Skip to main content

The Redox State of Cytochrome Oxidase in Brain in Vivo: An Historical Perspective

  • Chapter
Oxygen Transport to Tissue XXIV

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 530))

Abstract

Recent evidence suggests that cytochrome oxidase is partially reduced under resting conditions in the brain. Previous data, recorded over the past 30 years from intact brain using optical methods in the visible wavelength range, are consistent with this observation. These older data, while not conclusive in themselves, support the overall conclusions. The historical perspective on the experiments and controversies illustrates a number of useful principles. The first is that new methods tend to produce new observations that may be difficult to reproduce due to the uniqueness of the instrumentation. The second is that any new and different observations cannot be assimilated without an acceptable theoretical framework and, without assimilation can have little impact. Finally, the mechanisms which might explain why cytochrome oxidase may be more reduced than previously thought are still not fully developed and, therefore, the physiological significance of such reduction is not known.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. MacMunn CA. On myohaematin, an intrinsic muscle pigment of vertebrates and invertebrates, on histohaematin, and on the spectrum of the supra-renal bodies. J Physiol (Lond) 1884;5:xxiv-xxvi.

    Google Scholar 

  2. MacMunn CA. Researches on myohaematin and the histohaematins. Phil Trans R Soc Lond B 1886;177:267–298.

    Article  Google Scholar 

  3. Keilin D. The History of Cell Respiration and Cytochrome. Cambridge: Cambridge University Press; 1966.

    Google Scholar 

  4. Sorby HC. On a definite method of qualitative analysis of animal and vegetable colouring-matters by means of the spectrum microscope. Proc Roy Soc Lond 1867;15:433–455.

    Google Scholar 

  5. Hoppe F. Über das Verhalten des Blutfarbstoffes im Spectrum des Sonnenlichtes. Virchows Archiv A Pathol Anat 1862;23:446–449.

    Article  Google Scholar 

  6. Hoppe-Seyler F. Über die chemischen und optischen Eigenschaften des Blutfarbstoffes. Virchows Archiv A Pathol Anat 1864;29:233–235.

    Article  Google Scholar 

  7. Stokes GG. On the reduction and oxidation of the colouring matter of the blood. Proc Roy Soc Lond B 1864;13:355–364.

    Google Scholar 

  8. Levy L. Über Farbstoffe in den Muskeln. Hoppe-Seyler Z Physiol Chem 1889;13:309–325.

    Google Scholar 

  9. Krebs HA. Otto Warburg. Oxford: Clarendon Press; 1981.

    Google Scholar 

  10. Warburg O, Negelein E. Über die photochemische Dissoziation bei intermittierender Beichtung und das absolute Absorptionsspektrum des Atmungsferments. Biochem Z 1928;202:202–228.

    Google Scholar 

  11. Hartridge H. A spectroscopic method of estimating carbon monoxide. J Physiol (Lond) 1912;44:1–21.

    CAS  Google Scholar 

  12. Chance B. Rapid and sensitive spectrophotometry. III. A double beam apparatus. Rev Sci Instrum 1951;22:634–638.

    Article  CAS  Google Scholar 

  13. Chance B, Williams GR. The respiratory chain and oxidative phosphorylation. Adv Enzym 1956;17:65–134.

    CAS  Google Scholar 

  14. Chance B. Optical method. Annu Rev Biophys Biophys Chem 1991;20:1–28.

    Article  PubMed  CAS  Google Scholar 

  15. Jöbsis FF. Spectrophotometric studies on intact muscle. II. Recovery from contractile activity. J Gen Physiol 1963;46:929–969.

    Article  PubMed  Google Scholar 

  16. Jöbsis FF. Spectrophotometric studies on intact muscle. I. Components of the respiratory chain. J Gen Physiol 1963;46:905–928.

    Article  PubMed  Google Scholar 

  17. Jöbsis FF, Rosenthal M, LaManna JC, Lothman E, Cordingley G, Somjen G. Metabolic activity in epileptic seizures, In: Ingvar D, Lassen N, editors. Brain Work, Alfred Benzon Symposium VIII. Copenhagen: Munksgaard; 1975;185–196.

    Google Scholar 

  18. Ramirez J. Oxidation-reduction changes of cytochromes following stimulation of amphibian cardiac muscle. J Physiol (Lond) 1959;147:14–32.

    CAS  Google Scholar 

  19. Ramirez J. Oxidation-reduction changes of cytochromes in lobster heart. Biochim Biophys Acta 1964;88:648–650.

    PubMed  CAS  Google Scholar 

  20. Hassinen IE, Hiltunen K. Respiratory control in isolated perfused rat heart. Role of the equilibrium relations between the mitochondrial electron carriers and the adenylate system. Biochim Biophys Acta 1975;408:319–330.

    Article  PubMed  CAS  Google Scholar 

  21. Snow TR, Kleinman LH, LaManna JC, Wechsler AS, Jöbsis FF. Response of cytochrome a,a3 in the in situ canine heart. Basic Res Cardiol 1981;76:289–304.

    Article  PubMed  CAS  Google Scholar 

  22. Hersey SJ, Jöbsis FF. Redox changes in the respiratory chain related to acid secretion by the intact gastric mucosa. Biochem Biophys Res Commun 1969;36:243–250.

    Article  PubMed  CAS  Google Scholar 

  23. Mandel LJ, Moffett DF, Jobsis FF. Redox state of respiratory chain enzymes and potassium transport in silkworm mid-gut. Biochim Biophys Acta 1975;408:123–134.

    Article  PubMed  CAS  Google Scholar 

  24. Mills E, Jöbsis FF. Mitochondrial respiratory chain of carotid body and chemoreceptor response to changes in oxygen tension. J Neurophysiol 1972;35:405–428.

    PubMed  CAS  Google Scholar 

  25. Jöbsis FF, Keizer JH, LaManna JC, Rosenthal M. Reflectance spectrophotmetry of cytochrome aa3 in vivo. J Appl Physiol 1977;43:858–872.

    PubMed  Google Scholar 

  26. LaManna JC, Sick TJ, Pikarsky SM, Rosenthal M. Detection of an oxidizable fraction of cytochrome oxidase in intact rat brain. Am J Physiol 1987;253:C477–C483.

    PubMed  CAS  Google Scholar 

  27. Latimer P. Apparent shifts of absorption bands of cell suspensions and selective light scattering. Science 1958;127:29–30.

    Article  PubMed  CAS  Google Scholar 

  28. Butler WL, Norris KH. The spectrophotmetry of dense light-scattering material. Arch Biochem Biophys 1960;87:31–40.

    Article  PubMed  CAS  Google Scholar 

  29. Butler WL. Absorption of light by turbid materials. J Opt Soc Am 1962;52:292–299.

    Article  CAS  Google Scholar 

  30. Longini RL, Zdrojkowski R. A note on the theory of backscattering of light by living tissue. IEEE Trans Biomed Engn 1968;BME-15:4–10.

    Article  Google Scholar 

  31. Grinvald A, Lieke E, Frostig RD, Gilbert CD, Wiesel TN. Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 1986;324:361–364.

    Article  PubMed  CAS  Google Scholar 

  32. Bashford CL, Barlow CH, Chance B, Haselgrove J, Sorge J. Optical measurements of oxygen delivery and consumption in gerbil cortex. Am J Physiol 1982;242:C265–C271.

    PubMed  CAS  Google Scholar 

  33. Piantadosi CA, Jöbsis-VanderVliet FF. Spectrophotometry of cerebral cytochrome a,a3 in bloodless rats. Brain Res 1984;305:89–94.

    Article  PubMed  CAS  Google Scholar 

  34. Sylvia AL, Piantadosi CA. 02 dependence of in vivo brain cytochrome redox responses and energy metabolism in bloodless rats. J Cereb Blood Flow Metab 1988;8:163–172.

    Article  PubMed  CAS  Google Scholar 

  35. Lee PA, Sylvia AL, Piantadosi CA. Effect of fluorocarbon-for-blood exchange on regional cerebral blood flow in rats. Am J Physiol 1988;254:H719–H726.

    PubMed  CAS  Google Scholar 

  36. Wodick R, Lubbers DW. Quantitative evaluation of reflection spectra of living tissue. Hoppe-Seyler Z Physiol Chem 1974;355:583–594.

    Article  PubMed  CAS  Google Scholar 

  37. Thews G, Libbers D. Ein schnellregistrierendes Absorptionsspektralphotometer. Zeit ang Physik 1955;7:325–331.

    CAS  Google Scholar 

  38. Libbers D, Niesel W. Der Kurzzeit-Spektralanalysator. Ein schnellarbeitendes Spektralphotometer zur laufenden Messung von Absorptions-bzw. Extinktionsspektren. Pflig Arch 1959;268:286–295.

    Article  Google Scholar 

  39. Niesel W, Lübbers DW, Schneewolf D, Richter J, Botticher W. Double beam spectrometer with 10 ms recording time. Rev Sci Instrum 1964;35:578–581.

    Article  Google Scholar 

  40. Lübbers DW, Wodick R. The examination of multicomponent systems in biological materials by means of a rapid scanning photometer. Appl Opt 1969;8:1055–1062.

    Article  PubMed  Google Scholar 

  41. Heinrich U, Hoffman J, Lübbers DW. Quantitative evaluation of optical reflection spectra of blood-free perfused guinea pig brain using a non-linear multicomponent analysis. Pflüg Arch 1987;409:152–157.

    Article  CAS  Google Scholar 

  42. Moffett DF, Jöbsis FF. Response of toad brain respiratory chain enzymes to ouabain, elevated potassium, and electrical stimulus. Brain Res 1976;117:239–255.

    Article  PubMed  CAS  Google Scholar 

  43. LaManna JC, Rosenthal M, Novack R, Moffett DF, Jöbsis FF. Temperature coefficients for the oxidative metabolic responses to electrical stimulation in cerebral cortex. J Neurochem 1980;34:203–209.

    Article  PubMed  CAS  Google Scholar 

  44. Cooper CE, Delpy DT, Nemoto EM. The relationship of oxygen delivery to absolute haemoglobin oxygenation and mitochondrial cytochrome oxidase redox state in the adult brain: a near-infrared spectroscopy study. Biochem J 1998;332:627–632.

    PubMed  CAS  Google Scholar 

  45. Quaresima, V., Springett, R., Cope, M., Wyatt, J. T., Delpy, D. T., Ferrari, M., and Cooper, C. E. Oxidation and reduction of cytochrome oxidase in the neonatal brain observed by in vivo near-infrared spectroscopy. Biochimica Biophysica Acta 1366(3), 291–300. 1998.

    Article  CAS  Google Scholar 

  46. Heekeren HR, Kohl M, Obrig H, Wenzel R, von Pannwitz W, Matcher SJ et al. Noninvasive assessment of changes in cytochrome-c oxidase oxidation in human subjects during visual stimulation. J Cereb Blood Flow Metab 1999;19:592–603.

    Article  PubMed  CAS  Google Scholar 

  47. Clark JB, Nicklas WJ, Degn H. The apparent Km for oxygen of rat brain mitochondrial respiration. J Neurochem 1976;26:409–411.

    Article  PubMed  CAS  Google Scholar 

  48. Starlinger H, Lubbers DW. Polarographic measurements of the oxygen pressure performed simultaneously with optical measurements of the redox state of the respiratory chain in suspensions of mitochondria under steady-state conditions at low oxygen tensions. Pflugers Arch 1973;341:15–22.

    Article  PubMed  CAS  Google Scholar 

  49. Oshino N, Sugano T, Oshino R, Chance B. Mitochondrial function under hypoxic conditions: the steady states of cytochrome a+a3 and their relation to the mitochondrial energy states. Biochim Biophys Acta 1974;368:298–310.

    Article  PubMed  CAS  Google Scholar 

  50. Chance B. Early reduction of cytochrome c in hypoxia. FEBS Lett 1988;226:343–346.

    Article  PubMed  CAS  Google Scholar 

  51. Wilson DF, Erecinska M, Drown C, Silver IA. The oxygen dependence of cellular energy metabolism. Arch Biochem Biophys 1979;195:485–493.

    Article  PubMed  CAS  Google Scholar 

  52. Wilson DF, Rumsey WL, Green TJ, Vanderkooi JM. The oxygen dependence of mitochondrial oxidative phosphorylation measured by a new optical method for measuring oxygen concentration. J Biol Chem 1988;263:2712–2718.

    PubMed  CAS  Google Scholar 

  53. Jobsis FF. Oxidative metabolism at low PO 2. Fed Proc 1972;31:1404–1413.

    PubMed  CAS  Google Scholar 

  54. Bienfait HF, Jacobs JM, Slater EC. Mitochondrial oxygen affinity as a function of redox and phosphate potentials. Biochim Biophys Acta 1975;376:446–457.

    Article  PubMed  CAS  Google Scholar 

  55. Muraoka S, Slater EC. The redox states of respiratory-chain components in rat-liver mitochondria. II. The “crossover” on the transition from state 3 to state 4. Biochim Biophys Acta 1969;180:227–236.

    Article  PubMed  CAS  Google Scholar 

  56. Cooper CE, Matcher SJ, Wyatt JS, Cope M, Brown GC, Nemoto EM et al. Near-infrared spectroscopy of the brain: relevance to cytochrome oxidase bioenergetics. Biochem Soc Trans 1994;22:974–980. •

    PubMed  CAS  Google Scholar 

  57. Cooper CE. The steady-state kinetics of cytochrome c oxidation by cytochrome oxidase. Biochim Biophys Acta 1990;1017:187–203.

    Article  PubMed  CAS  Google Scholar 

  58. Lahiri S, Ehleben W, Acker H. Chemoreceptor discharges and cytochrome redox changes of the rat carotid body: role of heme ligands. Proc Natl Acad Sci U S A 1999;96:9427–9432.

    Article  PubMed  CAS  Google Scholar 

  59. Pysh JJ, Khan T. Variations in mitochondrial structure and content of neurons and neuroglia in rat brain: An electron microscopic study. Brain Res 1972;36:1–18.

    Article  PubMed  CAS  Google Scholar 

  60. Lübbers DW. Oxygen delivery and microcirculation in the brain, In: Manabe, Zweifach, Messmer, editors. Microcirculation in Circulatory Disorders. Tokyo: Springer-Verlag; 1988;33–50.

    Chapter  Google Scholar 

  61. Sick TJ, Lutz PL, LaManna JC, Rosenthal M. Comparative brain oxygenation and mitochondrial redox activity in turtles and rats. J Appl Physiol 1982;53:1354–1359.

    PubMed  CAS  Google Scholar 

  62. Faraci FM, Breese KR. Nitric oxide mediates vasodilatation in response to activation of N-methyl-D-aspartate receptors in brain. Circ Res 1993;72:476–480.

    Article  PubMed  CAS  Google Scholar 

  63. Dirnagl U, Lindauer U, Villringer A. Role of nitric oxide in the coupling of cerebral blood flow to neuronal activation in rats. Neurosci Lett 1993;149:43–46.

    Article  PubMed  CAS  Google Scholar 

  64. Millar J. The nitric oxide/ascorbate cycle: How neurons may control their own oxygen supply. Med Hypoth 1995;45:21–26.

    Article  CAS  Google Scholar 

  65. Schottler F, Collins JL, Fergus A, Okonkwo D, Kassell NF, Lee KS. Structural interactions between NOS-positive neurons and blood vessels in the hippocampus. NeuroReport 1996;7:966–968.

    Article  PubMed  CAS  Google Scholar 

  66. Hank SI, LaManna JC, Light AI, Rosenthal M. Cerebral norepinephrine: Influence on cortical oxidative metabolism in situ. Science 1979;206:69–71.

    Article  Google Scholar 

  67. Liu XP, Miller MJ, Joshi MS, SadowskaKrowicka H, Clark DA, Lancaster JR. Diffusion-limited reaction of free nitric oxide with erythrocytes. J Biol Chem 1998;273:18709–18713.

    Article  PubMed  CAS  Google Scholar 

  68. Kosaka H, Seiyama A. Physiological role of nitric oxide as an enhancer of oxygen transfer from erythrocytes to tissues. Biochem Biophys Res Comm 1996;218:749–752.

    Article  PubMed  CAS  Google Scholar 

  69. Brown GC, Cooper CE. Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Lett 1994;356:295–298.

    Article  PubMed  CAS  Google Scholar 

  70. Brown GC. Nitric oxide regulates mitochondrial respiration and cell functions by inhibiting cytochrome oxidase. FEBS Lett 1995;369:136–139.

    Article  PubMed  CAS  Google Scholar 

  71. Torres J, Darley-Usmar V, Wilson MT. Inhibition of cytochrome c oxidase in turnover by nitric oxide: Mechanism and implications for control of respiration. Biochem J 1995;312:169–173.

    PubMed  CAS  Google Scholar 

  72. Clementi E, Brown GC, Foxwell N, Moncada S. On the mechanism by which vascular endothelial cells regulate their oxygen consumption. Proc Natl Acad Sci U S A 1999;96:1559–1562.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

LaManna, J.C. (2003). The Redox State of Cytochrome Oxidase in Brain in Vivo: An Historical Perspective. In: Dunn, J.F., Swartz, H.M. (eds) Oxygen Transport to Tissue XXIV. Advances in Experimental Medicine and Biology, vol 530. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0075-9_51

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0075-9_51

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4912-9

  • Online ISBN: 978-1-4615-0075-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics