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Foreword

"A good theory yields the best practice" - this saying characterizes the work
in this book by Thorsten Joachims. Practitioners need to understand whether
and how well their problem can be solved, and which approaches are likely
to be most effective. This book reports on machine learning research that has
produced both strong experimental results and a theory of text classification that
can inform the practitioner interested in applying similar learning methods.
The problem addressed in this book is that of text classification: automat­

ically classifying text documents based on their content. The appearance of
billions of online documents in the Internet has created a need for automated
methods for classification, where rapid changes and growth of the collection
of documents prohibit the use ofmanual techniques. Automatic text classifica­
tion is useful for many services such as search, filtering, and routing relevant
email to the appropriate addressees. The problem is characterized by very high
dimensional data - every word in the document is treated as an attribute - and
by little training data - there are typically fewer training documents than there
are attributes! This book describes a model of automatic text classification that
characterizes the difficulty of a given instance of the problem. One models an
instance of the problem by counting the words that occur in the documents each
of the classes under consideration. Learnability results refer to this model, and
predict how hard it will be to train a classifier for this instance of the prob­
lem. Although the proofs of the learnability of Teat concepts are subtle, their
application to real data sets is straightforward, as illustrated in this book.
While many learning algorithms have been studied for text, one of the most

effective is the Support Vector Machine (SVM) which is the focus of this book.
Support vector machines (SVM's) were suggested some time ago by Vladimir
Vapnik, but Joachims' work is among the first to seriously explore their use
for classifying text. In fact, Joachims created an implementation of SVM's,
called SVMight , which has been used by many researchers worldwide, because
it is an efficient and easy to use implementation of SVMs that is well suited
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to text classification. In this book, Joachims explains and explores the use of
SVM's for text classification, reporting experimental results applying SVM's
to a variety of real-world text classification tasks. He goes on to explore the
use of SVM's for transduction, in which the unlabeled examples that are to be
classified are used as part ofthe procedure for learning a gooddecision boundary,
and demonstrates experimentally that this transduction process significantly
improves classification accuracy on several text classification problems.
In addition to developing and experimenting with practical algorithms for

text classification, the book goes on to develop components of a general theory
of text classification. What is the question one would like such a theory to
answer? Perhaps the most important question is "can we predict the accuracy
that will be achieved by our trained classifier, as a function of the number
of training examples it is provided?" Joachims provides in this book the first
steps toward a general theory to answer this question for the problem of text
classification. This theory builds on the known statistical distributions ofwords
as they occur in natural language, and posits several other properties of text and
text classification problems. Within this set of assumptions, Joachims succeeds
in relating accuracy to the number of training examples. In fact, the theory
is framed in terms of parameters of the text corpus, such as parameters of the
word distribution that can be efficiently measured for any text corpus, then
used to characterize the properties of the corpus that influence this relation
between accuracy and number of training examples. As with most theories,
this one formulates the theoretical problem as a somewhat simplified version
of the actual problem. Nevertheless, Joachims demonstrates that the theory
successfully predicts the relative difficulty of text learning over three different
real-world data sets and classification problems.
In short, the work in this book represents an important step in our understand­

ing of text learning. It describes a state-of-the-art machine learning algorithm
for practical text classification, with a freeware implementation accessible over
the web. In addition, it provides the first theoretical characterization of text
classification learning problems, relating the expected error of a classifier to
measurable properties of the text data, plus the number of training examples
provided to the learner. This research, combining solid experimental work with
highly relevant theory, represents an important contribution to our understand­
ing of text learning, and represents a model for future work combining theory
and practice. We believe that students, lecturers, computational theorists, and
practitioners will enjoy reading the book as much as we enjoyed accompanying
its formation.

Prof. Tom Mitchell
Carnegie Mellon University

Prof. Katharina Morik
Universitat Dortmund



Preface

Text classification, or the task ofautomatically assigning semantic categories
to natural language text, has become one of the key methods for organizing
online information. Since hand-coding such classification rules is costly or even
impractical, most modem approaches employ machine learning techniques to
automatically learn text classifiers from examples. However, none of these
conventional approaches combines good prediction performance, theoretical
understanding, and efficient training algorithms.

Based on ideas from Support Vector Machines (SVMs), this book presents
a new approach to learning text classifiers from examples. It provides not only
learning methods that empirically have state-of-the-art predictive performance,
but also a theory that connects the properties of text-classification tasks with
the generalization accuracy of the learning methods, as well as algorithms that
efficiently implement the methods.

In particular, the results show that the SVM approach to learning text clas­
sifiers is highly effective without greedy heuristic components. To explain
these empirical findings, this book analyzes the statistical properties of text­
classification tasks and presents a theoretical learning model that leads to bounds
on the expected error rate of an SVM. The bounds are based on improved re­
sults about leave-one-out estimators for SVMs. These results also lead to a new
group of performance estimators for SVMs, called ea-estimators, and to an
improved algorithm for computing the leave-one-out error of an SVM. While
all results mentioned so far were for the inductive setting, this book also in­
troduces the idea of transduction to text classification. It shows how and why
exploiting the location of the test points during learning can improve predictive
performance. To make the SVM approach to learning text classifiers applicable
in practice, this book also derives new algorithms for training SVMs. For both
the inductive and the transductive setting, these algorithms substantially extend
the scalability of SVMs to large-scale problems.
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While the work presented in this book is driven by the application, the tech­
niques it develops are not limited to text classification, but can be applied in
other contexts as well. In addition, not only can individual techniques be trans­
ferred to other tasks, this work as a whole can be useful as a case study for how
to approach high-dimensional learning tasks.
This book is based on my dissertation with the title "The Maximum-Margin

Approach to Learning Text Classifiers - Methods, Theory, and Algorithms",
defended in February 2001 at the Fachbereich Informatik, UniversiHit Dort­
mund, Germany. From the beginning, it was not written purely for the thesis
committee, but with a broader audience in mind. So, the book is designed to
be self-contained and I believe it can be useful for all readers interested in text
classification - both for research, as well as for product development.
After an introduction to Support Vector Machines and an overview of the

state-of-the-art in text classification, this book is divided into three parts: theory,
methods, and algorithms. Each part is self-contained, facilitating selective
reading. Furthermore, all methods and algorithms proposed in this book are
implemented in the software SVMight, making it easy to replicate and extend
the results presented in the following.
I hope you will find this book useful and enjoy reading it.

THORSTEN JOACHIMS
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Notation

Yi
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11.
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Remp(h)
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Err
Ree
Pree
F{3
PRBEP
PRAVG

R
N
IXI
abs(a)
11·111
11.112 or 11·11
exp(a)
In

input patterns
target values (classes)
feature space
number of training examples
number of test examples
dimensionality of the input space
learner
hypothesis space
hypothesis from the hypothesis space
hypothesis that the learner .c returns
(expected) risk of the hypothesis h
empirical risk of the hypothesis h on a training sample
loss function
O/l-loss function

weight vector of a hyperplane < 'Iii, b >
constant offset (or threshold) of a hyperplane < 'Iii, b >
margin of a hyperplane
diameter of a ball containing the data. usually approximated by max IIxI12
Lagrange multiplier
vector of all Lagrange multipliers
slack variables
dot product between vectors Xl and X2
Mercer kernel
Hessian of the quadratic program

error rate
recall
precision
F{3-measure
precisionlRecall breakeven point
arithmetic average of precision and recall

transpose of the vector X
the set of real numbers
the set of natural numbers
cardinality of set X
absolute value of a
Ll-norm • IIxII 1 := 1: abs(xi)
L 2 -norm (Euclidian distance). IIxII := J(x. x)
2.7182818a

logarithm to base 2.7182818


