Skip to main content

Endothelial Nitric Oxide Synthase in Cardiovascular Homeostasis and Disease

  • Chapter
The Physiological Genomics of the Critically Ill Mouse

Part of the book series: Basic Science for the Cardiologist ((BASC,volume 16))

  • 149 Accesses

Abstract

In 1980, Furchgott and Zawadzki22 demonstrated the pivotal importance of the endothelium for mediating vasodilator responses to substances such as acetylcholine. The authors proposed that a substance derived from the endothelium mediated these vasodilator responses and termed it endothelium derived relaxing factor (EDRF). In 1987 it was subsequently shown that EDRF most likely is nitric oxide (NO) or a nitrosothiol compound29S3 NO is produced by NO synthases (NOS) via a reaction in which L-arginine is converted to L-citrulline47. There are currently three known NOS enzymes in mammals: neuronal NOS (nNOS), inducible NOS (iNOS) and endothelial NOS (eNOS). The enzymes and the genes encoding the enzymes are also termed NOS 1 (nNOS), NOS2 (iNOS) and NOS3 (eNOS)4147.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altman JD, Kinn J, Duncker DJ, Bache RJ. Effect of inhibition of nitric oxide formation on coronary blood flow during exercise in the dog. Cardiovasc Res 1994; 28:119–124.

    Article  PubMed  CAS  Google Scholar 

  2. Amano K, Matsubara H, Iba O, et all. Enhancement of ischemia-induced angiogenesis by eNOS overexpression. Hypertension 2003; 41:156–162.

    Article  PubMed  CAS  Google Scholar 

  3. Barton M, Haudenschild CC, d’Uscio LV, et all. receptor blockade restores NO-mediated endothelial function and inhibits atherosclerosis in apolipoprotein E-deficient mice. Proc Natl Acad Sci U S A 1998; 95:14367–14372.

    Article  PubMed  CAS  Google Scholar 

  4. Bernstein RD, Ochoa FY, Xu X, et all. Function and production of nitric oxide in the coronary circulation of the conscious dog during exercise. Circ Res 1996; 79:840–848.

    Article  PubMed  CAS  Google Scholar 

  5. Breslow JL. Mouse models of atherosclerosis. Science 1996; 272:685–688.

    Article  PubMed  CAS  Google Scholar 

  6. Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis. Science 1986; 232:34–47.

    Article  PubMed  CAS  Google Scholar 

  7. Brunner F, Maier R, Andrew P, et all. Attenuation of myocardial ischemia/reperfusion injury in mice with myocyte-specific overexpression of endothelial nitric oxide synthase. Cardiovasc Res 2003; 57:55–62.

    Article  PubMed  CAS  Google Scholar 

  8. Crystal GJ, Gurevicius J. Nitric oxide does not modulate myocardial contractility acutely in in situ canine hearts. Am J Physiol 1996; 270:H1568–1576.

    PubMed  CAS  Google Scholar 

  9. Crystal GJ, Zhou X, Halim AA, et all. Nitric oxide does not modulate whole body oxygen consumption in anesthetized dogs. J Appl Physiol 1999; 86:1944–1949.

    PubMed  CAS  Google Scholar 

  10. Daugherty A. Mouse models of atherosclerosis. Am J Med Sci 2002; 323:3–10.

    Article  PubMed  Google Scholar 

  11. Ding Z, Godecke A, Schrader J. Contribution of cytochrome P450 metabolites to bradykinin-induced vasodilation in endothelial NO synthase deficient mouse hearts. Br J Pharmacol 2002; 135:631–638.

    Article  PubMed  CAS  Google Scholar 

  12. Drummond GR, Harrison DG. eNOS-overexpressing mice: too much NO makes the blood pressure low. J Clin Invest 1998; 102:2033–2034.

    Article  PubMed  CAS  Google Scholar 

  13. Duncker DJ, Stubenitsky R, Tonino PA, Verdouw PD. Nitric oxide contributes to the regulation of vasomotor tone but does not modulate 0(2)-consumption in exercising swine. Cardiovasc Res 2000; 47:738–748.

    Article  PubMed  CAS  Google Scholar 

  14. d’Uscio LV, Baker TA, Mantilla CB, et all. Mechanism of endothelial dysfunction in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2001; 21:1017–1022.

    Article  PubMed  Google Scholar 

  15. Endo T, Imaizumi T, Tagawa T, et all. Role of nitric oxide in exercise-induced vasodilation of the forearm. Circulation 1994; 90:2886–2890.

    Article  PubMed  CAS  Google Scholar 

  16. Everson WV, Smart EJ. Influence of caveolin, cholesterol, and lipoproteins on nitric oxide synthase: implications for vascular disease. Trends Cardiovasc Med 2001; 11:246250.

    Google Scholar 

  17. Feron O, Dessy C, Desager JP, Balligand JL. Hydroxy-methylglutaryl-coenzyme A reductase inhibition promotes endothelial nitric oxide synthase activation through a decrease in caveolin abundance. Circulation 2001; 103:113–118.

    Article  PubMed  CAS  Google Scholar 

  18. Feron O, Dessy C, Moniotte S, Desager JP, Balligand JL. Hypercholesterolemia decreases nitric oxide production by promoting the interaction of caveolin and endothelial nitric oxide synthase. J Clin Invest 1999; 103:897–905.

    Article  PubMed  CAS  Google Scholar 

  19. Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev 1997; 18:4–25.

    Article  PubMed  CAS  Google Scholar 

  20. Forstermann U, Boissel JP, Kleinert H. Expressional control of the ‘constitutive’ isoforms of nitric oxide synthase (NOS I and NOS III). Faseb J 1998; 12:773–790.

    PubMed  CAS  Google Scholar 

  21. Fulton D, Grafton JP, Sessa WC. Post-translational control of endothelial nitric oxide synthase: why isn’t calcium/calmodulin enough? J Pharmacol Exp Ther 2001; 299:818824.

    PubMed  CAS  Google Scholar 

  22. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980; 288:373–376.

    Article  PubMed  CAS  Google Scholar 

  23. Garcia-Cardena G, Fan R, Stern DF, Liu J, Sessa WC. Endothelial nitric oxide synthase is regulated by tyrosine phosphorylation and interacts with caveolin-1. J Biol Chem 1996; 271:27237–27240.

    Article  PubMed  CAS  Google Scholar 

  24. Gordon DJ, Rifkind BM. High-density lipoprotein--the clinical implications of recent studies. N Engl J Med 1989; 321:1311–1316.

    Article  PubMed  CAS  Google Scholar 

  25. Govers R, Rabelink TJ. Cellular regulation of endothelial nitric oxide synthase. Am J Physiol Renal Physiol 2001; 280:F193–206.

    PubMed  CAS  Google Scholar 

  26. Harrison DG. Cellular and molecular mechanisms of endothelial cell dysfunction. J Clin Invest 1997; 100:2153–2157.

    Article  PubMed  CAS  Google Scholar 

  27. Hoit BD. Two faces of nitric oxide: lessons learned from the NOS2 knockout. Circ Res 2001; 89:289–291.

    PubMed  CAS  Google Scholar 

  28. Huang PL, Huang Z, Mashimo H, et all. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 1995; 377:239–242.

    Article  PubMed  CAS  Google Scholar 

  29. Ignarro LJ, Buga GM, Wood KS, et all. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A 1987; 84:9265–9269.

    Article  PubMed  CAS  Google Scholar 

  30. Kamphoven JH, Stubenitsky R, Reuser AJ, et all. Cardiac remodeling and contractile function in acid alpha-glucosidase knockout mice. Physiol Genomics 2001; 5:171–179.

    PubMed  CAS  Google Scholar 

  31. Kano H, Hayashi T, Sumi D, et all. A HMG-CoA reductase inhibitor improved regression of atherosclerosis in the rabbit aorta without affecting serum lipid levels: possible relevance of up-regulation of endothelial NO synthase mRNA. Biochem Biophys Res Commun 1999; 259:414–419.

    Article  PubMed  CAS  Google Scholar 

  32. Kim NN, Villegas S, Summerour SR, Villarreal FJ. Regulation of cardiac fibroblast extracellular matrix production by bradykinin and nitric oxide. J Mol Cell Cardiol 1999; 31:457–466.

    Article  PubMed  CAS  Google Scholar 

  33. Kincer JF, Uittenbogaard A, Dressman J, et all. Hypercholesterolemia promotes a CD36dependent and endothelial nitric-oxide synthase-mediated vascular dysfunction. J Biol Chem 2002; 277:23525–23533.

    Article  PubMed  CAS  Google Scholar 

  34. King CE, Melinyshyn MJ, Mewburn JD, et all. Canine hindlimb blood flow and 02 uptake after inhibition of EDRF/NO synthesis. J Appl Physiol 1994; 76:1166–1171.

    PubMed  CAS  Google Scholar 

  35. Knowles JW, Reddick RL, Jennette JC, Shesely EG, Smithies O, Maeda N. Enhanced atherosclerosis and kidney dysfunction in eNOS(-/-)Apoe(-/-) mice are ameliorated by enalapril treatment. J Clin Invest 2000; 105:451–458.

    Article  PubMed  CAS  Google Scholar 

  36. Koller-Strametz J, Matulla B, Wolzt M, et all. Role of nitric oxide in exercise-induced vasodilation in man. Life Sci 1998; 62:1035–1042.

    Article  PubMed  CAS  Google Scholar 

  37. Ku DD, Zaleski JK, Liu S, Brock TA. Vascular endothelial growth factor induces EDRFdependent relaxation in coronary arteries. Am J Physiol 1993; 265:H586–592.

    PubMed  CAS  Google Scholar 

  38. Kuhlencordt PJ, Gyurko R, Han F, et all. Accelerated atherosclerosis, aortic aneurysm formation, and ischemic heart disease in apolipoprotein E/endothelial nitric oxide synthase double-knockout mice. Circulation 2001; 104:448–454.

    Article  PubMed  CAS  Google Scholar 

  39. Laumonnier Y, Nadaud S, Agrapart M, Soubrier F. Characterization of an upstream enhancer region in the promoter of the human endothelial nitric-oxide synthase gene. J Biol Chem 2000; 275:40732–40741.

    Article  PubMed  CAS  Google Scholar 

  40. Lefer AM. Nitric oxide: nature’s naturally occurring leukocyte inhibitor. Circulation 1997; 95:553–554.

    Article  PubMed  CAS  Google Scholar 

  41. Li H, Forstermann U. Nitric oxide in the pathogenesis of vascular disease. J Pathol 2000; 190:244–254.

    Article  PubMed  CAS  Google Scholar 

  42. Libby P. Managing the risk of atherosclerosis: the role of high-density lipoprotein. Am J Cardiol 2001; 88:3N–8N.

    PubMed  CAS  Google Scholar 

  43. Loke KE, McConnell PI, Tuzman JM, et all. Endogenous endothelial nitric oxide synthase-derived nitric oxide is a physiological regulator of myocardial oxygen consumption. Circ Res 1999; 84:840–845.

    Article  PubMed  CAS  Google Scholar 

  44. Loscalzo J. Nitric oxide insufficiency, platelet activation, and arterial thrombosis. Circ Res 2001; 88:756–762.

    Article  PubMed  CAS  Google Scholar 

  45. Marietta MA. Another activation switch for endothelial nitric oxide synthase: why does it have to be so complicated? Trends Biochem Sci 2001; 26:519–521.

    Article  Google Scholar 

  46. Matsunaga T, Warltier DC, Weihrauch DW, et all. Ischemia-induced coronary collateral growth is dependent on vascular endothelial growth factor and nitric oxide. Circulation 2000; 102:3098–3103.

    Article  PubMed  CAS  Google Scholar 

  47. Michel T, Feron O. Nitric oxide synthases: which, where, how, and why? J Clin Invest 1997; 100:2146–2152.

    Article  PubMed  CAS  Google Scholar 

  48. Murohara T, Asahara T, Silver M, et all. Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J Clin Invest 1998; 101:2567–2578.

    Article  PubMed  CAS  Google Scholar 

  49. Niebauer J, Dulak J, Chan JR, Tsao PS, Cooke JP. Gene transfer of nitric oxide synthase: effects on endothelial biology. J Am Coll Cardiol 1999; 34:1201–1207.

    Article  PubMed  CAS  Google Scholar 

  50. Ohashi Y, Kawashima S, Hirata K, et all. Hypotension and reduced nitric oxide-elicited vasorelaxation in transgenic mice overexpressing endothelial nitric oxide synthase. J Clin Invest 1998; 102:2061–2071.

    Article  PubMed  CAS  Google Scholar 

  51. Ozaki M, Kawashima S, Yamashita T, et all. Overexpression of endothelial nitric oxide synthase accelerates atherosclerotic lesion formation in apoE-deficient mice. J Clin Invest 2002; 110:331–340.

    PubMed  CAS  Google Scholar 

  52. Ozaki M, Kawashima S, Yamashita T, et all. Overexpression of endothelial nitric oxide synthase attenuates cardiac hypertrophy induced by chronic isoproterenol infusion. Circ J 2002; 66:851–856.

    Article  PubMed  CAS  Google Scholar 

  53. Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987; 327:524–526.

    Article  PubMed  CAS  Google Scholar 

  54. Papapetropoulos A, Garcia-Cardena G, Madri JA, Sessa WC. Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J Clin Invest 1997; 100:3131–3139.

    Article  PubMed  CAS  Google Scholar 

  55. Qian H, Neplioueva V, Shetty GA, Channon KM, George SE. Nitric oxide synthase gene therapy rapidly reduces adhesion molecule expression and inflammatory cell infiltration in carotid arteries of cholesterol-fed rabbits. Circulation 1999; 99:2979–2982.

    Article  PubMed  CAS  Google Scholar 

  56. Radegran G, Saltin B. Nitric oxide in the regulation of vasomotor tone in human skeletal muscle. Am J Physiol 1999; 276:H1951–1960.

    PubMed  CAS  Google Scholar 

  57. Riddell DR, Owen JS. Nitric oxide and platelet aggregation. Vitam Horm 1999; 57:25–48.

    Article  PubMed  CAS  Google Scholar 

  58. Ritchie RH, Schiebinger RJ, LaPointe MC, Marsh JD. Angiotensin II-induced hypertrophy of adult rat cardiomyocytes is blocked by nitric oxide. Am J Physiol 1998; 275:H1370–1374

    PubMed  CAS  Google Scholar 

  59. Sadoff JD, Scholz PM, Weiss HR. Endogenous basal nitric oxide production does not control myocardial oxygen consumption or function. Proc Soc Exp Biol Med 1996; 211:332–338.

    PubMed  CAS  Google Scholar 

  60. Scherrer-Crosbie M, Ullrich R, Bloch KD, et all. Endothelial nitric oxide synthase limits left ventricular remodeling after myocardial infarction in mice. Circulation 2001; 104:1286–1291.

    Article  PubMed  CAS  Google Scholar 

  61. Schlaeger TM, Bartunkova S, Lawitts JA, et all. Uniform vascular-endothelial-cellspecific gene expression in both embryonic and adult transgenic mice. Proc Natl Acad Sci U S A 1997; 94:3058–3063.

    Article  PubMed  CAS  Google Scholar 

  62. Sessa WC. Can modulation of endothelial nitric oxide synthase explain the vasculoprotective actions of statins? Trends Mol Med 2001; 7:189–191.

    Article  PubMed  CAS  Google Scholar 

  63. Sharp BR, Jones SP, Rimmer DM, Lefer DJ. Differential response to myocardial reperfusion injury in eNOS-deficient mice. Am J Physiol Heart Circ Physiol 2002; 282: H2422–2426.

    PubMed  CAS  Google Scholar 

  64. Shen W, Xu X, Ochoa M, Zhao G, Wolin MS, Hintze TH. Role of nitric oxide in the regulation of oxygen consumption in conscious dogs. Circ Res 1994; 75:1086–1095.

    Article  PubMed  CAS  Google Scholar 

  65. Sherman AJ, Davis CA, 3rd, Klocke FJ, et all. Blockade of nitric oxide synthesis reduces myocardial oxygen consumption in vivo. Circulation 1997; 95:1328–1334.

    Article  PubMed  CAS  Google Scholar 

  66. Shesely EG, Maeda N, Kim HS,et all. Elevated blood pressures in mice lacking endothelial nitric oxide synthase. Proc Natl Acad Sci U S A 1996; 93:13176–13181.

    Article  PubMed  CAS  Google Scholar 

  67. Trost SU, Omens JH, Karlon WJ, Meyer M, Mestril R, Covell JW, Dillmann WH. Protection against myocardial dysfunction after a brief ischemic period in transgenic mice expressing inducible heat shock protein 70. J Clin Invest 1998; 101:855–862.

    Article  PubMed  CAS  Google Scholar 

  68. Van Haperen R, De Waard M, Van Deel E,et all. Reduction of blood pressure, plasma cholesterol, and atherosclerosis by elevated endothelial nitric oxide. J Biol Chem 2002; 277:48803–48807.

    Article  PubMed  Google Scholar 

  69. Weyer RM, Luscher TF, Cosentino F, Rabelink TJ. Atherosclerosis and the two faces of endothelial nitric oxide synthase. Circulation 1998; 97:108–112.

    Article  Google Scholar 

  70. Wolin MS, Xie YW, Hintze TH. Nitric oxide as a regulator of tissue oxygen consumption. Curr Opin Nephrol Hypertens 1999; 8:97–103.

    Article  PubMed  CAS  Google Scholar 

  71. Xi L, Hess ML, Kukreja RC. Ischemic preconditioning in isolated perfused mouse heart: reduction in infarct size without improvement of post-ischemic ventricular function. Mol Cell Biochem 1998; 186:69–77.

    Article  PubMed  CAS  Google Scholar 

  72. Yamashita T, Kawashima S, Ohashi Y, et all. Mechanisms of reduced nitric oxide/cGMPmediated vasorelaxation in transgenic mice overexpressing endothelial nitric oxide synthase. Hypertension 2000; 36:97–102.

    Article  PubMed  CAS  Google Scholar 

  73. Yang XP, Liu YH, Shesely EG, Bulagannawar M, Liu F, Carretero OA. Endothelial nitric oxide gene knockout mice: cardiac phenotypes and the effect of angiotensin-converting enzyme inhibitor on myocardial ischemia/reperfusion injury. Hypertension 1999; 34:2430.

    Google Scholar 

  74. Zhao X, Lu X, Feng Q. Deficiency in endothelial nitric oxide synthase impairs myocardial angiogenesis. Am J Physiol Heart Circ Physiol 2002; 283:H2371–2378.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Duncker, D.J., van Haperen, R., van Deel, E., de Waard, M., Mees, B., de Crom, R. (2004). Endothelial Nitric Oxide Synthase in Cardiovascular Homeostasis and Disease. In: Ince, C. (eds) The Physiological Genomics of the Critically Ill Mouse. Basic Science for the Cardiologist, vol 16. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0483-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0483-2_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5099-6

  • Online ISBN: 978-1-4615-0483-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics