Skip to main content

Cells Undergoing HIV Envelope-Mediated Programmed Degeneration Accumulate in G2/M Phase

  • Chapter
The Cell Cycle

Abstract

Acquired immunodeficiency syndrome (AIDS) is a complex disease process induced by human immunodeficiency virus (HIV-1) infection.1 Although the linkage between HIV-1 infection and the development of AIDS has been established for a decade, 2 the molecular and biochemical basis for the profound and irreversible depletion of helper CD4+ T cells that follows HIV infection and paralyzes the immune system is not understood. A number of mechanisms have been proposed to account for CD4+ T killing by HIV, including the direct lysis of virally-infected cells, and the functional disruption of uninfected cells through an interaction with viral proteins.1,3,4 A recent hypothesis has proposed that, in HIV-infected individuals, there reemerges a cell death program normally utilized by immature T cells during development in response to specific stimuli accounting for both the early qualitative and late quantitative CD4+ T cell defects associated with AIDS.5

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.S. Fauci. The immunodeficiency virus: infectivity and mechanism of pathogenicity. Science 23, 9: 617 (1988).

    Google Scholar 

  2. F. Barre-Sinoussi, J.C. Chermann, F. Rey, M.T. Nugere, S. Chamaret, J. Gruest, C. Dauguet and C. Axler-Blin. Isolation of a T lymphotropic retrovirus from a patient at risk for acquired immunodeficiency syndrome (AIDS). Science 220: 868 (1983).

    Article  PubMed  CAS  Google Scholar 

  3. J. Habeshaw, E. Hounsell and A. Dalgeish. Dose the HIV induce a chronic graft-versus-host-like disease? Immunol. Today 13: 207 (1992).

    CAS  Google Scholar 

  4. M.L. Gougeon, V. Colizzi and L. Montagnier. AIDS Res. Hum. Retroviruses 9: 287 (1993).

    Article  CAS  Google Scholar 

  5. H. Groux, G. Torpier, D. Monte, Y. Mouton, A. Capron and J.C. Ameisen. Activation-induced death by apoptosis in CD4+ T cells from human immunodeficiency virus-infected asymptomatic individuals. J. Exp. Med. 175: 331 (1992).

    Article  PubMed  CAS  Google Scholar 

  6. R.E. Ellis, J. Yuan and H.R. Horvitz. Mechanisms and functions of cell death. Annu. Rev. Cell Biol. 7: 663 (1991).

    Article  CAS  Google Scholar 

  7. J.W. Sauders. Death in embryonic systems. Science 154: 604 (1966).

    Article  Google Scholar 

  8. J.R. Hinchliffe. Cell death in embryogenesis, in “Cell Death in Biology and Pathology,” I.D. Bowen and R.A. Lockshin, ed., Chapman and Hi11, New York (1981)

    Google Scholar 

  9. W.M. Cowan, J.W. Fawcett, D.D.M. O’leary and B.B. Stanfield. Repressive events inneurogenesis. Science 225: 1258 (1984)

    Article  PubMed  CAS  Google Scholar 

  10. R.A. Lockshin. Cell death in metamorphosis. in “Cell Death in Biology and Pathology,” I.D. Bowen and R.A. Lockshin, ed., Chapman and Hill, New York.

    Google Scholar 

  11. C.A. Smith, G.T. Williams, R. Kingston, E. J. Jenkinson and J.J.T. Owen. Antibodies to CD3/T-cell receptor complex induce death by apoptosis in immature T cells in thymic cultures. Nature 337: 181 (1989)

    Article  PubMed  CAS  Google Scholar 

  12. H.R. MacDonald and R.K. Lees. Programmed death of autoreactive thymocytes. Nature 343: 642 (1990).

    Article  PubMed  CAS  Google Scholar 

  13. I. Nakashima, Y.H. Zhang, S.M.J. Rahman, T. Yosida, K.I. Isobe, L.N. Ding, T. Iwamoto, M. Hamaguchi, H. Ikezawa and R. Taguchi. Evidence of synergy between Thy-1 and CD3/TCR complex in signal delivery to murine thymocytes for cell death. J. Immunol. 147: 1153 (1991)

    PubMed  CAS  Google Scholar 

  14. A. Veillette, J.C. Zuniga-Pflucker, J.B. Bolen and A.M. Kruisbeek. Engagement of CD4 and CD8 expressed on immature thymocytes induces activation of intracellular tyrosine phosphorylation pathways. J. Exp. Med. 170: 1671 (1989)

    Article  PubMed  CAS  Google Scholar 

  15. D.J. McConkey, P. Hartzell, J.F. Amador-Perez, S. Orrenius and M. Jondal. Calcium-dependent killing of immature thymocytes by stimulation via the CD3/T cell receptor complex. J. Immunol. 143: 1801 (1989).

    PubMed  CAS  Google Scholar 

  16. T.H. Finkel, M. McDuffie, J.W. Kappler, P. Marrack and J.C. Gambier. Both immature and mature T cells mobilize Ca2+ in response to antigen receptor cross-linking. Nature 330: 179 (1987).

    Article  PubMed  CAS  Google Scholar 

  17. W.L. Havran, M. Poene, J. Kimura, R. Tsien, A. Weiss and J.P. Allison. Expression and function of the CD3-antigen receptor on murine CD4+CD8+ thymocytes. Nature 300: 170 (1987).

    Article  Google Scholar 

  18. M.N. Mercep, P.D. Noguchi and J.D. Ashwell. The cell cycle block and lysis of an activated T cell hybridome are distinct processes with different Ca2+ requirements and sensitivity to cyclosporine A. J. Immunol. 142: 4085 (1989).

    PubMed  CAS  Google Scholar 

  19. Y.F. Shi, B.M. Sahel and D.R. Green. cyclosporine A inhibits activation-induced cell death in T-cell hybridomes and thymocytes. Nature 339: 625 (1989).

    Article  PubMed  CAS  Google Scholar 

  20. D.S. Ucker, J.D. Ashwell and G. Nickas. Activation-driven T cell death. I. Requirements for de novo transcription and translation and association with genome fragmentation. J. Immunol. 143: 3461 (1989)

    PubMed  CAS  Google Scholar 

  21. G. Draetta and D. Beach. Activation of cdc2 protein kinase during mitosis in human cells: cell cycle-dependent phosphorylation and subunit rearrangement. Cell 54: 17 (1988).

    Article  PubMed  CAS  Google Scholar 

  22. D.J. McConkey, P. Hartzell and S. Orenius. Rapid turnover of endogenous endonuclease activity in thymocytes: effects of inhibitors of macromolecular synthesis. Arch. Biochem. Biophys. 278: 284 (1990).

    Article  PubMed  CAS  Google Scholar 

  23. C.M. Zacharchuk, M. Mercep and J.D. Ashwell. Thymocyte activation and death: a mechanism for molding the T cell repertoire. Ann. New York Acad. Sci. 636: 52 (1991).

    Article  CAS  Google Scholar 

  24. C.M. Zacharchuk, M. Mercep and J.D. Ashwell. Thymocyte activation and death: a mechanism for molding the T cell repertoire. Ann. New York Acad. Sci. 636: 52 (1991).

    Article  CAS  Google Scholar 

  25. M Graber, C.H. June, L.E. Samelson and A. Weiss. The protein tyrosine kinase inhibitor herbimycin A, but not genistein, specifically inhibits signal transduction by the T cell antigen receptor. Intl. Immuns. 4: 1201 (1992).

    Article  CAS  Google Scholar 

  26. D.J. McConkey, P. Hartzell, M. Jondal and S. Orrenius. Inhibition of DNA fragmentation in thymocytes and isolated thymocyte nuclei by agents that stimulate protein kinase C. J. Biol. Chem. 264: 13399 (1989).

    CAS  Google Scholar 

  27. C.M. Zacharchuk, M. Mercep, P.K. Chakraborti, S.S. Simons Jr. and J.D. Ashwell. Programmed T lymphocyte death: cell activation and steroid-induced pathways are mutually antagonistic. J. Immunol. 145: 4037 (1990).

    PubMed  CAS  Google Scholar 

  28. A.M. Zubiaga, E. Munoz and B.T. Huber. IL-4 and IL-2 selectively reuse Th cell subsets from glucocorticoid-induced apoptosis. J. Immunol. 149: 107 (1992).

    PubMed  CAS  Google Scholar 

  29. D.I. Cohen, Y. Tani, H. Tian, E. Boone, L.E. Samelson and H.C. Lane. Participation of tyrosine phosphorylation in the cytopathic effect of human immunodeficiency virus-l. Science 256: 542 (1992).

    Article  PubMed  CAS  Google Scholar 

  30. C. Jessus and D. Beach. Oscillation of MPF is accompanied by periodic association between cdc25 and cdc2-cyclin B. Cell 68: 323 (1992).

    Article  PubMed  CAS  Google Scholar 

  31. L.A. Sabourin and R.G. Hawley. Suppression of programmed death and G1 arrest in B-cell hybridomas by interleukin-6 is not accompanied by altered expression of immediate early response genes. J. Cell. Physiol. 145: 564 (1990).

    Article  PubMed  CAS  Google Scholar 

  32. K. Nakayama and D.Y. Loh. No requirement for p561ck in the antigen-stimulated clonal deletion of thymocytes. Science 257: 94 (1992).

    Article  PubMed  CAS  Google Scholar 

  33. L. Gautier, M.J. Solomon, R.N. Booher, J. Fernando Bazan and M.W. Kirschner. cdc25 is a specific tyrosine phosphatase that directly activates p34cdc2. Cell 67: 197 (1991).

    Article  PubMed  CAS  Google Scholar 

  34. J. Pines and T. Hunter. Isolation of a human cyclin cDNA: Evidence for cyclin mRNA and protein regulation in the cell cycle and for interaction with p34cdc2. Cell 58: 833 (1989).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tian, H. et al. (1994). Cells Undergoing HIV Envelope-Mediated Programmed Degeneration Accumulate in G2/M Phase. In: Hu, V.W. (eds) The Cell Cycle. GWUMC Department of Biochemistry Annual Spring Symposia. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2421-2_42

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2421-2_42

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6027-8

  • Online ISBN: 978-1-4615-2421-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics