Skip to main content

Molecular Mechanisms of Pancreatic Lipase and Colipase

  • Chapter
Intestinal Lipid Metabolism

Abstract

A healthy diet includes dietary fats (Carey and Hernell, 1992). Fats provide an important energy source, a vehicle for fat soluble vitamins, and acyl chain precursors for hormones, inflammatory mediators, and cellular membrane components. Fats also improve the palatability of foods and largely govern postprandial satiety, whereas an inadequate supply of dietary fat affects growth and leads to deficiencies of vitamins A, D, E, and K. Long-chain triglycerides contribute 95% of the dietary fats in the average Western diet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abousalham, A., Chaillan, C., Kerfelec, B., Foglizzo, E., and Chapus, C., 1992, Uncoupling of catalysis and co-lipase binding in pancreatic lipase by limited proteolysis, Prot. Engin. 5:105–111.

    CAS  Google Scholar 

  • Alder, A., Lazarus, R. L., Dennis, M. S., and Wagner, G., 1991, Solution structure of kristin, a potent platelet aggregation inhibitor and GP IIb-IIa antagonist, Science 253:445–448.

    Google Scholar 

  • Ameis, P., Stahnke, G., Kobayashi, J., McLean, J., Lee, G., Buscher, M., and Schotz, M. C, 1990, Isolation and characterization of the human hepatic lipase gene, J. Biol. Chem. 265:6552–6555.

    PubMed  CAS  Google Scholar 

  • Andersson, L., Carriere, F., Lowe, M. E., Nilsson, A., and Verger, R., 1996, Pancreatic lipase-related protein 2 but not classical pancreatic lipase hydrolyzes galactolipids, Biochim. Biophys. Acta 1302:236–240.

    PubMed  Google Scholar 

  • Arvan, P., and Castle, J. D., 1987, Phasic release of newly synthesized secretory proteins in the unstimulated rat exocrine pancreas, J. Cell Biol. 104:243–252.

    PubMed  CAS  Google Scholar 

  • Arvan, P., and Chang, A., 1987, Constitutive protein secretion from the exocrine pancreas of fetal rats, J. Biol. Chem. 262:3886–3890.

    PubMed  CAS  Google Scholar 

  • Baskys, B., Klein, F., and Lever, W. F., 1963, Lipases of blood and tissue III. Purification and properties of pancreatic lipase, Arch. Biochem. Biophys. 102:201–209.

    PubMed  CAS  Google Scholar 

  • Borgström, B., and Erlanson, C., 1971, Pancreatic juice co-lipase: Physiological importance, Biochim. Biophys. Acta 242:509–513.

    PubMed  Google Scholar 

  • Borgström, B., and Erlanson-Albertsson, C, 1984, Pancreatic colipase, in: Lipases (B. Borgström and H. L. Brockman, eds.), Elsevier, Amsterdam, pp. 152–183.

    Google Scholar 

  • Bourne, Y., Martinex, C., Kerfelec, B., Lombardo, D., Chapus, C., and Cambillau, C., 1994, Horse pancreatic lipase. The crystal structure refined at 2.3 A resolution, J. Mol. Biol. 238:709–732.

    PubMed  CAS  Google Scholar 

  • Breg, J., Sarda, L., Cozone, P. J., Rugani, N., Boelens, R., and Kaptein, R., 1995, Solution structure of porcine pancreatic procolipase as determined from 1H homonuclear two-dimensional and three-dimensional NRM, Eur. J. Biochem. 227:663–672.

    PubMed  CAS  Google Scholar 

  • Brockerhoff, H., 1970, Substrate specificity of pancreatic lipase. Influence of the structure of fatty acids on the reactivity of esters, Biochim. Biophys. Acta 212:92–101.

    PubMed  CAS  Google Scholar 

  • Brockerhoff, H., and Jensen, R. G., 1974, Lipases, in: Lipolytic Enzymes, Academic Press, New York, pp. 25–100.

    Google Scholar 

  • Brzozowski, A. M., Derewenda, U., Derewenda, Z. S., Dodson, G. G., Lawson, D. M., Turkenburg, J. P., Bjorkling, F., Huge-Jensen, B., Patkar, S. A., and Thim, L., 1991, A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex, Nature 251:491–494.

    Google Scholar 

  • Cai, S.-J., Wong, D. M., Chen, S.-H., and Chan, L., 1989, Structure of the human hepatic triglyceride lipase gene., Biochemistry 28:8966–8971.

    PubMed  CAS  Google Scholar 

  • Carey, M. C., and Hernell, O., 1992, Digestion and absorption of fat, Sem. Gastrointest. Dis. 3:189–208.

    Google Scholar 

  • Carriere, F., Barrowman, J. A., Verger, R., and Laugier, R., 1993, Secretion and contribution to lipolysis of gastric and pancreatic lipases during a test meal in humans, Gastroenterology 105:876–888.

    PubMed  CAS  Google Scholar 

  • Chaillan, C., Kerfelec, B., Foglizzo, E., and Chapus, C., 1992, Direct involvement of the C-terminal extremity of pancreatic lipase (403-499) in colipase binding,Biochem. Biophys. Res. Comm. 184:206–211.

    PubMed  CAS  Google Scholar 

  • Chuat, J. C., Raisonnier, A., Etienne, J., and Galibert, F., 1992, The lipoprotein lipase-encoding human gene: Sequence from intron-6 to intron-9 and presence in intron-7 of a 40-million-year-old Alu sequence, Gene 110:257–261.

    PubMed  CAS  Google Scholar 

  • Constantin, M. J., Pasero, L., and Desneulle, P., 1960, Quelques remarques complementaires sur L’hydrolyse des triglycerides par la lipase pancreatique, Biochim. Biophys. Acta 43:103–109.

    PubMed  CAS  Google Scholar 

  • Cordle, R., and Lowe, M. E., 1998, The hydrophobic surface of colipase influences lipase activity at an oil-water interface., J. LipidRes. 39:1759–1767.

    CAS  Google Scholar 

  • Cygler, M., Schrag, J. D., Sussman, J. L., Harel, M., Silman, I., Gentry, M. K., and Doctor, B. P., 1993, Relationship between sequence conservation and three-dimensional structure in a large family of esterases, lipases, and related proteins, Prot. Sci. 2:366–382.

    CAS  Google Scholar 

  • Davis, R. C., Diep, N., Hunziker, W., Klisak, I., Mohandas, T., Schotz, M. C, Sparkes, R. S., and Jusis, A. J., 1991, Assignment of human pancreatic lipase gene (PNLIP) to chromosome 10q24-q26, Genomics. 11:1164–1166.

    PubMed  CAS  Google Scholar 

  • Deeb, S. S., and Peng, R., 1989, Structure of the human lipoprotein lipase gene, Biochem. 28:4131–4135.

    CAS  Google Scholar 

  • Derewenda, Z. S., 1995, A twist in the tale of lipolytic enzymes, Struct. Biol. 2:347–349.

    CAS  Google Scholar 

  • Derewenda, U., Swenson, L., Green, R., Wei, Y., Yamaguchi, S., Joerger, R., Haas, M. J., and Derewenda, Z. S., 1994, Current progress in crystallographic studies of new lipases from filamentous fungi, Prot. Engin. 7:551–557.

    CAS  Google Scholar 

  • Derewenda, U., Swenson, L., Wei, Y., Green, R., Kobos, P. M., Joergere, R., Haas, M. J., and Derewenda, Z. S., 1995, Conformational lability of lipases observed in the absence of an oil-water interface: Crystallographic studies of enzymes from the fungi Humocola lanuginosa and Rhizopus delemar, J. Lipid Res. 35:524–534.

    Google Scholar 

  • Desnuelle, P., 1972, The Lipases, in: The Enzymes, Volume 7, Academic Press, New York and London, pp. 575–603.

    Google Scholar 

  • Egloff, M. P., Marguet, F., Buono, G., Verger, R., Cambillau, C., and van Tilbeurgh, H., 1995a, The 2.46 A resolution of the pancreatic lipase-colipase complex inhibited by a Cll alkyl phosphonate, Biochem. 24:2751–2762.

    Google Scholar 

  • Egloff, M. P., Sarda, L., Verger, R., Cambillau, C., and van Tilbeurgh, H., 1995, Crystallographic study of the structure of colipase and of the interaction with pancreatic lipase, Prot. Sci. 4:44–57.

    CAS  Google Scholar 

  • Erlanson-Albertsson, C., 1980, The importance of the tyrosine residues in pancreatic colipase for its activity., FEB SLett. 117:295–298.

    CAS  Google Scholar 

  • Erlanson-Albertsson, C., 1992, Pancreatic colipase. Structural and physiological aspects, Biochim. Biophys. Acta 1125:1–7.

    PubMed  CAS  Google Scholar 

  • Erlanson-Albertsson, C., 1994, Enterostatin-Apeptide regulating fat intake, Scand. J. Nutr. 38:11–14.

    Google Scholar 

  • Erlanson-Albertsson, C., and Larsson, A., 1981, Importance of the N-terminal sequence in porcine pancreatic colipase, Biochim. Biophys. Acta 665:250–255.

    PubMed  CAS  Google Scholar 

  • Figarella, C., De Caro, A., Leupoid, D., and Poley, J. R., 1980, Congenital pancreatic lipase deficiency, Pediatrics 96:412–416.

    CAS  Google Scholar 

  • Garton, G. A., Hilditch, T. P., and Meara, M. L., 1952, The composition of the depot fat of a pig fed on a diet rich in whale oil, Biochem. J. 50:517–524.

    PubMed  CAS  Google Scholar 

  • Ghishan, F. K., Moran, J. R., Durie, P. R., and Greene, H. L., 1984, Isolated congenital lipase-colipase deficiency, Gastroenterology 86:1580–1582.

    PubMed  CAS  Google Scholar 

  • Giller, T., Buchwald, P., Blum-Kaelin, D., and Hunziker, W., 1992, Two novel human pancreatic lipase related proteins, hPLRPl and hPLRP2: Differences in colipase dependency and in lipase activity, J. Biol. Chem. 267:16509–16516.

    PubMed  CAS  Google Scholar 

  • Grochulski, P., Li, Y., Schrag, J. D., Bouthillier, F., Smith, P., Harrison, D., Rubin, B., and Cygler, M., 1993, Insights into interfacial activation from an open structure of Candida rugosa lipase, J. Biol. Chem. 268:12843–12847.

    PubMed  CAS  Google Scholar 

  • Grochulski, P., Li, Y., Scharg, J. D., and Cygler, M., 1994, Two conformational states of Candida rugosa lipase, Prot. Sci. 3:82–91.

    CAS  Google Scholar 

  • Grusby, M. J., Nabavi, N., Wong, H., Dick, R. F., Bluestone, J. A., Schotz, M. C., and Glimcher, L. H., 1990, Cloning of an Interleukin-4 inducible gene from cytotoxic T lymphocytes and its identification as a lipase, Cell 60:451–459.

    PubMed  CAS  Google Scholar 

  • Hermoso, J., Pignol, D., Kerfelec, B., Crenon, I., Chapus, C., and Fontecilla-Camps, J. C., 1996, Lipase activation by nonionic detergents, J. Biol. Chem. 271:18007–18016.

    PubMed  CAS  Google Scholar 

  • Hermoso, J., Pignol, D., Penel, S., Roth, M., Chapus, C., and Fontecilla-Camps, J. C., 1997, Neutron crystallographic evidence of lipase-colipase complex activation by a micelle, The EMBO Journal, 16:5531–5536.

    PubMed  CAS  Google Scholar 

  • Hide, W. A., Chan, L., and Li, W.-H., 1992, Structure and evolution of the lipase superfamily, J. Lipid. Res. 33:167–178.

    PubMed  CAS  Google Scholar 

  • Hjorth, A., Carriere, F., Cudrey, C., Woldike, H., Boel, E., Lawson, D. M., Ferrato, F., Cambillau, C., Dodson, G. G., Thim, L., and Verger, R., 1993, A structural domain (the lid) found in pancreatic lipase is absent in the guinea pig (phospho)lipase, Biochem. 32:4702–4707.

    CAS  Google Scholar 

  • Hofmann, A. F., and Borgström, B., 1962, Physico-chemical state of lipids in intestinal contents during their digestion and absorption, Am. J. Clin. Nutr. 21:43–50.

    CAS  Google Scholar 

  • Hofmann, A. F., and Borgström, B., 1964, The intraluminal phase of fat digestion in man: The lipid content of the micellar and oil phases of intestinal content obtained during fat digestion and absorption, J. Clin. Invest. 12:631–634.

    Google Scholar 

  • Hwang, J., Tamm, L. K., Bohm, C., Ramalingam, T. S., Betzig, E., and Edidin, B., 1995, Nanoscale complexity of phsopholipid monolayers investigated by near-field scanning optical microscopy, Science 270:610–614.

    PubMed  CAS  Google Scholar 

  • Janin, J., and chothia, C., 1990, The structure of protein-protein recognition sites., J. Biol. Chem. 265:16027–16030.

    PubMed  CAS  Google Scholar 

  • Jennens, M. L., and Lowe, M. E., 1994, A surface loop covering the active site of human pancreatic lipase influences interfacial activation and lipid binding, . Biol Chem. 269:25470–25474.

    CAS  Google Scholar 

  • Jennens, M. L., and Lowe, M. E., 1995a, Rat GP-3 is a pancreatic lipase with kinetic properties that differ from colipase-dependent pancreatic lipase, J. Lipid Res. 36:2374–2381.

    PubMed  CAS  Google Scholar 

  • Jennens, M. L., and Lowe, M. E., 1995b, The C-terminal domain of human pancreatic lipase is required for stability and maximal activity but not colipase reactivation, J. Lipid Res. 36:1029–1036.

    PubMed  CAS  Google Scholar 

  • Kaplan, M. H., Boyer, S. N., and Grusby, M. J., 1996, Genomic organization of the murine CTL lipase gene, Genomics 35:606–609.

    PubMed  CAS  Google Scholar 

  • Kerfelec, B., LaForge, K. S., Puigserver, A., and Scheele, G., 1986, Primary structures of canine pancreatic lipase and phospholipase A2 messenger RNAs, Pancreas. 1:430–437.

    PubMed  CAS  Google Scholar 

  • Kirchgessner, T. G., Svenson, K. L., Lusis, A. J., and Schotz, M. C., 1987, The sequence of cDNA encoding lipoprotein lipase, J. Biol. Chem. 262:8463–8466.

    PubMed  CAS  Google Scholar 

  • Kirchgessner, T. G., Chuat, J.-C., Heinzman, C., Etienne, J., Guilhot, S., Svenson, K., Ameis, D., Pilon, C., D’Auriol, L., Andalibi, A., Schotz, M. C., Galibert, R., and Lusis, A. J., 1989, Organization of the human lipoprotein lipase gene and evolution of the lipase gene family, Nuc. Acid Res. 86:9647–9651.

    CAS  Google Scholar 

  • Kullman, J., Gisi, C., and Lowe, M. E., 1996, Dexamethasone-regulated expression of pancreatic lipase and two related proteins in AR42J cells, Am. J. Physiol. 270:G746–G751.

    PubMed  CAS  Google Scholar 

  • Larsson, A., and Erlanson-Albertsson, C., 1991, The effect of pancreatic procolipase and colipase on pancreatic lipase activation, Biochim. Biophys. Acta 1983:283–288.

    Google Scholar 

  • Li, L., and Lowe, M. E., 1993, Dexamethasone stimulation of human colipase gene expression, Gastroenterol. 104:A317.

    Google Scholar 

  • Lipp, M. M., Lee, K. Y. C., Zasadzinski, J. A., and Waring, A. J., 1996, Phase and morphology changes in lipid monolayers induced by SP-B protein and its amino-terminal peptide, Science 273:1196–1199.

    PubMed  CAS  Google Scholar 

  • Lowe, M. E., 1992, The catalytic site residues and interfacial binding of human pancreatic lipase, J. Biol. Chem. 267:17069–17073.

    PubMed  CAS  Google Scholar 

  • Lowe, M. E., 1996, Mutation of the catalytic site Asp177 to Glul77 in human pancreatic lipase produces an active lipase with increased sensitivity to proteases, Biochim. Biophys. Acta 1302:177–183.

    PubMed  Google Scholar 

  • Lowe, M., 1997a, Colipase stabilizes the lid domain of pancreatic triglyceride lipase, J. Biol. Chem. 272:9–12.

    PubMed  CAS  Google Scholar 

  • Lowe, M. E., 1997b, Molecular mechanisms of rat and human pancreatic triglyceride lipases, J. Nutr. 127:539–557.

    Google Scholar 

  • Lowe, M. E., 1997c, New pancreatic lipases: Gene expression, protein secretion, and the newborn, Meth. Enzym. 284:285–297.

    PubMed  CAS  Google Scholar 

  • Lowe, M. E., Rosenblum, J. L., and Strauss, A. W., 1989, Cloning and characterization of human pancreatic lipase cDNA, J. Biol. Chem. 264:20042–20048.

    PubMed  CAS  Google Scholar 

  • Lowe, M. E., Rosenblum, J. L., McEwen, P., and Strauss, A. W., 1990, Cloning and characterization of the human colipase cDNA, Biochem. 29:823–828.

    CAS  Google Scholar 

  • Lowe, M. E., Li, L., and Kullman, J., 1994, Dexamethasone regulates expression of the human colipase gene, Pediatr. Res. 35:131A.

    Google Scholar 

  • Lowe, M., Kaplan, M. H., Jackson-Grusby, L., D’Agostino, D., and Grusby, M., 1998, Decreased neonatal dietary fat absorption and T cell cytotoxicity in pancreatic lipase-related protein 2-deficient mice, J. Biol. Chem. 273:31215–31221.

    PubMed  CAS  Google Scholar 

  • Mahe-Gouhier, N., and Leger, C. L., 1988, Immobilized colipase affinities for Upases B, A, C and their terminal peptide (336-449): The lipase recognition site lysine residues are located in the C-terminal region, Biochim. Biophys. Acta 962:91–97.

    PubMed  CAS  Google Scholar 

  • Martinelle, M., Holmquist, M., and Hult, K., 1995, On the interfacial activation of Candida antartica lipase A and B as compared with Humicola lanuginosa lipase, Biochim. Biophys. Acta 1258:272–276.

    PubMed  Google Scholar 

  • Mclntyre, J., Hundley, P., and Behnke, W., 1987, The role of aromatic side chain residues in micelle binding by pancreatic colipase., Biochem. J. 245:821–829.

    Google Scholar 

  • Mclntyre, J., Schroeder, F., and Behnke, W., 1990a, Synthesis and characterization of the dansyltyrosine derivatives of porcine pancreatic colipase, Biochem. 29:2092–2101.

    Google Scholar 

  • Mclntyre, J., Schroeder, F., and Behnke, W., 1990b, The interaction of bile salt micelles with the dansyltyrosine derivatives of porcine colipase, Biophys. Chem. 38:143–154.

    Google Scholar 

  • Mickel, F. S., Weidenbach, F., Swarovsky, B., LaForge, K., and Scheele, G. A., 1989, Structure of the canine pancreatic lipase gene, J. Biol. Chem. 264:12895–12901.

    PubMed  CAS  Google Scholar 

  • Momsen, M. M., Dahim, M., and Brockman, H. L., 1997, Lateral packing of the pancreatic lipase cofactor, colipase, with phosphatidylcholine and substrates, Biochem. 36:10073–10081.

    CAS  Google Scholar 

  • Momsen, W. E., Momsen, M. M., and Brockman, H. L., 1995, Lipid structural reorganization induced by the pancreatic lipase cofactor, procolipase, Biochem. 34:7271–7281.

    CAS  Google Scholar 

  • Morgan, R. G. H., and Hoffman, N. F., 1971, The interaction of lipase, lipase cofactor and bile salts in triglyceride hydrolysis, Biochim. Biophys. Acta 248:143–148.

    PubMed  CAS  Google Scholar 

  • Ollis, D. L., Cheah, E., Cygler, M., Dijkstra, B., Frolow, F., Franken, S. M., Harel, M., Remington, S. J., Silman, I., Schrag, J., Sussman, J. L., Verschueren, K. H. G., and Goldman, A., 1992, The α/β hydrolase fold, Prot. Engin. 5:197–211.

    CAS  Google Scholar 

  • Patton, J. S., Albertsson, P. A., Erlanson, C., and Borgström, B., 1978a, Binding of porcine pancreatic lipase and colipase in the absence of substrate studied by two-phase partition and affinity chromatography, J. Biol. Chem. 253:4195–4202.

    PubMed  CAS  Google Scholar 

  • Patton, J. S., Donner, J., and Borgström, B., 1978b, Lipase-colipase interactions during gel filtration, Biochim. Biophys. Acta 529:67–78.

    PubMed  CAS  Google Scholar 

  • Payne, R. M., Sims, H. F., Jennens, M. L., and Lowe, M. E., 1994, Rat pancreatic lipase and two related proteins: Enzymatic properties and mRNA expression during development, Am. J. Physiol. 266:G914–G921.

    PubMed  CAS  Google Scholar 

  • Peters, G. H., Toxvaerd, S., Larsen, N. B., Bjornholm, T., Schaunburg, K., and Kjaer, K., 1995, Structure and dynamics of lipid monolayers: Implications for enzyme catalysed lipolysis, Struct. Biol. 2:395–401.

    CAS  Google Scholar 

  • Rinderknecht, H., 1993, Pancreatic secretory enzymes, in: The Pancreas: Biology, Pathobiology, and Disease (V. L. W. Go, E. P. Dimagno, J. D. Gardner, E. Lebenthal, H. A. Reber, and G. A. Scheele, eds.), Raven Press, Ltd., New York, pp. 219–251.

    Google Scholar 

  • Rosenheim, O., 1910, On pancreatic lipase III. The separation of lipase from its co-enzyme, J. Physiol. 15:14–16.

    Google Scholar 

  • Roussel, A., deCaro, J., Bezzine, S., Gastinel, L., de Caro, A., Carriere, F., Leydier, S., Verger, R., and Cambillau, C., 1998a, Reactivation of the totally inactive pancreatic lipase RP1 by structure-predicted point mutations, Proteins 32:523–531.

    PubMed  CAS  Google Scholar 

  • Roussel, A., Yang, Y., Ferrato, F., Verger, R., Cambillau, C., and Lowe, M. E., 1998b, Structure and activity of rat pancreatic lipase related protein 2, J. Biol. Chem. 273:32121–32128.

    PubMed  CAS  Google Scholar 

  • Rugani, N., Carriere, F., Thim, L., Borgstrom, B., and Sarda, L., 1995, Lipid binding and activating properties of porcine pancreatic colipase split at the Ilel9-Thr80 bond, Biochim. Biophys. Acta 1247:185–194.

    PubMed  Google Scholar 

  • Sari, H., Granon, S., and Semeriva, M., 1978, Role of tyrosine residues in the binding of colipase to taurodeoxycholate micelles, FEBS Lett. 95:229–234.

    PubMed  CAS  Google Scholar 

  • Saudek, V, Atkinson, A., and Pelton, J. T., 1991, Three-dimensional structure of echistatin, the smallest active RGD protein, Biochem. 30:7369–7372.

    CAS  Google Scholar 

  • Savary, P., 1971, The action of pure pig pancreatic lipase upon esters of long chain fatty acids and short chain primary alcohols., Biochim. Biophys. Acta 159:206–303.

    Google Scholar 

  • Sims, H. F., and Lowe, M. E., 1992, The human colipase gene: Isolation, chromosomal location, and tissue-specific expression, Biochem. 31:7120–7125.

    CAS  Google Scholar 

  • Sims, H. F., Jennens, M. L., and Lowe, M. E., 1993, The human pancreatic lipase-encoding gene: Structure and conservation of an Alu sequence in the lipase gene family, Gene 131:281–285.

    PubMed  CAS  Google Scholar 

  • Sternby, B., and Borgström, B., 1979, Purification and characterization of human pancreatic colipase, Biochim. Biophys. Acta 572:235–243.

    PubMed  CAS  Google Scholar 

  • Sternby, B., and Borgström, B., 1984, One-step purification of procolipase from human pancreatic juice by immobilized antibodies against human colipase, Biochim. Biophys. Acta 786:109–112.

    PubMed  CAS  Google Scholar 

  • Sternby, B., and Erlanson-Albertsson, C., 1982, Measurement of the binding of human colipase to human lipase and lipase substrates, Biochim. Biophys. Acta 711:193–195.

    PubMed  CAS  Google Scholar 

  • Sternby, B., Engstrom, A., Hellman, U., Vihert, A. M., Sternby, N. H., and Borgström, B., 1984, The primary sequence of human pancreatic colipase, Biochim. Biophys. Acta 784:75–80.

    PubMed  CAS  Google Scholar 

  • Storlein, L. H., Kraegen, E. W., Chisholm, D. J., Ford, G. L., Bruce, D. G., and Pascoe, W. S., 1987, Fish oil prevents insulin resistance induced in high-fat feeding in rats, Science 237:885–888.

    Google Scholar 

  • Terada, T., and Nakanuma, Y., 1995, Expression of pancreatic enzymes (alpha-amylase, trypsinogen, and lipase) during human liver development and maturation, Gastroenterology 108:1236–1245.

    PubMed  CAS  Google Scholar 

  • Terada, T., Kida, T., and Nakanuma, Y., 1993, Extrahepatic peribiliary glands express alpha-amylase isozymes, trypsin and pancratic lipase: An immunohistochemical analysis, Hepatology 18:803–808.

    PubMed  CAS  Google Scholar 

  • Thirstrup, K., Verger, R., and Carriere, F., 1994, Evidence for a pancreatic lipase subfamily with new kinetic properties, Biochem. 33:2748–2756.

    CAS  Google Scholar 

  • van Tilbeurgh, H., Sarda, L., Verger, R., and Cambillau, C., 1992, Structure of the pancreatic lipase-procolipase complex, Nature 359:159 -162.

    PubMed  Google Scholar 

  • van Tilbeurgh, H., Egloff, M. P., Martinez, C, Rugani, N., Verger, R., and Cambillau, C., 1993, Interfacial activation of the lipase-procolipase complex by mixed micelles revealed by X ray crystallography, Nature 362:814–820.

    PubMed  Google Scholar 

  • Verger, R., 1980, Enzyme kinetics of lipolysis, Methods. Enzymol. 64:341–393.

    Google Scholar 

  • Verger, R., 1984, Pancreatic lipase, in: Lipases (B. Borgström and H. L. Brockman, eds.), Elsevier, Amsterdam, pp. 84–150.

    Google Scholar 

  • Verger, R., 1997, Interfacial activation of lipases facts and artifacts, Trends in Biochemical Technology 15:32–38.

    CAS  Google Scholar 

  • Von Zastrow, M., and Castle, J. D., 1987, Protein sorting among two distinct export pathways occurs from the content of maturing exocrine storage granules, J. Cell Biol. 105:2675–2684.

    Google Scholar 

  • Wagner, A. C. C., Wishart, M. J., Mulders, S. M., Blevins, P. M., Andrews, P. C, Lowe, A. W., and Williams, J. A., 1994, GP-3, a newly characterized glycoprotein on the inner surface of the zymogen granule membrane, undergoes regulated secretion, J. Biol. Chem. 269:9099–9104.

    PubMed  CAS  Google Scholar 

  • Warden, C. H., Davis, R. D., Yoon, M.-Y., Hui, D. Y, Svenson, K., Xia, Y.-R., Diep, A., He, K.-Y., and Lusis, A. J., 1993, Chromosomal localization of lipolytic enzymes in the mouse: Pancreatic lipase, colipase, hormonesensitive lipase, hepatic lipase, and carboxyl ester lipase, J. Lipid. Res. 34:1451–1455.

    PubMed  CAS  Google Scholar 

  • Wicker-Planquart, C., and Puigserver, A., 1992, Primary structure of rat pancreatic lipase mRNA, FEBS Lett. 296:61–66.

    PubMed  CAS  Google Scholar 

  • Wieloch, T., Borgstrom, B., Karl-Erik, F., and Forsen, S., 1979, High-resolution proton magnetic resonance study of porcine colipase and its interaction with taurodeoxycholate, Biochem. 18:1622–1628.

    CAS  Google Scholar 

  • Wieloch, T., Borgstrom, B., Pieroni, G., Pattus, F., and Verger, R., 1981, Porcine pancreatic procolipase and its trypsin-activated form, FEBS Lett. 128:217–220.

    PubMed  CAS  Google Scholar 

  • Winkler, F., K., D’Arcy, A., and Hunziker, W., 1990, Structure of human pancreatic lipase, Nature 343:771–774.

    PubMed  CAS  Google Scholar 

  • Wishart, M. J., Andrews, P. C., Nichols, R., Blevins, G. T., Logsdon, C. D., and Williams, J. A., 1993, Identification and cloning of GP-3 from rat pancreatic acinar zymogen granules as a glycosylated membrane-associated lipase, J. Biol. Chem. 268:10303–10311.

    PubMed  CAS  Google Scholar 

  • Yang, L.-Y., Kuksis, A., and Myher, J. J., 1990, Lipolysis of menhaden oil triacylglycerols and the corresponding fatty acid alkyl esters by pancreatic lipase in vitro: Areexamination., J. Lipid Res. 31:137–148.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lowe, M.E. (2001). Molecular Mechanisms of Pancreatic Lipase and Colipase. In: Mansbach, C.M., Tso, P., Kuksis, A. (eds) Intestinal Lipid Metabolism. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1195-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1195-3_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5435-2

  • Online ISBN: 978-1-4615-1195-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics