Skip to main content

High Throughput Formulation: Strategies for Rapid Development of Stable Protein Products

  • Chapter
Rational Design of Stable Protein Formulations

Part of the book series: Pharmaceutical Biotechnology ((PBIO,volume 13))

Abstract

With the growing demand for new and innovative medicines, drug companies are spending record amounts of money on research and development. In the U.S. alone, research and development (R&D) investments are expected to exceed $24 billion in 1999, with investments in biotechnology totaling about $7 billion (Pharmaceutical Research and Manufacturers of America, 1999). As a result, new technologies are increasing the efficiency of the drug discovery process, and the drug pipelines have more products than ever in development. Nearly 350 biotechnology-related products are currently in clinical trials and over 50 are on the market (Pharmaceutical Research and Manufacturers of America, 1999). Pharmaceutical companies can now typically assess potential activities of up to 100,000 compounds a day using high throughput screening systems. In the biotechnology arena, recent advances in genomics, functional genomics, proteomics, bioinformatics and pharmacogenomics are facilitating the development of protein drug candidates at a much faster rate than was possible during the early years of the biotechnology industry. Couple these changes with the impending publication of the complete sequence of the human genome by 2001 and there is a potential for an additional 15,000 protein drugs from the predicted 150,000 potential genes in the human genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Airaudo, C.B., Gayte-Sorbier, A., Momburg, R., and Laurent, P., 1990. Leaching of antioxidants and vulcanization accelerators from rubber closures into drug preparations, J. Biomater. Sci., Polymer Ed. 1:231.

    Article  CAS  Google Scholar 

  • Aldous, B.J., Auffret, A.D., and Franks, F., 1995. The crystallization of hydrates from amorphous carbohydrates, Cryo-Letters 16:181.

    CAS  Google Scholar 

  • Anchordoquy, T.J. and Carpenter, J.F., 1996. Polymers protect lactate dehydrogenase during freeze-drying by inhibiting dissociation in the frozen state, Arch. Biochem. Biophys. 332:231.

    Article  PubMed  CAS  Google Scholar 

  • Apweiler, R., 1999. Introduction to molecular biology databases, in: EBI Online Manual on Molecular Biology Databases, R. Apweiler, R. Lopez, and B. Marx, eds., URL: http://www.ebi.ac.uk/swissprot/Publications/mbd1.html.

    Google Scholar 

  • Bam, N., Cleland, J., and Randolph, T.W., 1995. Stability of protein formulations: investigation of surfactant effects by a novel EPR spectroscopic technique, Pharm. Res. 12:1.

    Article  Google Scholar 

  • Bam, N., Cleland, J.L., Yang, J., Carpenter, J.F., Manning, M.C., and Randolph, T.W., 1998. Tween protects recombinant human growth hormone against agitation-induced damage via hydrophobic interactions, J. Pharm. Sci. 87:1554.

    Article  PubMed  CAS  Google Scholar 

  • Bell, L.N., Tourna, D.E., White, K.L., and Chen, Y.H., 1998. Glycine loss and Maillard browning as related to the glass transition in a model food system, J. Food Sci. 63:625.

    Article  CAS  Google Scholar 

  • Carpenter, J.F. and Chang, B.S., 1996. Lyophilization of protein pharmaceuticals, in Biotechnology and Biopharmaceutical Manufacturing, Processing, and Preservation, K.E. Avis and V.L. Wu, eds., Interpharm Press, Buffalo Grove, IL.

    Google Scholar 

  • Carpenter, J.F., Pikal, M.J., Chang, B.S., and Randolph, T.W., 1997. Rational design of stable lyophilized protein formulations: some practical advice, Pharm. Res. 14:969.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, J.F., Prestrelski, S.J., and Dong, A., 1998. Application of infrared spectroscopy to development of stable lyophilized protein formulations, Eur. J. Pharm. Biopharm. 45:231.

    Article  PubMed  CAS  Google Scholar 

  • Chang, B.S. and Randall, C.S., 1992. Use of subambient thermal analysis to optimize protein lyophilization, Cryobiology 29:632.

    Article  CAS  Google Scholar 

  • Chang, B.S., Kendrick, B.S., and Carpenter, J.F., 1996. Surface-induced denaturation of proteins during freezing and its inhibition by surfactants, J. Pharm. Sci. 85:1325.

    Article  PubMed  CAS  Google Scholar 

  • Chen, B., Costantino, H.R., Hsu, C.-C., and Shire, S.J., 1999. Influence of calcium ions on the structure and stability of recombinant human deoxyribonuclease I in the aqueous and lyophilized States, J. Pharm. Sci. 88:477.

    Article  PubMed  CAS  Google Scholar 

  • Cleland, J.L., 1998. Solvent evaporation processes for the production of controlled release biodegradable microsphere formulations for therapeutics and vaccines, Biotechnology Progress 14:102.

    Article  PubMed  CAS  Google Scholar 

  • Cleland, J.L., Powell, M.F., and Shire, S.J., 1993. The development of stable protein formulations: a close look at protein aggregation, deamidation, and oxidation, Crit. Rev. Then Drug Carrier Systems 10:307.

    CAS  Google Scholar 

  • Cook, J.L., 1999. Internet biomolecular resources, Anal. Biochem. 268:165.

    Article  PubMed  CAS  Google Scholar 

  • Crowe, J.H., Carpenter, J.F., and Crowe, L.M., 1998. The role of vitrification in anhydrobiosis. Ann. Rev. Physiol. 60:73.

    Article  CAS  Google Scholar 

  • Pranks, P., 1990. Freeze drying: from empiricism to predictability, Cryo-Letters 11:93.

    Google Scholar 

  • Guruprasad, K., Reddy, B.V.B., and Pandit, M.W., 1990. Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence, Protein Eng. 4:155.

    Article  PubMed  CAS  Google Scholar 

  • Heller, M.C., Carpenter, J.F., and Randolph, T.W., 1999. Application of a thermodynamic model to the prediction of phase separations in freeze-concentrated formulations for protein lyophilization, Arch. Biochem. Biophys. 363:191.

    Article  PubMed  CAS  Google Scholar 

  • Hsu, C.C., Nguyen, H.M., Yeung, D.A., Brooks, D.A., Koe, G.S., Bewley, T.A., and Pearl-man, R., 1995. Surface denaturation at solid-void interface- a possible pathway by which opalescent particulotes form during the storage of lyophilized tissue-type plasminogen activator at high temperatures, Pharm. Res. 12:69.

    Article  PubMed  CAS  Google Scholar 

  • Kendrick, B.S., Chang, B.S., Arakawa, T., Peterson, B., Randolph, T.W., Manning, M.C., and Carpenter, J.F., 1997. Preferential exclusion of sucrose from recombinant inter-leukin-1 receptor antagonist: role in restricted conformational mobility and compaction of native state, Proc. Natl. Acad. Sci. USA 94:11917.

    Article  PubMed  CAS  Google Scholar 

  • Kendrick, B.S., Carpenter, J.F., Cleland, J.L., and Randolph TW., 1998. A transient expansion of the native state precedes aggregation of recombinant human interferon-gamma, Proc. Natl. Acad. Sci. USA 95:14142.

    Article  PubMed  CAS  Google Scholar 

  • Koseki, T., Kitabatake, N., and Doi, E., 1990. Freezing denaturation of ovalbumin at acid pH, J. Biochem. 107:389.

    PubMed  CAS  Google Scholar 

  • Krielgaard, L., Jones, L. S., Randolph, T.W., Frokjaer, S., Flink, J.M., Manning, M.C., and Carpenter, J.F., 1998. Effect of Tween 20 on freeze-thawing and agitation-induced aggregation of recombinant human factor XIII, J. Pharm. Sci. 87:1597.

    Article  Google Scholar 

  • Lam, X.M., Patapoff, T.W., and Nguyen, T.H., 1997. The effect of benzyl alcohol on recombinant human interferon-gamma, Pharm. Res. 14:725.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J.C. and Timasheff, S.N., 1981. The stabilization of proteins by sucrose, J. Biol. Chem. 259:7193.

    Google Scholar 

  • Lee, M.-L. and Stavchansky, S., 1998. Isothermal and nonisothermal decompositon of thymopentin and its analogs in aqueous solution, Pharm. Res. 15:1702.

    Article  PubMed  CAS  Google Scholar 

  • Li, S., Schoneich, C., and Borchardt, R.T., 1995. Chemical instability of protein pharmaceuticals: mechanisms of oxidation and strategies for stabilization. Biotechnol Bioeng. 48:490.

    Article  PubMed  CAS  Google Scholar 

  • MacKenzie, A.P., 1976. The physico-chemical basis of the freeze-drying process, Dev. Biol. Stand. 36:51.

    PubMed  CAS  Google Scholar 

  • Manning, M.C., Patel, K., Borchardt, R.T., 1989. Stability of protein pharmaceuticals, Pharm. Res. 6:903.

    Article  PubMed  CAS  Google Scholar 

  • Nedich, R.L., 1983. Selection of containers and closure systems for injectable products, Am. J. Hosp. Pharm. 40:1924.

    PubMed  CAS  Google Scholar 

  • Orengo, C.A., Bray, J.E., Hubbard, T, LoConte, L., and Sillitoe, I., 1999. Analysis and assessment of ab initio three-dimensional prediction, secondary structure, and contacts prediction, Proteins: Struct., Fune, Gen. Suppl. 3:149.

    Article  Google Scholar 

  • Patel, K. and Borchardt, R.T., 1990. Chemical pathways of peptide degradation. II. kinetics of deamidation of an asparaginyl residue in a model hexapeptide, Pharm. Res. 7:703.

    Article  PubMed  CAS  Google Scholar 

  • Pearlman, R. and Nguyen, T.H., 1992. Pharmaceutics of protein drugs, J. Pharm. Pharmacol. 44(Suppl 1):178.

    PubMed  CAS  Google Scholar 

  • Pharmaceutical Research and Manufacturers of America, 1999. PhRMA Annual Survey. URL: www.phrma.org.

  • Pikal, M.J., 1985. Use of laboratory data in freeze drying process design: Heat and mass transfer coefficients and the computer simulation of freeze-drying, J. Parent. Drug Assoc. 39:115.

    CAS  Google Scholar 

  • Pikal, M.J., 1994. Freeze-drying of proteins, in: Formulation and Delivery of Proteins and Peptides (J.L. Cleland and R. Langer, Eds.) ACS Symposium Series. 567: 120.

    Google Scholar 

  • Reddy, B.V., 1996. Structural distribution of dipeptides that are identified to be determinants of intracellular protein stability, J. Biol. Struct. Dyn. 14:201.

    Article  CAS  Google Scholar 

  • Rodrigues-Silva, R., Antunes, G.F., Velarde, D.T., and Santoro, M.M., 1999. Thermal stability studies of hyperimmune horse antivenoms, Toxicon 37:33.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, T. Takeda, T., and Miyajama, R., 1991. Cryoprotective effect of saccharides on denaturation of catalase during freeze-drying, Chem. Pharm. Bull. 39:1091.

    Article  CAS  Google Scholar 

  • Timasheff, S.N., 1992. Stabilization of protein structure by solvent additives, in: Stability of Protein Pharmaceuticals. Part B. In Vivo Pathways of Degradation and Strategies for Protein Stabilization, T.J. Ahern and M.C. Manning, eds., Plenum Press, New York.

    Google Scholar 

  • Timasheff, S.N., 1995. Preferential interactions of water and cosolvents with proteins, in: Protein-Solvent Interactions, R.B. Gregory, ed., Marcel Dekker, New York.

    Google Scholar 

  • van den Berg, L., 1959. The effect of addition of sodium and potassium chloride to the reciprocal system: KH2-PO4-Na2HPO4-H2O on pH and composition during freezing, Arch. Biochem. Biophys. 84: 305.

    Article  Google Scholar 

  • van den Berg, L. and Rose, D., 1959. The effect of freezing on the pH and composition of sodium and potassium solutions: The reciprocal system KH2-PO4-Na2HPO4-H2O, Arch. Biochem. Biophys. 81:319.

    Article  Google Scholar 

  • Vencloyas, C., Ginalski, K., and Fidelis, K., 1999. Addressing the issue of sequence-to-structure alignments in comparative modeling of CASP3 target proteins. Proteins: Struct., Fune, Gen. Suppl. 3:231.

    Google Scholar 

  • Volkin, D.B., Verticelli, A.M., Marfia, K.E., Burke, C.J., Mach, H., and C.R. Middaugh, C.R., 1993. Sucralfate and soluble sucrose octasulfate bind and stabilize acidic fibroblast growth factor, Biochim. Biophys. Acta 1203:18.

    Article  PubMed  CAS  Google Scholar 

  • Wright, H.T., 1991 Sequence and structure determinants of the nonenzymatic deamidation of asparagine and glutamine residues in proteins, Protein Eng. 4:283.

    Article  PubMed  CAS  Google Scholar 

  • Xie, M., and Schowen, R.L., 1999. Secondary structure and protein deamidation, J. Pharm. Sci. 88:8.

    Article  PubMed  CAS  Google Scholar 

  • Yang, T.H., Dong, A., Meyer, J., Johnson, O.L., Cleland, J.L., and Carpenter, J.F., 1999. Use of infrared spectroscopy to assess secondary structure of human growth hormone within biodegradable microspheres, J. Pharm. Sci. 88:161.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nayar, R., Manning, M.C. (2002). High Throughput Formulation: Strategies for Rapid Development of Stable Protein Products. In: Carpenter, J.F., Manning, M.C. (eds) Rational Design of Stable Protein Formulations. Pharmaceutical Biotechnology, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0557-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0557-0_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5131-3

  • Online ISBN: 978-1-4615-0557-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics