Skip to main content

Mutagenicity and Carcinogenicity of Biological Reactive Intermediate’s Derived from a “Non-Genotoxic” Carcinogen

  • Chapter
Biological Reactive Intermediates VI

Abstract

Hydroquinone (HQ) is used as a developer in the photographic industry, as an antioxidant in the rubber industry, and as an intermediate in the manufacturing of food antioxidants. HQ is also an important metabolite of benzene (12). HQ has been identified in relatively high concentrations in the smoke of unfiltered cigarettes (up to 155 μg per cigarette) (3) and was chosen for study by the National Cancer Institute because it is produced in large quantities, humans are frequently exposed to it, and there is little adequate carcinogenicity data on it (4). Smoking unfiltered cigarettes and long-term cigarette smoking (≥30 years) correlate with a high incidence of renal cell carcinoma in men (5-7). Although the basis for the increased incidence of renal tumors in cigarette smokers is not known, cigarette smoke contains high concentrations of oxidants and free radicals, the principal radical in the tar phase being the 1,4-benzoquinone/hydroquinone redox couple (8).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Proteus, J.W. and Williams R.T. (1949) The metabolism of benzene. II. The isolation of phenol, catechol, quinol and hydroxyquinol from the etheral sulphate fraction of the urine of rabbits receiving benzene orally. Biochem, 44, 56–61.

    Google Scholar 

  2. Parke, D.V. and Williams R.T. (1953) Studies in detoxication. 54. The metabolism of benzene. (a) The formation of phenylglucuronide and phenylsulphuric acid from [14C]benzene. (b) The metabolism of [14C]phenol. Biochem J, 55, 337–340.

    PubMed  CAS  Google Scholar 

  3. Ishiguro, S., Saugawara H., Kusama M., Yano S., Shimojima N. and Sugawara S. (1976) Glass capillary column gas chromatographic analysis of tobacco and cellulose cigarette smoke. I. Acidic fractions. Sci. Pap. Cent. Res. Inst. Jpn. Tob. Salt Public Corp, 118, 207–211.

    CAS  Google Scholar 

  4. Kari, F.W., Bucher J., Eustis S.L., Haseman J.K. and Huff J.E. (1992) Toxicity and carcinogenicity of hydroquinone in F344/N rats and B6C3F1 mice. Food Chem Toxicol, 30, 737–47.

    Article  PubMed  CAS  Google Scholar 

  5. Muscat, J.E., Hoffmann D. and Wynder E.L. (1995) The epidemiology of renal cell carcinoma. A second look. Cancer, 75, 2552–7.

    Article  PubMed  CAS  Google Scholar 

  6. Tavani, A. and La Vecchia C. (1997) Epidemiology of renal-cell carcinoma. J Nephrol, 10, 93–106.

    PubMed  CAS  Google Scholar 

  7. Randerath, E. and Randerath K. (1993) Monitoring tobacco smoke-induced DNA damage by 32P-postlabelling. IARC Sci Publ, 124, 305–14.

    PubMed  CAS  Google Scholar 

  8. Church, D.F. and Pryor W.A. (1985) Free-radical chemistry of cigarette smoke and its toxicological implications. Environ Health Perspect, 64, 111–26.

    Article  PubMed  CAS  Google Scholar 

  9. Florin, I., Rutberg L., Curvall M. and Enzell C.R. (1980) Screening of tobacco smoke constituents for mutagenicity using the Ames’ test. Toxicology, 15, 219–232.

    Article  PubMed  CAS  Google Scholar 

  10. Sakai, M., Yoshida D. and Mizusaki S. (1985) Mutagenicity of polycyclic aromatic hydrocarbons and quinones on Salmonella typhimurium TA97. Mutat Res, 156, 61–7.

    Article  PubMed  CAS  Google Scholar 

  11. Gocke, E., Wild D., Eckhardt K. and King M.T. (1983) Mutagenicity studies with the mouse spot test. Mutat Res, 117, 201–12.

    Article  PubMed  CAS  Google Scholar 

  12. Gocke, E., King M.T., Eckhardt K. and Wild D. (1981) Mutagenicity of cosmetics ingredients licensed by the European Communities. Mutat Res, 90, 91–109.

    Article  PubMed  CAS  Google Scholar 

  13. Hakura, A., Tsutsui Y., Mochida H., Sugihara Y., Mikami T. and Sagami F. (1996) Mutagenicity of dihydroxybenzenes and dihydroxynaphthalenes for Ames Salmonella tester strains. Mutat Res, 371, 293–9.

    Article  PubMed  CAS  Google Scholar 

  14. Hakura, A., Mochida H., Tsutsui Y. and Yamatsu K. (1995) Mutagenicity of benzoquinones for Ames Salmonella tester strains. Mutat Res, 347, 37–43.

    Article  PubMed  CAS  Google Scholar 

  15. Tsutsui, T., Hayashi N., Maizumi H., Huff J. and Barrett J.C. (1997) Benzene-, catechol-, hydroquinone-and phenol-induced cell transformation, gene mutations, chromosome aberrations, aneuploidy, sister chromatid exchanges and unscheduled DNA synthesis in Syrian hamster embryo cells. Mutat Res, 373, 113–23.

    Article  PubMed  CAS  Google Scholar 

  16. Leanderson, P. and Tagesson C. (1990) Cigarette smoke-induced DNA-damage: role of hydroquinone and catechol in the formation of the oxidative DNA-adduct, 8hydroxydeoxyguanosine. Chem Biol Interact, 75, 71–81.

    Article  PubMed  CAS  Google Scholar 

  17. Lau, S.S., Peters M.M., Kleiner H.E., Canales P.L. and Monks T.J. (1996) Linking the metabolism of hydroquinone to its nephrotoxicity and nephrocarcinogenicity. Adv Exp Med Biol, 387, 267–73.

    PubMed  CAS  Google Scholar 

  18. Walles, S.A. (1992) Mechanisms of DNA damage induced in rat hepatocytes by quinones. Cancer Lett, 63, 47–52.

    Article  PubMed  CAS  Google Scholar 

  19. Shibata, M.A., Hirose M., Tanaka H., Asakawa E., Shirai T. and Ito N. (1991) Induction of renal cell tumors in rats and mice, and enhancement of hepatocellular tumor development in mice after long-term hydroquinone treatment. Jpn J Cancer Res, 82, 1211–9.

    Article  PubMed  CAS  Google Scholar 

  20. Yamaguchi, S., Hirose M., Fukushima S., Hasegawa R. and Ito N. (1989) Modification by catechol and resorcinol of upper digestive tract carcinogenesis in rats treated with methyl-N-amylnitrosamine. Cancer Res, 49, 6015–8.

    PubMed  CAS  Google Scholar 

  21. Peters, M.M., Jones T.W., Monks T.J. and Lau S.S. (1997) Cytotoxicity and cell-proliferation induced by the nephrocarcinogen hydroquinone and its nephrotoxic metabolite 2,3,5-(tris-glutathion-S- yl)hydroquinone. Carcinogenesis, 18, 2393–401.

    Article  PubMed  CAS  Google Scholar 

  22. Lau, S.S., Hill B.A., Highet R.J. and Monks T.J. (1988) Sequential oxidation and glutathione addition to 1,4-benzoquinone: correlation of toxicity with increased glutathione substitution. Mol Pharmacol, 34, 829–36.

    PubMed  CAS  Google Scholar 

  23. Hill, B.A., Kleiner H.E., Ryan E.A., Dulik D.M., Monks T.J. and Lau S.S. (1993) Identification of multi-S-substituted conjugates of hydroquinone by HPLCcoulometric electrode array analysis and mass spectroscopy. Chem Res Toxicol, 6, 459–69.

    Article  PubMed  CAS  Google Scholar 

  24. Yeung, R.S., Xiao G.H., Everitt J.I., Jin F. and Walker C.L. (1995) Allelic loss at the tuberous sclerosis 2 locus in spontaneous tumors in the Eker rat. Mol, Carcinog, 14, 28–36.

    Article  PubMed  CAS  Google Scholar 

  25. Eker, R. and Mossige J. (1961) A dominant gene for renal adenomas in the rat. Nature, 189, 858–859.

    Article  Google Scholar 

  26. Yeung, R.S., Xiao G.H., Jin F., Lee W.C., Testa J.R, and Knudson A.G. (1994) Predisposition to renal carcinoma in the Eker rat is determined by germ-line mutation of the tuberous sclerosis 2 (TSC2) gene. Proc Natl Acad Sci U S A, 91, 11413–11416.

    Article  PubMed  CAS  Google Scholar 

  27. Hino, O., Kobayashi E., Hirayama Y, Kobayashi T., Kubo Y., Tsuchiya H., Kikuchi Y. and Mitani H. (1995) Molecular genetic basis of renal carcinogenesis in the Eker rat model of tuberous sclerosis (Tsc2). Mol Carcinog, 14, 23–7.

    Article  PubMed  CAS  Google Scholar 

  28. Walker, C. (1998) Molecular genetics of renal carcinogenesis. Toxicologic Pathology, 26, 113–20.

    Article  PubMed  CAS  Google Scholar 

  29. Satake, N., Urakami S., Hirayama Y., Izumi K. and Hino O. (1998) Biallelic mutations of the Tsc2 gene in chemically induced rat renal cell carcinoma. Int J Cancer, 77, 895–900.

    Article  PubMed  CAS  Google Scholar 

  30. Toyokuni, S., Okada K., Kondo S., Nishioka H., Tanaka T., Nishiyama Y., Hino O. and Hiai H. (1998) Development of high-grade renal cell carcinomas in rats independently of somatic mutations in the Tsc2 and VHL tumor suppressor genes. Jpn J Cancer Res, 89, 814–20.

    Article  PubMed  CAS  Google Scholar 

  31. Green, A.J., Smith M. and Yates J.R., (1994) Loss of heterozygosity on chromosome 16p13.3 in hamartomas from tuberous sclerosis patients. Nat Genet, 6, 193–6.

    Article  PubMed  CAS  Google Scholar 

  32. Everitt, J.I., Goldsworthy T.L., Wolf D.C. and Walker C.L. (1992) Hereditary renal cell carcinoma in the Eker rat: a rodent familial cancer syndrome. J Urol, 148, 19326.

    Google Scholar 

  33. Walker, C., Goldsworthy T.L., Wolf D.C. and Everitt J. (1992) Predisposition to renal cell carcinoma due to alteration of a cancer susceptibility gene. Science, 255, 1693–5.

    Article  PubMed  CAS  Google Scholar 

  34. Lau, S.S., Monks, T.J., Everitt, J. I., Kleymenova, E., and Walker, C. Carcinogenicity of a nephrotoxic metabolite of the “nongenotoxic” carcinogen hyroquinone. Chem. Res. Toxicol., in press.

    Google Scholar 

  35. Monks, T.J. and Lau S.S. (1994) Glutathione conjugate-mediated toxicities. In FC, K. (ed.) Conjugation-Deconjugation Reactions in Drug Metabolism and Toxicity, Springer-Verlag, Berlin, pp. 459–510.

    Chapter  Google Scholar 

  36. Kleiner, H.E., Jones T.W., Monks T.J. and Lau S.S. (1998) Immunochemical analysis of quinol-thioether-derived covalent protein adducts in rodent species sensitive and resistant to quinol-thioether-mediated nephrotoxicity. Chem Res Toxicol, 11, 1291–300.

    Article  PubMed  CAS  Google Scholar 

  37. Hughey R.P., Rankin B.B., Elce J.S. and Curthoys N.P. (1978) Specificity of a particulate rat renal peptidase and its localization along with other enzymes of mercapturic acid synthesis. Arch Biochem Biophys, 186, 211–7.

    Article  PubMed  CAS  Google Scholar 

  38. Wolf, D.C., Whiteley H.E. and Everitt J.I, (1995) Preneoplastic and neoplastic lesions of rat hereditary renal cell tumors express markers of proximal and distal nephron. Vet Pathol, 32, 379–86.

    Article  PubMed  CAS  Google Scholar 

  39. Jeong, J.K., Wogan G.N., Lau S.S. and Monks T.J. (1999) Quinol-glutathione conjugate-induced mutation spectra in the supF gene replicated in human AD293 cells and bacterial MBL50 cells. Cancer Res, 59, 3641–5.

    PubMed  CAS  Google Scholar 

  40. Kleymenova, E., Muga S., Fischer S. and Walker C.L. (in press) Application of high-pressure liquid chromatography-based analysis of DNA fragments to molecular carcinogenesis. Molecular Carcinogenesis.

    Google Scholar 

  41. Wienecke, R., Maize J.C., Jr., Reed J.A., de Gunzburg J., Yeung R.S. and DeClue J.E. (1997) Expression of the TSC2 product tuberin and its target Rapl in normal human tissues. Am J Pathol, 150, 43–50.

    PubMed  CAS  Google Scholar 

  42. Wienecke, R., Konig A. and DeClue J.E. (1995) Identification of tuberin, the tuberous sclerosis-2 product. Tuberin possesses specific Rap1GAP activity. J Biol Chem, 270, 16409–14.

    Article  PubMed  CAS  Google Scholar 

  43. Xiao, G.H., Shoarinejad F., Jin F., Golemis E.A. and Yeung R.S. (1997) The tuberous sclerosis 2 gene product, tuberin, functions as a Rab5 GTPase activating protein (GAP) in modulating endocytosis. J Biol Chem, 272, 6097–100.

    Article  PubMed  CAS  Google Scholar 

  44. Wienecke, R., Maize J.C., Jr., Shoarinejad F., Vass W.C., Reed J., Bonifacino J.S., Resau J.H., de Gunzburg J., Yeung R.S. and DeClue J.E. (1996) Co-localization of the TSC2 product tuberin with its target Rapl in the Golgi apparatus. Oncogene, 13, 913–23.

    PubMed  CAS  Google Scholar 

  45. Field H., Farjah M., Pal A., Gull K. and Field M.C. (1998) Complexity of trypanosomatid endocytosis pathways revealed by Rab4 and Rab5 isoforms in Trypanosoma brucei. J Biol Chem, 273, 32102–10.

    Article  PubMed  CAS  Google Scholar 

  46. Barbieri, M.A., Hoffenberg S., Roberts R., Mukhopadhyay A., Pomrehn A., Dickey B.F. and Stahl P.D. (1998) Evidence for a symmetrical requirement for Rab5-GTP in in vitro endosome-endosome fusion. J Biol Chem, 273, 25850–5.

    Article  PubMed  CAS  Google Scholar 

  47. Gournier, H., Stenmark H., Rybin V., Lippe R. and Zerial M. (1998) Two distinct effectors of the small GTPase Rab5 cooperate in endocytic membrane fusion. Embo J, 17, 1930–40.

    Article  PubMed  CAS  Google Scholar 

  48. Simonsen, A., Lippe R., Christoforidis S., Gaullier J.M., Brech A., Callaghan J., Toh B.H., Murphy C., Zerial M. and Stenmark H. (1998) EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature, 394, 494–8.

    Article  PubMed  CAS  Google Scholar 

  49. Christoforidis, S., McBride H.M., Burgoyne R.D. and Zerial M. (1999) The Rab5 effector EEA1 is a core component of endosome docking. Nature, 397, 621–5.

    Article  PubMed  CAS  Google Scholar 

  50. Eastmond, D.A., Rupa D.S. and Hasegawa L.S. (1994) Detection of hyperdiploidy and chromosome breakage in interphase human lymphocytes following exposure to the benzene metabolite hydroquinone using multicolor fluorescence in situ hybridization with DNA probes. Mutat Res, 322, 9–20.

    Article  PubMed  CAS  Google Scholar 

  51. Stillman, W.S., Varella-Garcia M., Gruntmeir J.J. and Irons R.D. (1997) The benzene metabolite, hydroquinone, induces dose-dependent hypoploidy in a human cell line. Leukemia, 11,1540–5.

    Article  Google Scholar 

  52. Rupa, D.S., Schuler M. and Eastmond D.A. (1997) Detection of hyperdiploidy and breakage affecting the lcen-1g12 region of cultured interphase human lymphocytes treated with various genotoxic agents. Environ Mol Mutagen, 29, 161–7.

    Article  PubMed  CAS  Google Scholar 

  53. Yamasaki, H and Mironov, N. Genomic instability in multistage carcinogenesis. Toxicol. Lett., 112:251–256, 2000.

    Article  PubMed  Google Scholar 

  54. Pitot, H.C. The role of receptors in multistage carcinogenesis. Toxicol. Lett., 77: 5561, 1995.

    Google Scholar 

  55. Walker, C. and Ginsler, J. Development of a quantitative in vitro transformation assay for kidney epithelial cells. Carcinogenesis 13: 25–32, 1992.

    Article  PubMed  CAS  Google Scholar 

  56. Soucek, T., Pusch, O., Wienecke, R., DeClue, J.E., and Hengstschlager, M. Role of Tuberous Sclerosis gene-2 product in cell cycle control. J. Biol. Chem., 272: 29301–29308, 1997.

    Article  PubMed  CAS  Google Scholar 

  57. Soucek, T., Yeung, R.S., and Hengstschlager, M. Inactivation of the cyclin-dependent kinase inhibitor p27 upon loss of the tuberous sclerosis complex gene-2. Proc. Natl. Acad. Sci. USA 95: 15653–15658, 1998.

    Article  PubMed  CAS  Google Scholar 

  58. Jin, F., Wienecke, R., Xiao, G.H., Maize, J.R.Jr., Declue, J.E., and Yeung, R.S. Suppression of tumorigenicity by the wild-type tuberous sclerosis 2 (Tsc2) gene and its C-terminal region. Proc. Natl. Acad. Sci. USA, 93:9154–9159, 1996.

    Article  PubMed  CAS  Google Scholar 

  59. Orimoto, K., Tsuchiya, H., Kobayashi, T., Matsuda, T., and Hino, O. Suppression of the neoplastic phenotype by replacement of the Tsc2 gene in Eker rat renal carcinoma cells. Biochem. Biophys. Res. Communi., 219: 70–75, 1996.

    CAS  Google Scholar 

  60. Ohtsuka, T., Shimizu, K., Yamamori, B., Kuroda, S., and Takai, Y. Activation of brain B-Raf protein kinase by Rap1B small GTP-binding protein. J. Biol. Chem., 271: 1258–1261, 1996.

    Article  PubMed  CAS  Google Scholar 

  61. Wan, Y. and Huang, X.Y. Analysis of the Gs/mitogen-activated protein kinase pathway in mutant S49 cells. J. Biol. Chem., 273:14533–14537, 1998.

    Article  PubMed  CAS  Google Scholar 

  62. York, R.D., Yao, H., Dillon, T., Ellig, C.L., Eckert, S.P., McCleskey, E.W., and Stork, P.J.S. Rapl mediates sustained MAP kinase activation induced by nerve growth factor. Nature, 392:622–626, 1998.

    Article  PubMed  CAS  Google Scholar 

  63. Towndrow, K.M., Mertens, J.J.W.M., Jeong, J.K., Weber, T.J., Monks, T.J., and Lau, S.S. Stress-and growth-related gene expression are independent of chemical-induced prostaglandin E2 synthesis in renal epithelial cells. Chem. Res. Toxicol., 13:111–117, 2000.

    Article  PubMed  CAS  Google Scholar 

  64. Joseph, P., Klein-Szanto, A.J.P., and Jaiswal, A.K. Hydroquinones cause specific mutations and lead to cellular transformation and in vivo tumorigenesis. Brit. J. of Cancer, 78:312–320, 1998.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lau, S.S., Yoon, HS., Patel, S.K., Everitt, J.I., Walker, C.L., Monks, T.J. (2001). Mutagenicity and Carcinogenicity of Biological Reactive Intermediate’s Derived from a “Non-Genotoxic” Carcinogen. In: Dansette, P.M., et al. Biological Reactive Intermediates VI. Advances in Experimental Medicine and Biology, vol 500. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0667-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0667-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5185-6

  • Online ISBN: 978-1-4615-0667-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics