Skip to main content

The Immunology of Cutaneous Leishmaniasis: Experimental Infections and Human Disease

  • Chapter
Leishmania

Part of the book series: World Class Parasites ((WCPA,volume 4))

Abstract

Cutaneous leishmaniasis (CL) is a term used to describe a group of diseases caused by multiple species of parasites within the genus Leishmania. Most cases of cutaneous leishmaniasis will spontaneously heal without external intervention, although the severity of disease and time course for healing may vary enormously depending on the species of infecting parasite as well as the nature of die immune response by an infected individual. Current estimates suggest a global annual incidence of 1–1.5 cases of CL, most of which occur in Afghanistan, Iran, Saudi Arabia, and Syria in the Old World and Brazil and Peru in the New World (1). Since most species of Leishmania causing human disease also infect mice, murine cutaneous leishmaniasis has been extensively studied as a model for understanding the immune regulation of this intracellular infection. This chapter will summarize how knowledge of experimental murine infections has impacted our understanding of human disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Desjeux P. 2001. The increase in risk factors for leishmaniasis worldwide. Trans R Soc Trop Med Hyg. 95: 239–243.

    Article  PubMed  CAS  Google Scholar 

  2. Howard JG, Hale C, and Chan-Liew WL. 1980. Immunological regulation of experimental cutaneous leishmaniasis. I. Immunogenetic aspects of susceptibility to Leishmania tropica in mice. Parasite Immunol 2:303–314.

    Article  PubMed  CAS  Google Scholar 

  3. Detolla LJ,Jr., Scott PA, and Farrell JP. 1981. Single gene control of resistance to cutaneous leishmaniasis in mice. Immunogenetics 14:29–39.

    Article  PubMed  CAS  Google Scholar 

  4. Howard JG, Hale C, and Liew FY. 1981 Immunological regulation of experimental cutaneous leishmaniasis. IV. Prophylactic effect of sublethal irradiation as a result of abrogation of suppressor T cell generation in mice genetically susceptible to Leishmania tropica. J Exp Med. 153:557–68.

    Article  PubMed  CAS  Google Scholar 

  5. Liew FY, Hale C, and Howard JG. 1982 Immunologic regulation of experimental cutaneous leishmaniasis. V. Characterization of effector and specific suppressor T cells. J Immunol. 128:1917–22.

    PubMed  CAS  Google Scholar 

  6. Locksley RM, Heinzel FP, Sadick MD, Holaday BJ, and Gardner KD Jr. 1987 Murine cutaneous leishmaniasis: susceptibility correlates with differential expansion of helper T-cell subsets. Ann Inst Pasteur Immunol 138:744–749.

    Article  PubMed  CAS  Google Scholar 

  7. Scott P, Natovitz P, Coffman RL, Pearce E, and Sher A. 1988. Immunoregulation of cutaneous leishmaniasis: T cell lines that transfer protective immunity or exacerbation belong to different T helper subsets and respond to distinct parasite antigens. J Exp Med 168:1675–1684.

    Article  PubMed  CAS  Google Scholar 

  8. Heinzel FP, Sadick MD, Holaday BJ, Coffman RL, and Locksley RM. 1989.Reciprocal expression of interferon γ or interleukin 4 during the resolution or progression of murine leishmaniasis. J Exp Med 169:59–72.

    Article  PubMed  CAS  Google Scholar 

  9. Belosevic M, Finbloom DS, Van Der Meide PH, Slayter MV, and Nacy CA. 1989. Administration of monoclonal anti-IFN-γ antibodies in vivo abrogates natural resistance of C3H/HeN mice to infection with Leishmania major. J Immunol 143:266–274.

    PubMed  CAS  Google Scholar 

  10. Wang Z-E, Reiner SL, Zheng S, Dalton DK, and Locksley RM. 1994. CD4+ effector cells default to the Th2 pathway in interferon-g-deficient mice infected with Leishmania major. J Exp Med 179:1367–1371.

    Article  PubMed  CAS  Google Scholar 

  11. Swihart K, Fruth U, Messmer N, Hug K, Behin R, Huang S, Del Giudice G, Aguet M, and Louis JA. 1995. Mice from a genetically resistant background lacking the interferon gamma receptor are susceptible to infection with Leishmania major but mount a polarized T helper cell 1-type CD4+ T cell response. J Exp Med. 181:961–971.

    Article  PubMed  CAS  Google Scholar 

  12. Liew FY, Millott S, Parkinson C, Palmer RM, and Moncada S. 1990 Macrophage killing of Leishmania parasite in vivo is mediated by nitric oxide from L-arginine. J Immunol; 144:4794–4797.

    PubMed  CAS  Google Scholar 

  13. Liew FY, Li Y, and Millott S. 1990 Tumor necrosis factor-alpha synergizes with IFN-gamma in mediating killing of Leishmania major through the induction of nitric oxide. J Immunol. 145:4306–4310.

    PubMed  CAS  Google Scholar 

  14. Evans TG, Thai L, Granger DL, and Hibbs JB Jr. 1993. Effect of in vivo inhibition of nitric oxide production in murine leishmaniasis. J Immunol. 151:907–915.

    PubMed  CAS  Google Scholar 

  15. Stenger S, Donhauser N, Thuring H, Rollinghoff M, and Bogdan C. 1996. Reactivation of latent leishmaniasis by inhibition of inducible nitric oxide synthase. J Exp Med. 183:1501–1514.

    Article  PubMed  CAS  Google Scholar 

  16. Sypek JP, Chung CL, Mayor SEH, Subramanyam JM, Goldman SJ, Sieburth DS, Wolf SF, and Schaub RG. 1993. Resolution of cutaneous leishmaniasis: interleukin 12 initiates a protective T helper type 1 immune response. J Exp Med 177:1797–1802.

    Article  PubMed  CAS  Google Scholar 

  17. Heinzel FP, Schoenhaut DS, Rerko RM, Rosser LE, and Gately MK. 1993. Recombinant interleukin 12 cures mice infected with Leishmania major. J Exp Med 177:1505–1509.

    Article  PubMed  CAS  Google Scholar 

  18. Sadick MD, Heinzel FP, Holaday BJ, Pu RT, Dawkins RS, and Locksley RM. 1990. Cure of murine leishmaniasis with anti-interleukin 4 monoclonal antibody. Evidence for a T cell-dependent, interferon gamma-independent mechanism. J Exp Med 171:115–125.

    Article  PubMed  CAS  Google Scholar 

  19. Scharton-Kersten T, Afonso LCC, Wysocka M, Trinchieri G, and Scott P. 1995. IL-12 is required for natural killer cell activation and subsequent T helper 1 cell development in experimental leishmaniasis. J Immunol 154:5320–5330.

    PubMed  CAS  Google Scholar 

  20. Scott P. 1991. IFN-gamma modulates the early development of Th1 and Th2 responses in a murine model of cutaneous leishmaniasis. J Immunol. 147:3149–3155.

    PubMed  CAS  Google Scholar 

  21. Hsieh CS, Heimberger AB, Gold JS, O’Garra A, and Murphy KM. 1992. Differential regulation of T helper phenotype development by interleukins 4 and 10 in an alpha beta T cell receptor transgenic system. Proc Nat Acad Sci U S A 89:60656069.

    Google Scholar 

  22. Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O’Garra A, and Murphy KM. 1993. Development of Th1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 260:547–549.

    Article  PubMed  CAS  Google Scholar 

  23. Himmelrich H, Parra-Lopez C, Tacchini-Cottier F, Louis JA, and Launois P. 1998. The IL-4 rapidly produced in BALB/c mice after infection with Leishmania major down-regulates IL-12 receptor beta 2-chain expression on CD4+ T cells resulting in a state of unresponsiveness to IL-12. J.Immunol.161:6156–6163.

    PubMed  CAS  Google Scholar 

  24. Reiner SL, Wang ZE, Hatam F, Scott P, and Locksley RM. 1993. TH1 and TH2 cell antigen receptors in experimental leishmaniasis. Science. 259:1457–1460.

    Article  PubMed  CAS  Google Scholar 

  25. Himmelrich H, Launois P, Maillard I, Biedermann T, Tacchini-Cottier F, Locksley RM, Rocken M, and Louis JA. 2000. In BALB/c mice, IL-4 production during the initial phase of infection with Leishmania major is necessary and sufficient to instruct Th2 cell development resulting in progressive disease. J Immunol. 164:4819–4825.

    PubMed  CAS  Google Scholar 

  26. Scharton TM and Scott P. 1993. Natural killer cells are a source of interferon gamma that drives differentiation of CD4+ T cell subsets and induces early resistance to Leishmania major in mice. J Exp Med 178:567–577.

    Article  PubMed  CAS  Google Scholar 

  27. Reiner SL, Zheng S, Wang Z, Stowring L, and Locksley RM. 1994. Leishmania promastigotes evade interleukin 12 (IL-12) induction by macrophages and stimulate a broad range of cytokines from CD4+ T cells during initiation of infection. J Exp Med 179:447–456.

    Article  PubMed  CAS  Google Scholar 

  28. Titus RG, Ceredig R, Cerrottini JC, and Louis J. 1985. Therapeutic effect of anti-L3T4 monoclonal GK1.5 on cutaneous leishmaniasis in genetically susceptible BALB/c mice. J Immunol 135:2108–2114.

    PubMed  CAS  Google Scholar 

  29. Heinzel FP, Rerko RM, Hatam F, and Locksley RM. 1993. Interleukin 2 is necessary for progression of leishmaniasis in susceptible murine hosts. J Immunol 150:3924–3931.

    PubMed  CAS  Google Scholar 

  30. Barral-Netto M, Barral A, Brownell CE, Skeiky YA, Ellingsworth LR, Twardzik DR, and Reed SG. 1992. Transforming growth factor-beta in leishmanial infection: a parasite escape mechanism. Science 257:545–548.

    Article  PubMed  CAS  Google Scholar 

  31. Corry DB,. Reiner, SL, Linsley PS and Locksley. RM. 1994. Differential effects of blockade of CD28-B7on the development of Th1 or Th2 effector cells in experimental leishmaniasis. J Immunol 153:41424148.

    Google Scholar 

  32. Reiner SLand Locksley RM. 1995. The regulation of immunity to Leishmania major. Ann Rev Immunol 13:151–177.

    Article  Google Scholar 

  33. Trinchieri G. 1995. Interleukin 12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Ann Rev Immunol 13:251–276.

    Article  CAS  Google Scholar 

  34. Wang Z-E, Zheng S, Corry DB, Dalton DK, Seder RA, Reiner SL, and Locksley RM. 1994. Interferon-y -independent effects of interleukin 12 administered during acute or established infection due to Leishmania major. Proc Nat Acad Sci U S A 91: 12932–12936.

    Article  CAS  Google Scholar 

  35. Constantinescu CS, Hondowicz BD, Elloso MM, Wysocka M, Trinchieri G, and Scott P. 1998. The role of IL-12 in the maintenance of an established Th1 immune response in experimental leishmaniasis. Eur J Immunol. 28:2227–2233.

    Article  PubMed  CAS  Google Scholar 

  36. Park AY, Hondowicz BD, and Scott P. 2000. IL-12 is required to maintain a Th1 response during Leishmania major infection. J Immunol. 165:896–902.

    PubMed  CAS  Google Scholar 

  37. Stobie L, Gurunathan S, Prussin C, Sacks DL, Glaichenhaus N, Wu CY, and Seder RA. 2000. The role of antigen and IL-12 in sustaining Th1 memory cells in vivo: IL-12 is required to maintain memory/effector Th1 cells sufficient to mediate protection to an infectious parasite challenge. Proc Natl Acad Sci U S A. 2000 978427–8432.

    Google Scholar 

  38. Bretscher PA, Wei G, Menon JN, and Bielefeldt-Ohmann H. 1992. Establishment of stable, cell-mediated immunity that makes “susceptible” mice resistant to Leishmania major. Science 257:539–542.

    Article  PubMed  CAS  Google Scholar 

  39. Lagrange PH, MacKaness GB, and Miller TE. 1974. Influence of dose and route of antigen injection on the immunological induction of T cells. J Exp Med 139:528–542.

    Article  PubMed  CAS  Google Scholar 

  40. Parish CR. 1972. The relationship between humoral and cell-mediated immunity. Transplant Rev 13:35–66.

    PubMed  CAS  Google Scholar 

  41. Belkaid Y, Kamhawi S, Modi G, Valenzuela J, Noben-Trauth N, Rowton E, Ribeiro J, and Sacks DL. 1998. Development of a natural model of cutaneous leishmaniasis: powerful effects of vector saliva and saliva preexposure on the long-term outcome of Leishmania major infection in the mouse ear dermis. J Exp Med 188:1941–1953.

    Article  PubMed  CAS  Google Scholar 

  42. Compton HL and Farrell, JP 2002. CD28 costimulation and parasite dose combine to influence the susceptibility of BALB/c mice to infection with Leishmania major. J. Immunol.168:1302–1308.

    PubMed  CAS  Google Scholar 

  43. Brown DR, Green JM, Moskowitz, NHM, Thompson CB and. Reiner SL 1996. Limited role of CD28-mediated signals in T helper subset differentiation. J Exp Med 184:803–810.

    Article  PubMed  CAS  Google Scholar 

  44. Ferlin WG., von der Weid T, Cottrez F, Ferrick DA, CoffmanRL and Howard MC. 1998. The induction of a protective response in Leishmania major- infected BALB/C mice with anti-CD40 mAb. Eur J Immunol.2:525–531.

    Article  Google Scholar 

  45. Cambell KA, Ovendale PJ, Kennedy MK, Fanslow WC, Reed SG and Maliszewski. CR, 1996. CD40 ligand is required for protective cell-mediated immunity to Leishmania major. Immunity 4:283–289.

    Article  Google Scholar 

  46. Soong, L, Xu JC, Grewal IS, Kima P. Sun J, Longley BJ.Jr, Ruddle NH, McMahon- Pratt D and Flavell RA. 1996. Disruption of CD40-CD40 ligand interactions results in an enhanced susceptibility to Leishmania amazonensis infection. Immunity 4:263–273.

    Article  PubMed  CAS  Google Scholar 

  47. Akira S, Takeda K, Kaisho T. 2001 Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol. 2:675–680.

    Article  PubMed  CAS  Google Scholar 

  48. Konecny P, Stagg AJ, Jebbari H, English N, Davidson RN and Knight SC. 1999. Murine dendritic cells internalize Leishmania major promastigotes, produce IL-12 p40 and stimulate primary T cell proliferation in vitro. Eur. J. Immunol. 29:1803–1811.

    Article  PubMed  CAS  Google Scholar 

  49. Flohe S.B, Bauer C, Flohe S, and Moll H. 1998. Antigen-pulsed epidermal Langerhans cells protect susceptible mice from infection with intracellular parasite Leishmania major. Eur. J. Immunol. 28:3800.

    Article  PubMed  CAS  Google Scholar 

  50. Skeiky YA, Kennedy M, Kaufman D, Borges MM., Guderian JA, Scholler K, Ovendale PJ, Picha, KS, Morrissey PJ, Grabstein KH, Campos-Neto A and Reed SG 1999. LeIF: a recombinant Leishmania protein that induces an IL-12-mediated Th1 cytokine profile. J. Immunol. 161:61716179.

    Google Scholar 

  51. Padigel UM, Perrin P and Farrell JP. 2001. The development of a Th1 Type response and resistance to Leishmania major infection in the absence of CD40-CD40L costimulation. J Immunol. 167: 5874–5879.

    PubMed  CAS  Google Scholar 

  52. Muller I, Kropf P, Louis JA, and Milon G.1994. Expansion of gamma interferon-producing CD8+ T cells following secondary infection of mice immune to Leishmania major. Infect Immun. 62:2575–2581.

    PubMed  CAS  Google Scholar 

  53. Farrell JP, Muller I and Louis JA.. 1989. A role for Lyt2+ T cells in resistance to cutaneous leishmaniasis in immunized mice. J. Immunol. 142:2052–2056,

    PubMed  CAS  Google Scholar 

  54. Gurunathan S, Stobie L, Prussin C, Sacks DL, Glaichenhaus N, Iwasaki A, Fowell DJ, Locksley RM, Chang JT, Wu CY, and Seder RA. 2000. Requirements for the maintenance of Th1 immunity in vivo following DNA vaccination: a potential immunoregulatory role for CD8+ T cells. J Immunol. 165:915–924.

    PubMed  CAS  Google Scholar 

  55. Overath P and Harbecke D. 1993. Course of Leishmania infection in beta 2-microglobulin-deficient mice. Immunol Lett. 37:13–17.

    Article  PubMed  CAS  Google Scholar 

  56. Huber M, Timms E, Mak TW, Rollinghoff M and Lohoff M. 1998. Effective and longlasting immunity against the parasite Leishmania major in CD8-deficient mice. Infect Immun. 66:3968–3970.

    PubMed  CAS  Google Scholar 

  57. Nabors, GS and Farrell JP. 1994. Depletion of interleukin-4 in BALB/c mice with established Leishmania major infections increases the efficacy of antimony therapy and promotes Th-1 like responses. Infection and Immunity 62: 5498–5504.

    PubMed  CAS  Google Scholar 

  58. Nabors,GS, Alfonso LCC, Farrell J.P and Scott P. 1994. Switch from a type 2 to a type1 T helper cell response and cure of established Leishmania major infection in mice is induced by combined therapy with interleukin 12 and pentostam. P.N.A.S. USA 92:3142–3146.

    Article  Google Scholar 

  59. Li J, Sutterwala S and Farrell JP. 1997. Successful therapy of chronic, nonhealing murine cutaneous leishmaniasis with sodium stibogluconate and gamma interferon depends on continued interleukin-12 production. Infection and Immunity 65:3225–3230.

    PubMed  CAS  Google Scholar 

  60. Nabors GS and Farrell JP. 1996. Successful chemotherapy in experimental Leishmaniasis is influenced by the polarity of the T cell response before treatment. J. Inf. Dis. 173:979–986.

    Article  CAS  Google Scholar 

  61. Li J, Hunter CA and Farrell JP. 1999 Anti-TGF-ß treatment promotes rapid healing of Leishmania major infection in mice by enhancing in vivo nitric oxide production. J. Immunol.162:974–979.

    PubMed  CAS  Google Scholar 

  62. Handman E, Noormohammadi AH, Curtis JM, Baldwin T, and Sjolander A. 2000. Therapy of murine cutaneous leishmaniasis by DNA vaccination. Vaccine 18. 3011–3017.

    Article  PubMed  CAS  Google Scholar 

  63. Kane MM, Mosser DM. 2001. The role of IL-10 in promoting disease progression in leishmaniasis. J I mmunol. 166:1141–1147.

    CAS  Google Scholar 

  64. Belkaid Y, Hoffmann KF, Mendez S, Kamhawi S, Udey MC, Wynn TA, and Sacks DL. 2001. The Role of interleukin (IL)-10 in the persistence of Leishmania major in the skin after healing and the therapeutic potential of anti-IL-10 receptor antibody for sterile cure J Exp Med. 194:1497–1506.

    Article  PubMed  CAS  Google Scholar 

  65. DeKrey GK, Lima HC, and Titus RG. 1998 Analysis of the immune responses of mice to infection with Leishmania braziliensis. Infect Immun. 66:827–829.

    PubMed  CAS  Google Scholar 

  66. Guevara-Mendoza O, Une C, Franceschi Carreira P, and Orn A. 1997. Experimental infection of Balb/c mice with Leishmania panamensis and Leishmania mexicana: induction of early IFN-gamma but not IL-4 is associated with the development of cutaneous lesions. Scand J Immunol. 46:35–40.

    Article  PubMed  CAS  Google Scholar 

  67. Almeida RP, Barral-Netto M, De Jesus AM, De Freitas LA, Carvalho EM, and Barral A. 1996. Biological behavior of Leishmania amazonensis isolated from humans with cutaneous, mucosal, or visceral leishmaniasis in BALB/C mice. Am J Trop Med Hyg. 54:178–184.

    PubMed  CAS  Google Scholar 

  68. Afonso LCand Scott P. 1993. Immune responses associated with susceptibility of C57BL/10 mice to Leishmania amazonens.. Infect Immun. 61: 2952–2959.

    Google Scholar 

  69. Jones DE, Buxbaum LU, and Scott P. 2000. IL-4-independent inhibition of IL-12 responsiveness during Leishmania amazonensis infection. J Immunol. 2000;165:364–372

    PubMed  CAS  Google Scholar 

  70. Soong L, Chang CH, Sun J, Longley BJ Jr, Ruddle NH, Flavell RA, and McMahon-Pratt D. 1997. Role of CD4+ T cells in pathogenesis associated with Leishmania amazonensis infection. J Immunol. 158:5374–5383.

    PubMed  CAS  Google Scholar 

  71. Kima PE, Constant SL, Hannum L, Colmenares M, Lee KS, Haberman AM, Shlomchik MJ, and McMahon-Pratt D. 2000. Internalization of Leishmania mexicana complex amastigotes via the Fc receptor is required to sustain infection in murine cutaneous leishmaniasis. JExpMed. 191:1063–1068.

    Article  CAS  Google Scholar 

  72. Dedet JP, Pratlong F, Lanotte G, and Ravel C. 1999. Cutaneous leishmaniasis. The parasite. Clin Dermatol. 17:261–268.

    Article  PubMed  CAS  Google Scholar 

  73. Carvalho EM, Correia Filho D, Bacellar O, Almeida RP, Lessa H, and Rocha H. 1995. Characterization of the immune response in subjects with self-healing cutaneous leishmaniasis. Am J Trop Med Hyg. 53:273–277.

    PubMed  CAS  Google Scholar 

  74. Rocha PN, Almeida RP, Bacellar O, de Jesus AR, Filho DC, Filho AC, Barral A, Coffman RL, and Carvalho EM. 1999. Down-regulation of Th1 type of response in early human American cutaneous leishmaniasis. J Infect Dis. 180:1731–1734.

    Article  PubMed  CAS  Google Scholar 

  75. Bourreau E, Prevot G, Pradinaud R, and Launois P. 2001. Interleukin (IL)-13 is the predominant Th2 cytokine in localized cutaneous leishmaniasis lesions and renders specific CD4+ T cells unresponsive to IL-12. J Infect Dis. 183:953–959.

    Article  PubMed  CAS  Google Scholar 

  76. Ajdary S, Alimohammadian MH, Eslami MB, Kemp K, and Kharazmi A. 2000. Comparison of the immune profile of nonhealing cutaneous leishmaniasis patients with those with active lesions and those who have recovered from infection. Infect Immun. 68:1760–1764.

    Article  PubMed  CAS  Google Scholar 

  77. Da-Cruz AM, Conceicao-Silva F, Bertho AL, and Coutinho SG. 1994. Leishmania-reactive CD4+ and CD8+ T cells associated with cure of human cutaneous leishmaniasis. Infect Immun. 62:2614–2618.

    PubMed  CAS  Google Scholar 

  78. Toledo VP, Mayrink W, Gollob KJ, Oliveira MA, Costa CA, Genaro O, Pinto JA, and Afonso LC. 2001 Immunochemotherapy in American cutaneous leishmaniasis: immunological aspects before and after treatment. Mem Inst Oswaldo Cruz. 96:89–98.

    Article  PubMed  CAS  Google Scholar 

  79. Bottrel RL, Dutra WO, Martins FA, Gontijo B, Carvalho E, Barral-Netto M, Barral A, Almeida RP, Mayrink W, Locksley R, and Gollob KJ. 2001 Flow cytometric determination of cellular sources and frequencies of key cytokine-producing lymphocytes directed against recombinant LACK and soluble Leishmania antigen in human cutaneous leishmaniasis. Infect Immun.69:3232–3239.

    Article  PubMed  CAS  Google Scholar 

  80. Vouldoukis I, Riveros-Moreno V, Dugas B, Ouaaz F, Becherel P, Debre P, Moncada S, and Mossalayi MD. 1995. The killing of Leishmania major by human macrophages is mediated by nitric oxide induced after ligation of the Fe epsilon RII/CD23 surface antigen. Proc Natl Acad Sci U S A 92:7804–7808.

    Article  PubMed  CAS  Google Scholar 

  81. Mossalayi MD, Arock M, Mazier D, Vincendeau P, and Vouldoukis I. 1999. The human immune response during cutaneous leishmaniasis: NO problem. Parasitol Today. 15:342–345.

    Article  PubMed  CAS  Google Scholar 

  82. Convit J. 1996. Leishmaniasis: Immunological and clinical aspects and vaccines in Venezuela. Clin Dermatol. 14:479–787.

    Article  PubMed  CAS  Google Scholar 

  83. Weigle K and Saravia NG. 1996. Natural history, clinical evolution, and the host-parasite interaction in New World cutaneous Leishmaniasis. Clin Dermatol. 14:433–450.

    Article  PubMed  CAS  Google Scholar 

  84. Caceres-Dittmar G, Tapia FJ, Sanchez MA, Yamamura M, Uyemura K, Modlin RL, Bloom BR and Convit J. 1993. Determination of the cytokine profile in American cutaneous leishmaniasis using the polymerase chain reaction. Clin Exp Immunol. 91:500–505.

    Article  PubMed  CAS  Google Scholar 

  85. Pirmez C, Yamamura M, Uyemura K, Paes-Oliveira M, Conceicao-Silva F, and Modlin RL. 1993. Cytokine patterns in the pathogenesis of human leishmaniasis. J Clin Invest. 91:1390–1395.

    Article  PubMed  CAS  Google Scholar 

  86. Akuffo H, Maasho K, Blostedt M, Hojeberg B, Britton S, and Bakhiet M. 1997. Leishmania aethiopica derived from diffuse leishmaniasis patients preferentially induce mRNA for interleukin-10 while those from localized leishmaniasis patients induce interferon-gamma. J Infect Dis. 175:737–741.

    Article  PubMed  CAS  Google Scholar 

  87. Rodriguez V, Centeno M, and Ulrich M 1996. The IgG isotypes of specific antibodies in patients with American cutaneous leishmaniasis; relationship to the cell-mediated immune response. Parasite Immunol. 18:341–345.

    Article  PubMed  CAS  Google Scholar 

  88. Bomfim G, Nascimento C, Costa J, Carvalho EM, Barral-Netto M, and Barral A. 1996. Variation of cytokine patterns related to therapeutic response in diffuse cutaneous leishmaniasis. Exp Parasitol. 84:188–194.

    Article  PubMed  CAS  Google Scholar 

  89. Barral A, Teixeira M, Reis P, Vinhas V, Costa J, Lessa H, Bittencourt AL, Reed S, Carvalho EM, and Barral-Netto M. 1995. Transforming growth factor-beta in human cutaneous leishmaniasis. Am J Pathol. 147:947–954.

    PubMed  CAS  Google Scholar 

  90. Mel by PC, Andrade-Narvaez FJ, Darnell BJ, Valencia-Pacheco G, Tryon VV, and Palomo-Cetina A. 1994. Increased expression of proinflammatory cytokines in chronic lesions of human cutaneous leishmaniasis. Infect Immun. 62:837–842.

    PubMed  CAS  Google Scholar 

  91. Carvalho EM, Johnson WD, Barreto E, Marsden PD, Costa JL, Reed S, and Rocha H. 1985. Cell mediated immunity in American cutaneous and mucosal leishmaniasis. J Immunol. 135:4144–4148.

    PubMed  CAS  Google Scholar 

  92. Cabrera M, Shaw MA, Sharpies C, Williams H, Castes M, Convit J, and Blackwell JM. 1995. Polymorphism in tumor necrosis factor genes associated with mucocutaneous leishmaniasis. J Exp Med. 182:1259–1264.

    Article  PubMed  CAS  Google Scholar 

  93. Blackwell JM. 1999. Tumour necrosis factor alpha and mucocutaneous leishmaniasis. Parasitol Today 15:73–75.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Farrell, J.P. (2002). The Immunology of Cutaneous Leishmaniasis: Experimental Infections and Human Disease. In: Farrell, J.P. (eds) Leishmania. World Class Parasites, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0955-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0955-4_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5322-5

  • Online ISBN: 978-1-4615-0955-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics