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Abstract

Real-time segmentation of moving regions in image sequences is a fundamental step in many
vision systems including automated visual surveillance, human-machine interface, and very low-bandwidth
telecommunications. A typical method is background subtraction. Many background models have been
introduced to deal with different problems. One of the successful solutions to these problems is to use a
multi-colour background model per pixel proposed by Grimson et a/ [1,2,3]. However, the method suffers
from slow learning at the beginning, especially in busy environments. In addition, it can not distinguish
between moving shadows and moving objects. This paper presents a method which improves this adaptive
background mixture model. By reinvestigating the update equations, we utilise different equations at
different phases. This allows our system learn faster and more accurately as well as adapt effectively to
changing environments. A shadow detection scheme is also introduced in this paper. It is based on a
computational colour space that makes use of our background model. A comparison has been made
between the two algorithms. The results show the speed of learning and the accuracy of the model using
our update algorithm over the Grimson et al’s tracker. When incorporate with the shadow detection, our
method results in far better segmentation than that of Grimson et al.

1 Introduction

Background subtraction involves calculating a reference image, subtracting each new frame from
this image and thresholding the result. What results is a binary segmentation of the image which highlights
regions of non-stationary objects. The simplest form of the reference image is a time-averaged background
image. This method suffers from many problems and requires a training period absent of foreground
objects. The motion of background objects after the training period and foreground objects motionless
during the training period would be considered as permanent foreground objects. In addition, the approach
cannot cope with gradual illumination changes in the scene. These problems lead to the requirement that
any solution must constantly reestimate the background model. Many adaptive background-modelling
methods have been proposed to deal with these slowly-changing stationary signals. Friedman and Russell
modelled each pixel in a camera scene by an adaptive parametric mixture model of three Gaussian
distributions [4]. They also provide some brief discussion on the online update equations based on sufficient
statistics. Koller et al used a Kalman filter to track the changes in background illumination for every pixel
[5]. They applied a selective update scheme to include only the probable background values into the
estimate of the background. The methods can cope well with the illumination changes; however, can not
handle the problem of objects being introduced or removed from the scene. One solution is to use a
multiple-colour background model per pixel. Grimson et al employed an adaptive nonparametric Gaussian
mixture model to solve these problems [1,2,3]. Their model can also lessen the effect of small repetitive
motions; for example, moving vegetation like trees and bushes as well as small camera displacement.
Elgammal et al used a kernel estimator for each pixel [6]. Kernel exemplars were taken from a moving
window. They also introduced a method to reduce the result of small motions by employing a spatial
coherence. This was done by comparing simply connected components to the background model of its
circular neighbourhood. Although the authors presented a number of speed-up routines, the approach was
still of high computational complexity. Other techniques using high level processing to assist the
background modelling have been proposed; for instance, the Wallflower tracker [7] which circumvents
some of these problems using high level processing rather than tackling the inadequacies of the background
model. Our method is based on Grimson et al’s framework [1,2,3], the differences lie in the update
equations, initialisation method and the introduction of a shadow detection algorithm.



A common optimisation scheme used to fit a Gaussian mixture model is the Expectation
Maximisation (EM) algorithm. The EM algorithm is an iterative method that guarantees to converge to a
local maximum in a search space. Due to the space-time requirements in modelling each pixel for the
background image, an online EM algorithm is required. Many online EM algorithms have been introduced.
They can be classified into two groups. The first group was in the realm of parametric estimation of
probability density functions (pdf’s). In other words, to use new data in updating the previous estimate
without modifying the structure of the previous model. The procedure was introduced by Nowlan [8] and
explained in terms of the results by Neal and Hinton [9]. Traven derived an N most recent window version
of the procedure [10]. McKenna et al [11,12,13] extended the result of Traven [10] to an L most recent
window of the results from L batch EM runs and used it for tracking a multi-colour foreground object. This
parametric estimation approach can not run effectively without a good initial estimate (normally found by
running the batch EM algorithm). The second group is that of non-parametric approaches. Priebe et al
introduced an adaptive mixture model with stochastic thresholding for generating new Gaussian kernels to
the existing mixture model [14,15]. Grimson and Stauffer [2,3], however, applied the same scheme with
deterministic thresholding.

In addition to Grimson ef al, many other authors have applied mixture models to model every
pixel in camera scenes. Rowe and Blake applied the batch EM algorithm for off-line training in their virtual
image plane [16]. However, the model does not update with time and therefore leads to failure for external
environments where the scene lighting changes with time. Friedman and Russell modelled road, shadow
and vehicle distribution for each pixel using an adaptive mixture of three Gaussian distributions [4]. The
classification was based on a heuristic method of relative distances in the intensity space. They reported a
good segmentation using the expected sufficient statistics formulas. However, this still requires a
preprocessing initialisation to learn an initial model using batch EM algorithm.

We explain the background model by Grimson and Stauffer [2,3] and its deficiencies in section
2.1. Our proposed solution to the problem is presented in section 2.2. Section 2.3 explains our shadow
detection. Results from each method are shown and compared in section 3 and concluded in section 4.

2 Background Modelling

In this section, we discuss the work of Grimson and Stauffer [2,3] and its shortcomings. The
authors introduces a method to model each background pixel by a mixture of K Gaussian distributions (X is
a small number from 3 to 5). Different Gaussians are assumed to represent different colours. The weight
parameters of the mixture represent the time proportions that those colours stay in the scene. Unlike
Friedman et al’s work, the background components are determined by assuming that the background
contains B highest probable colours. The probable background colours are the ones which stay longer and
more static. Static single-colour objects trend to form tight clusters in the colour space while moving ones
form widen clusters due to different reflecting surfaces during the movement. The measure of this was
called the fitness value in their papers. To allow the model to adapt to changes in illumination and run in
real-time, an update scheme was applied. It is based upon selective updating. Every new pixel value is
checked against existing model components in order of fitness. The first matched model component will be
updated. If it finds no match, a new Gaussian component will be added with the mean at that point and a
large covariance matrix and a small value of weighting parameter.

2.1 Adaptive Gaussian Mixture Model

Each pixel in the scene is modelled by a mixture of K Gaussian distributions. The probability that
a certain pixel has a value of xy at time N can be written as

p(xy)= ijn(xN;ej)

where W, is the weight parameter of the k™ Gaussian component. 7(x;0,) is the Normal distribution of k™
component represented by
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The K distributions are ordered based on the fitness value w, /g f and the first B distributions are used as a

model of the background of the scene where B is estimated as
b
B= argmin(ij > TJ

b Jj=1
The threshold 7 is the minimum fraction of the background model. In other words, it is the minimum prior
probability that the background is in the scene. Background subtraction is performed by marking a
foreground pixel any pixel that is more than 2.5 standard deviations away from any of the B distributions.
The first Gaussian component that matches the test value will be updated by the following update

equations,
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where o, is the k™ Gaussian component. 1/ defines the time constant which determines change.
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1 ;if w,is the first match Gaussian component

0 ;otherwise

If none of the K distributions match that pixel value, the least probable component is replaced by a
distribution with the current value as its mean, an initially high variance, and a low weight parameter.
According to their papers [1,2,3], only two parameters, o and 7, needed to be set for the system.

The details of its robustness were explained in their papers [1,2,3]; however, with a simple
discussion, we can see its incapability. Firstly, if the first value of a given pixel is a foreground object, there
is only one Gaussian where its weight equals unity. With only one-colour subsequent background values, it
will take Jog (D) frames until the genuine background can be considered as a background and

log,_,,(0.5) frames until it will be the dominant background component. For example, if we assume that at

least 60% of the time the background is present and ¢ is 0.002 (500 recent frames), it would take 255
frames and 346 frames for the component to be included as part of the background and the dominant
background component, respectively. The situation can be worse in busy environments where a clean
background is rare. This paper presents a solution to the problem in the next section. Secondly, p is too
small due to the likelihood factor. This leads to too slow adaptations in the means and the covariance
matrices, therefore the tracker can fail within a few seconds after initialisation. One solution to this is to
simply cut out the likelihood term from p.

2.2 Online EM Algorithms

We begin our estimating of the Gaussian mixture model by expected sufficient statistics update
equations then switch to L-recent window version when the first L samples are processed. The expected
sufficient statistics update equations provide a good estimate at the beginning before all L samples can be
collected. This initial estimate improves the accuracy of the estimate and also the performance of the
tracker allowing fast convergence on a stable background model. The L-recent window update equations
gives priority over recent data therefore the tracker can adapt to changes in the environment.

The online EM algorithms by expected sufficient statistics are shown in the left column while the
by L-recent window version in the right.
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2.3 Shadow Detection and Colour Model

As it is evidence in their papers [1,2,3], Grimson ef al’s tracker can not identify moving shadows from the
objects casting them. The reason behind this is that no heuristic exists to label Gaussian components as
moving shadows. One solution is to use a chromatic colour space representation which reduces
susceptibility. As many colour spaces can separate chromatic and illumination components, maintaining a
chromatic model regardless of the brightness can lead to an unstable model especially for very bright or
dark objects. This conversion also requires computational resources particularly in large images. The idea
of preserving intensity components and saving computational costs lead us back to the RGB space. As the
requirement to identify moving shadows, we need to consider a colour model that can separate chromatic
and brightness components. It should be compatible and make use of our mixture model. This is done by
comparing a non-background pixel against the current background components. If the difference in both
chromatic and brightness components are within some thresholds, the pixel is considered as a shadow. We
use an effective computational colour model similar to the one proposed by Horprasert et al [17] to fulfil
these needs. It consists of a position vector at the RGB mean of the pixel background, E, an expected
chromaticity line, ||E||, a chromatic distortion, d, and a brightness threshold, T. For a given observed pixel
value, 1, a brightness distortion, a, and a colour distortion, ¢, from the background model can be calculated
as

a =argmin(J — zE)* and

c= HI —ak H
With the assumption of spherical Gaussian distribution in each mixture component, the standard deviation
of the k™ component o, can be set equal to d. The calculation of a and c are trivial using vector dot product.

A non-background observed sample is considered a moving shadow if @ is within, in our case, 2.5 standard
deviations and T <c < 1.

3 Experiment

This section demonstrates the performance of the Grimson model [2,3] and our proposed
algorithms on an image sequence. The sequence shown here is 192x144 images. We used an adaptive
mixture of five Gaussian components. The L was set at 500 frames (0:=0.002 in Grimson et al’s) and the
threshold 7" was set at 0.6. In the shadow detection module, the brightness threshold, T of 0.7 was used. To
show the performance of the background models, higher level processes such as noise cleaning or
connected component analysis algorithms were not introduced to the results of background subtractions.
Figure 1 shows a sequence of busy outdoor scene containing people walking in a public pathway. The
sequence includes strong sunshine, large shaded area, tree, reflections from windows and long moving
shadows. We have presented images of the initial phase, busy scene and a long run. Because of no clean
images at the beginning, an artefact of the initial image left in Grimson et al’s tracker lasted for over a
hundred frames. Better segmentation can be seen from our method. The performance enhances dramatically
with the shadow detection module.

4 Conclusion

We have presented new update algorithms for learning adaptive mixture models of background
scene for the real-time tracking of moving objects. The algorithm run under the framework of the real-time
robust tracker proposed by Grimson et al. A comparison has been made between the two algorithms. The
results show the speed of learning and the accuracy of the model using our update algorithm over the
Grimson et al’s tracker. We have proposed a method to detect moving shadows using our existing mixture
model. This significantly reduces additional computational burdens. Shadow detection need only be
performed upon pixels labelled as foreground and therefore with negligible computational overheads the
moving shadows can be detected successfully. The shadow detection also reduces the effect of small
repetitive motions in the background scene.



Figrue 1: The top row displays the original sequence at frames 15, 105, 235, 290 and 1200 respectively. The second row
shows the results from Grimson et al’s. The last two rows are the results of our proposed method with and without moving shadows
displayed in the images. The shadows are shown in grey.
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