., HENNECKE, H., WERNER, D.1991. Accumulation of the phytoalexin glyceollin I in soybean nodules infected by a Bradyrhizobium japonicum nifA mutant. Z. Naturforsch. 46C: 318–320.

    Google Scholar 

  48. ROBY, D., BROGLIE, K., CRESSMAN, R., BIDDLE, P., CHET, I.,BROGLIE, R. 1990. Activation of a bean chitinase promoter in transgenic tobacco plants by phytopathogenic fungi. Plant Cell 2: 999–1007.

    PubMed  Google Scholar 

  49. STERMER, B.A., SCHMID, J., LAMB, C.J., DIXON, R.A. 1990.Infection and stress activation of a bean chalcone synthase promoter in transgenic tobacco. Mol. Plant-Microbe Interact. 3: 381–388.

    Article  CAS  Google Scholar 

  50. ZHU, Q., DOERNER, P.W., LAMB, C.J. 1992. Developmental and stress regulation of a rice chitinase gene promoter in transgenic tobacco. Plant J. 3: 203–212.

    Article  Google Scholar 

  51. BENFEY, P.N., CHUA, N.-H. 1989. Regulated genes in transgenic plants. Science 244: 174–181.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dixon, R.A., Maxwell, C.A., Ni, W., Oommen, A., Paiva, N.L. (1994). Genetic Manipulation of Lignin and Phenylpropanoid Compounds Involved in Interactions with Microorganisms. In: Ellis, B.E., Kuroki, G.W., Stafford, H.A. (eds) Genetic Engineering of Plant Secondary Metabolism. Recent Advances in Phytochemistry, vol 28. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2544-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2544-8_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6085-8

  • Online ISBN: 978-1-4615-2544-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics