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PREFACE 

The technique of chlorophyll fluorescence has a relatively short 
history, beginning with the observations by Kautsky (Kautsky and Hirsch, 
1931). Since that time there have been several· reviews devoted to the 
subject, with most of them highly theoretical (Bohlar-Nordenkampf and 
Oquist, 1993; Dau, 1994; Schreiber et aI., 1994). There have also been many 
books devoted to generalized spectrophotometric and microscopic 
fluorescence techniques. However, to the best of our knowledge there has 
not been a book completely devoted to the practical applications and uses of 
chlorophyll fluorescence in plant biology. As techniques mature, 
applications multiply and so do their potential advantages. The chlorophyll 
fluorescence technique is maturing as can be seen in the increasing numbers 
of publications that are devoted to its use. Therefore, we considered that now 
was a good time to compile the existing knowledge for the applied use of 
this technique and provide a single volume to which a novice or experienced 
user could refer. 

Highly trained experts in the field of photobiology have primarily 
used the chlorophyll fluorescence technique in the past. In that work, 
understanding the mechanisms and controls of the photosynthetic processes 
was the main focus of activity and discussion. Much of the equipment used 
was highly specialized and expensive, or in some cases one-of-a-kind lab 
designed units. However, the development of several reliable commercially 
available chlorophyll fluorescence monitoring instruments has changed the 
potential user base for the technique. There has been a review of chlorophyll 
fluorescence instrumentation that discusses the features, potential and 
limitations of many of these instruments (Mohammed et aI., 1995). One 
important feature in most commercial instruments is that they have pre­
programmed protocols for taking measurements, making the technique 
accessible to novices in the field of photobiology. However, taking 
measurements without a basic understanding of the theoretical aspects of the 
technique can lead to inappropriate interpretation or poor results. This book 
has been designed to acquaint the novice user of the chlorophyll 
fluorescence technique with essential background theory, and some 
examples of applied uses for the technique, with cautions regarding potential 
pitfalls. 

As this book will demonstrate, there have been numerous 
developments in the instrumentation and approaches for use of chlorophyll 
fluorescence as a probe to plant adaptation to an environment or as an 
indicator of the level of stress. The advantage of chlorophyll fluorescence 
over many techniques that have been used is that it provides rapid and 
nondestructive measures. As such, more measurements can be taken and 
data processing is quite simple. However, this technique, like others, is not a 
miracle approach. It will be demonstrated in the following chapters that one 
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must understand some basic theory and must also accept the fact that unless 
experiments are designed to provide specific response measures, 
fluorescence cannot provide a simple approach to inferring underlying 
causes for the physiological status of a plant. 

The first two chapters are devoted to provide a clear, understandable 
explanation of the theoretical basis for chlorophyll fluorescence analysis. 
The definitions and terminology that are specific to chlorophyll fluorescence 
analysis are included in this discussion. ]n addition, the discussion leads to 
the bridging of chlorophyll fluorescence analysis to plant tissue condition or 
status. These two chapters should give a reader a solid background as to how 
and why chlorophyll fluorescence is used. Subsequent chapters focus on the 
monitoring of stress in the natural terrestrial and aquatic environments, 
assessing seedling quality in forestry, and postharvest quality in fruits and 
vegetables. A final chapter is devoted to a newly emerging use for the 
technique in plant breeding programs. These chapters should provide the 
reader with good examples for specific approaches in a variety of applied 
plant science studies. The content of these chapters will also demonstrate the 
versatility of the technique and will hopefully encourage the development of 
new uses that are not reported in this book. 

It is the hope of the editors and authors that readers who have not 
used the technique will be encouraged to explore the possibilities in their 
area of study. For those who have used the technique previously, we hope 
that this book will offer some new insights, which may encourage 
development and/or refinement of approaches. Ultimately, we hope that the 
contents of this work will contribute in some manner to advances in the 
understanding of plant-environment interactions and hence to improvements 
in environmental quality, as well as in forestry and agri-food industries. 
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