Skip to main content

Modulating Autophagy and the “Reverse Warburg Effect”

  • Chapter
  • First Online:
  • 1116 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Autophagy is a highly regulated cellular pathway for degrading long-lived proteins and is the only known pathway for clearing cytoplasmic organelles. Autophagy is a major contributor to maintain cellular homeostasis and metabolism. The quality control of mitochondria is essential to maintain cell energy and this process appears to be achieved via autophagy. Warburg hypothesized that cancer growth is caused by the fact that tumor cells mainly generate energy by the non-oxidative breakdown of glucose. This cellular behavior relies on a respiratory impairment, characterized by a mitochondrial dysfunction, which results in a switch to glycolysis. Moreover, epithelial cancer cells may induce the Warburg effect in neighboring stromal fibroblasts in which autophagy was activated. Here, we introduce the autophagy process, its regulation, the selective pathways, and its role in cancer cell metabolism. We define the Warburg effect and the “reverse” hypothesis and we discuss the potential value of modulating autophagy. The association of the Warburg effect in tumor and stromal cells to cancer-related autophagy is of significant relevance in experimental therapeutics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cuervo AM (2004) Autophagy: in sickness and in health. Trends Cell Biol 14:70–77

    PubMed  Google Scholar 

  2. Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477

    CAS  PubMed  Google Scholar 

  3. Yang Z, Klionsky DJ (2009) An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol 335:1–32

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Hara T, Nakamura K, Matsui M et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889

    CAS  PubMed  Google Scholar 

  5. Qu X, Zou Z, Sun Q et al (2007) Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 128:931–946

    CAS  PubMed  Google Scholar 

  6. Pattingre S, Levine B (2006) Bcl-2 inhibition of autophagy: a new route to cancer? Cancer Res 66:2885–2888

    CAS  PubMed  Google Scholar 

  7. Shintani T, Klionsky DJ (2004) Autophagy in health and disease: a double-edged sword. Science 306:990–995

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Klionsky DJ (2005) Autophagy. Curr Biol 15:282–283

    Google Scholar 

  9. Klionsky DL, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290:1717–1721

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Mizushima N (2005) The pleiotropic role of autophagy: from protein metabolism to bactericide. Cell Death Differ 12:1535–1541

    CAS  PubMed  Google Scholar 

  11. Klionsky DJ, Cregg JM, Dunn WA et al (2003) A unified nomenclature for yeast autophagy-related genes. Dev Cell 5:539–545

    CAS  PubMed  Google Scholar 

  12. Liang XH, Jackson S, Seaman M et al (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402:672–676

    CAS  PubMed  Google Scholar 

  13. Pattingre S, Tassa A, Qu X et al (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122:927–939

    CAS  PubMed  Google Scholar 

  14. Liang C, Feng P, Ku B et al (2006) Autophagic and tumour suppressor activity of a novel Beclin 1-binding protein UVRAG. Nat Cell Biol 8:688–699

    CAS  PubMed  Google Scholar 

  15. Kihara A, Noda T, Ishihara N et al (2001) Two distinct Vps34 phosphatidylinositol 3-kinase complexes complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces. J Cell Biol 152:519–530

    CAS  PubMed  Google Scholar 

  16. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Vaccaro MI, Ropolo A, Grasso D et al (2008) A novel mammalian trans-membrane protein reveals an alternative initiation pathway for autophagy. Autophagy 4:388–390

    CAS  PubMed  Google Scholar 

  18. Itakura E, Mizushima N (2010) Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 6:764–776

    CAS  PubMed  Google Scholar 

  19. Yang Z, Klionsky DJ (2010) Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 22:124–131

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Høyer-Hansen M, Jäättelä M (2007) AMP-activated protein kinase: a universal regulator of autophagy? Autophagy 3:381–383

    PubMed  Google Scholar 

  21. Zheng M, Wang YH, Wu XN et al (2011) Inactivation of Rheb by PRAK-mediated phosphorylation is essential for energy-depletion-induced suppression of mTORC1. Nat Cell Biol 13:263–272

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Mortimore GE, Pösö AR (1987) Intracellular protein catabolism and its control during nutrient deprivation and supply. Ann Rev Nutr 7:539–564

    CAS  Google Scholar 

  23. Nobukuni T, Joaquin M, Roccio M et al (2005) Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc Natl Acad Sci USA 102:14238–14243

    CAS  PubMed  Google Scholar 

  24. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484

    CAS  PubMed  Google Scholar 

  25. Sancak Y, Bar-Peled L, Zoncu R et al (2010) Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141:290–303

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Gwinn DM, Shackelford DB, Egan DF et al (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30:214–226

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Levine B, Sinha S, Kroemer G (2008) Bcl-2 family members: dual regulators of apoptosis and autophagy. Autophagy 4:600–606

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Botti J, Djavaheri-Mergny M, Pilatte Y et al (2006) Autophagy signaling and the cogwheels of cancer. Autophagy 2:67–73

    CAS  PubMed  Google Scholar 

  29. Green DR, Wang R (2010) Calcium and energy: making the cake and eating it too? Cell 142:200–202

    CAS  PubMed  Google Scholar 

  30. Tracy K, Dibling BC, Spike BT et al (2007) BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy. Mol Cell Biol 27:6229–6242

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Sherr CJ (2006) Autophagy by ARF: a short story. Mol Cell 22:436–437

    CAS  PubMed  Google Scholar 

  32. Crighton D, Wilkinson S, Ryan KM (2007) DRAM links autophagy to p53 and programmed cell death. Autophagy 3:72–74

    CAS  PubMed  Google Scholar 

  33. Xia HG, Zhang L, Chen G et al (2010) Control of basal autophagy by calpain1 mediated cleavage of ATG5. Autophagy 6:61–66

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Mills KR, Reginato M, Debnath J et al (2004) Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is required for induction of autophagy during lumen formation in vitro. Proc Natl Acad Sci USA 101:3438–3443

    CAS  PubMed  Google Scholar 

  35. Pyo JO, Jang MH, Kwon YK et al (2005) Essential roles of Atg5 and FADD in autophagic cell death: dissection of autophagic cell death into vacuole formation and cell death. J Biol Chem 280:20722–20729

    CAS  PubMed  Google Scholar 

  36. Sarkar S, Rubinsztein DC (2006) Inositol and IP3 levels regulate autophagy: biology and therapeutic speculations. Autophagy 2:132–134

    CAS  PubMed  Google Scholar 

  37. Sarkar S, Perlstein EO, Imarisio S et al (2007) Small molecules enhance autophagy and reduce toxicity in Huntington’s disease models. Nat Chem Biol 3:331–338

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Mizushima N (2010) The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol 22:132

    CAS  PubMed  Google Scholar 

  39. Ropolo A, Grasso D, Pardo R et al (2007) The pancreatitis-induced vacuole membrane protein 1 triggers autophagy in mammalian cells. J Biol Chem 282:37124–37133

    CAS  PubMed  Google Scholar 

  40. Grasso D, Ropolo A, Lo Ré A et al (2011) Zymophagy, a novel selective autophagy pathway mediated by VMP1-USP9x-p62, prevents pancreatic cell death. J Biol Chem 286:8308–8324

    CAS  PubMed  Google Scholar 

  41. Lo RAE, Fernández-Barrena MG, Almada LL et al (2012) Novel AKT1-GLI3-VMP1 pathway mediates KRAS oncogene-induced autophagy in cancer cells. J Biol Chem 287:25325–25334

    Google Scholar 

  42. Molejon MI, Ropolo A, ReAL et al (2013) The VMP1-Beclin 1 interaction regulates autophagy induction. Sci Rep 3:1055

    PubMed Central  PubMed  Google Scholar 

  43. Tian Y, Li Z, Hu W et al (2010) C. elegans screen identifies autophagy genes specific to multicellular organisms. Cell 141:1042–1055

    CAS  PubMed  Google Scholar 

  44. Calvo-Garrido J, Escalante R (2010) Autophagy dysfunction and ubiquitin-positive protein aggregates in Dictyostelium cells lacking Vmp1. Autophagy 6:100–109

    CAS  PubMed  Google Scholar 

  45. Pardo R, Lo RA, Archange C et al (2010) Gemcitabine induces the VMP1-mediated autophagy pathway to promote apoptotic death in human pancreatic cancer cells. Pancreatology 10:19–26

    CAS  PubMed  Google Scholar 

  46. Mariño G, López-Otín C (2004) Autophagy: molecular mechanisms, physiological functions and relevance in human pathology. Cell Mol Life Sci 61:1439–1454

    PubMed  Google Scholar 

  47. Kuma A, Mizushima N, Ishihara N et al (2002) Formation of the approximately 350-kDa Apg12-Apg5.Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J Biol Chem 277:18619–18625

    CAS  PubMed  Google Scholar 

  48. Mizushima N, Noda T, Yoshimori T et al (1998) A protein conjugation system essential for autophagy. Nature 395:395–398

    CAS  PubMed  Google Scholar 

  49. Kim J, Dalton VM, Eggerton KP et al (1999) Apg7p/Cvt2p is required for the cytoplasm-to-vacuole targeting, macroautophagy, and peroxisome degradation pathways. Mol Biol Cell 10:1337–1351

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Yuan W, Stromhaug PE, Dunn WA Jr (1999) Glucose-induced autophagy of peroxisomes in Pichia pastoris requires a unique E1-like protein. Mol Biol Cell 10:1353–1366

    CAS  Google Scholar 

  51. Tanida I, Tanida-Miyake E, Ueno T et al (2001) The human homolog of Saccharomyces cerevisiae Apg7p is a protein-activating enzyme for multiple substrates including human Apg12p, GATE-16, GABARAP, and MAP-LC3. J Biol Chem 276:1701–1706

    CAS  PubMed  Google Scholar 

  52. Shintani T, Mizushima N, Ogawa Y et al (1999) Apg10p, a novel protein-conjugating enzyme essential for autophagy in yeast. EMBO J 18:5234–5241

    CAS  PubMed  Google Scholar 

  53. Mizushima N, Noda T, Ohsumi Y (1999) Apg16p is required for the function of the Apg12p-Apg5p conjugate in the yeast autophagy pathway. EMBO J 18:3888–3896

    CAS  PubMed  Google Scholar 

  54. Ichimura Y, Kirisako T, Takao T et al (2000) A ubiquitin-like system mediates protein lipidation. Nature 408:488–492

    CAS  PubMed  Google Scholar 

  55. Burman C, Ktistakis NT (2010) Regulation of autophagy by phosphatidylinositol 3-phosphate. FEBS Lett 584:1302–1312

    CAS  PubMed  Google Scholar 

  56. Mari M, Griffith J, Rieter E et al (2010) An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis. J Cell Biol 190:1005–1022

    CAS  PubMed  Google Scholar 

  57. Hayashi-Nishino M, Fujita N, Noda T et al (2009) A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol 11:1433–1437

    CAS  PubMed  Google Scholar 

  58. Hailey DW, Rambold AS, Satpute-Krishnan P et al (2010) Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141:656–667

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Ravikumar B, Moreau K, Jahreiss L et al (2010) Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat Cell Biol 12:747–757

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Tooze SA, Yoshimori T (2010) The origin of the autophagosomal membrane. Nat Cell Biol 12:831–835

    CAS  PubMed  Google Scholar 

  61. Di Bartolomeo SC, Nazio F et al (2010) The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy. J Cell Biol 191:155–168

    CAS  PubMed  Google Scholar 

  62. Liang C, Lee JS, Inn KS et al (2008) Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nat Cell Biol 10:776–787

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Matsunaga K, Saitoh T, Tabata K et al (2009) Two Beclin 1-binding proteins, Atg14 L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol 11:385–396

    CAS  PubMed  Google Scholar 

  64. Molejon MI, Ropolo A, Vaccaro MI (2013) VMP1 is a new player in the regulation of the autophagy-specific phosphatidylinositol 3-kinase complex activation. Autophagy 2013 Apr 4;9(6) [Epub ahead of print]

    Google Scholar 

  65. Reggiori F, Komatsu M, Finley K et al (2012) Selective types of autophagy. Int J Cell Biol 2012:156272

    Google Scholar 

  66. Schwarten M, Mohrluder J, Ma P et al (2009) Nix directly binds to GABARAP: a possible crosstalk between apoptosis and autophagy. Autophagy 5:690–698

    CAS  PubMed  Google Scholar 

  67. Novak I, Kirkin V, McEwan DG et al (2010) Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep 11:45–51

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Schweers RL, Zhang J, Randall MS et al (2007) Nix is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci USA 104:19500–19505

    CAS  PubMed  Google Scholar 

  69. Sandoval H, Thiagarajan P, Dasgupta SK et al (2008) Essential role for Nix in autophagic maturation of erythroid cells. Nature 454:232–235

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Mortensen M, Ferguson DJ, Edelmann M et al (2010) Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo. Proc Natl Acad Sci USA 107:832–837

    CAS  PubMed  Google Scholar 

  71. Stephenson LM, Miller BC, Ng A et al (2009) Identification of Atg5-dependent transcriptional changes and increases in mitochondrial mass in Atg5-deficient T-lymphocytes. Autophagy 5:625–635

    CAS  PubMed  Google Scholar 

  72. Hubbard VM, Valdor R, Patel B et al (2010) Macroautophagy regulates energy metabolism during effector T cell activation. J Immunol 185:7349–7357

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Jia W, He YW (2011) Temporal regulation of intracellular organelle homeostasis in T-lymphocytes by autophagy. J Immunol 186:5313–5322

    CAS  PubMed  Google Scholar 

  74. Abeliovich A (2010) Parkinson’s disease: mitochondrial damage control. Nature 463:744–745

    CAS  PubMed  Google Scholar 

  75. Narendra DP, Jin SM, Tanaka A et al (2010) PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biology 8 Article ID e1000298

    Google Scholar 

  76. Jin SM, Lazarou M, Wang C et al (2010) Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol 191:933–942

    CAS  PubMed  Google Scholar 

  77. Deas E, Plun-Favreau H, Gandhi S et al (2011) PINK1 cleavage at position A103 by the mitochondrial protease PARL. Hum Mol Genet 20:867–879

    CAS  PubMed  Google Scholar 

  78. Shi G, Lee JR, Grimes DA et al (2011) Functional alteration of PARL contributes to mitochondrial dysregulation in Parkinson’s disease. Hum Mol Genet 20:1966–1974

    CAS  PubMed  Google Scholar 

  79. Okatsu K, Saisho K, Shimanuki M et al (2010) P62/SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondria. Genes Cells 15:887–900

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Narendra DP, Kane LA, Hauser DN et al (2010) p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy 6:1090–1106

    CAS  PubMed  Google Scholar 

  81. Wallace DC (2012) Mitochondria and cancer. Nat Rev Cancer 12:685–698

    CAS  PubMed  Google Scholar 

  82. Mathew R, White E (2011) Autophagy in tumorigenesis and energy metabolism: friend by day, foe by night. Curr Opin Genet Dev 21:113–119

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Mizushima N, Levine B, Cuervo AM et al (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Høyer-Hansen M, Jäättelä M (2008) Autophagy: an emerging target for cancer therapy. Autophagy 4:574–580

    PubMed  Google Scholar 

  85. Toth S, Nagy K, Palfia Z, Rez G (2002) Cellular autophagic capacity changes during azaserine-induced tumour progression in the rat pancreas: Up-regulation in all premalignant stages and down-regulation with loss of cycloheximide sensitivity of segregation along with malignant transformation. Cell Tissue Res 309:409416

    Google Scholar 

  86. Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, Rosen J, Eskelinen EL, Mizushima N, Ohsumi Y, Cattoretti G, Levine B (2003) Promotion of tumorigenesis by heterozygous disruption of the Beclin 1 autophagy gene. J Clin Invest 112:1809–1820

    Google Scholar 

  87. Levine B (2007) Cell biology: autophagy and cancer. Nature 446:745–747

    CAS  PubMed  Google Scholar 

  88. Mathew R, Karantza-Wadsworth V, White E (2007) Role of autophagy in cancer. Nat Rev Cancer 7:961–967

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Buchler P, Reber HA, Lavey RS et al (2004) Tumor hypoxia correlates with metastatic tumor growth of pancreatic cancer in an orthotopic murine model. J Surg Res 120:295–303

    PubMed  Google Scholar 

  90. Izuishi K, Kato K, Ogura T et al (2000) Remarkable tolerance of tumor cells to nutrient deprivation: possible new biochemical target for cancer therapy. Cancer Res 60:6201–6207

    CAS  PubMed  Google Scholar 

  91. Esumi H, Izuishi K, Kato K et al (2002) Hypoxia and nitric oxide treatment confer tolerance to glucose starvation in a 5’-AMP-activated protein kinase-dependent manner. J Biol Chem 277:32791–32798

    CAS  PubMed  Google Scholar 

  92. Fujii S, Mitsunaga S, Yamazaki M et al (2008) Autophagy is activated in pancreatic cancer cells and correlates with poor patient outcome. Cancer Sci 99:1813–1819

    CAS  PubMed  Google Scholar 

  93. DeNardo DG, Johansson M, Coussens LM (2008) Inflaming gastrointestinal oncogenic programming. Cancer Cell 14:7–9

    CAS  PubMed  Google Scholar 

  94. Abe R, Yamagishi S (2008) AGE-RAGE system and carcinogenesis. Curr Pharm Des 14:940–945

    CAS  PubMed  Google Scholar 

  95. Arumugam T, Simeone DM, Van GK, Logsdon CD (2005) S100P promotes pancreatic cancer growth, survival, and invasion. Clin Cancer Res 11:5356–5364

    CAS  PubMed  Google Scholar 

  96. Kang R, Tang D, Schapiro NE et al (2009) The receptor for advanced glycation end products (RAGE) sustains autophagy and limits apoptosis, promoting pancreatic tumor cell survival. Cell Death Differ 16:1–11

    Google Scholar 

  97. Kewley RJ, Whitelaw ML, Chapman-Smith A (2004) The mammalian basic helix-loop-helix/PAS family of transcriptional regulators. Int J Biochem Cell Biol 36:189–204

    CAS  PubMed  Google Scholar 

  98. Azad MB, Chen Y, Henson ES et al (2008) Hypoxia induces autophagic cell death in apoptosis-competent cells through a mechanism involving BNIP3. Autophagy 4:195–204

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Burton TR, Gibson SB (2009) The role of Bcl-2 family member BNIP3 in cell death and disease: NIPping at the heels of cell death. Cell Death Differ 16:515–523

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Okami J, Simeone DM, Logsdon CD (2004) Silencing of the hypoxia-inducible cell death protein BNIP3 in pancreatic cancer. Cancer Res 64:5338–5346

    CAS  PubMed  Google Scholar 

  101. Mahon PC, Baril P, Bhakta V et al (2007) S100A4 contributes to the suppression of BNIP3 expression, chemoresistance, and inhibition of apoptosis in pancreatic cancer. Cancer Res 67:6786–6795

    CAS  PubMed  Google Scholar 

  102. Abe T, Toyota M, Suzuki H et al (2005) Upregulation of BNIP3 by 5-aza-2’-deoxycytidine sensitizes pancreatic cancer cells to hypoxia-mediated cell death. J Gastroenterol 40:504–510

    CAS  PubMed  Google Scholar 

  103. Guan J, Stromhaug PE, George MD et al (2001) Cvt18/Gsa12 is required for cytoplasm-to-vacuole transport, pexophagy, and autophagy in Saccharomyces cerevisiae and Pichia pastoris. Mol Biol Cell 12:3821–3838

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Proikas-Cezanne T, Waddell S, Gaugel A et al (2004) WIPI-1alpha (WIPI49), a member of the novel 7-bladed WIPI protein family, is aberrantly expressed in human cancer and is linked to starvation-induced autophagy. Oncogene 23:9314–9325

    CAS  PubMed  Google Scholar 

  105. Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    CAS  PubMed  Google Scholar 

  106. Nelson D, Cox D (2008) Lehninger principles of biochemistry (chapter 14). WH Freeman and Co, New York

    Google Scholar 

  107. Bartrons R, Caro J (2007) Hypoxia, glucose metabolism and the Warburg’s effect. J Bioenerg Biomembr 39:223–229

    CAS  PubMed  Google Scholar 

  108. Gogvadze V, Zhivo tovskyB, Orrenius S (2010) The Warburg effect and mitochondrial stability in cancer cells. Mol Asp Med 31:60–74

    CAS  Google Scholar 

  109. Vincent M (2011) Cancer: a de-repression of a default survival program common to all cells? Bioessays 34:72–82

    PubMed  Google Scholar 

  110. Bensinger SJ, Christofk HR (2012) New aspects of the Warburg effect in cancer cell biology. Semin Cell Dev Biol 23(4):352–361

    CAS  PubMed  Google Scholar 

  111. Bensaad K, Tsuruta A, Selak MA et al (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126:107–120

    CAS  PubMed  Google Scholar 

  112. Nilsson LM, Forshell TZ, Rimpi S et al (2012) Mouse genetics suggests cell-context dependency for Myc-regulated metabolic enzymes during tumorigenesis. PLoS Genet 8:e1002573. doi: 10.1371

    Google Scholar 

  113. Vincent AS, Phan TT, Mukhopadhyay A et al (2008) Human skin keloid fibroblasts display bioenergetics of cancer cells. J Invest Dermatol 128:702–709

    CAS  PubMed  Google Scholar 

  114. Pavlides S, Whitaker-Menezes D, Castello-Cross R et al (2009) The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 8:3984–4001

    CAS  PubMed  Google Scholar 

  115. Martinez-Outschoorn UE, Pavlides S, Whitaker-Menezes D et al (2010) Tumor cells induce the cancer associated fibroblast phenotype via caveolin-1 degradation: implication for breast cancer and DICS therapy with autophagy inhibitors. Cell Cycle 9:2423–2433

    CAS  PubMed  Google Scholar 

  116. Lisanti MP, Martinez-Outschoorn UE, Chiavarina B et al (2010) Understanding the “lethal” drivers of tumor-stroma co-evolution: emerging roles for hypoxia, oxidative stress and autophagy/mitophagy in the tumor micro-environment. Cancer Biol Ther 10:537–542

    CAS  PubMed  Google Scholar 

  117. Bonuccelli G, Tsirigos A, Whitaker-Menezes D et al (2010) Ketones and lactate “fuel” tumor growth and metastasis: evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle 9:3506–3514

    CAS  PubMed  Google Scholar 

  118. Witkiewicz AK, Dasgrupta A, Sotgia F et al (2009) An absence of stromal Caveolin-1 expression predicts early tumor recurrence and poor clinical outcome in human breasts cancers. Am J Pathol 174:2023–2034

    CAS  PubMed  Google Scholar 

  119. Goligorsky MS, Li H, Brodski S et al (2001) Relationship between caveolae and eNOS: everything in proximity and the proximity of everything. Am J Physiol Renal Physiol 283:1–10

    Google Scholar 

  120. Ignarro LJ, Buga GM, Wood KS et al (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 84:9265–9269

    CAS  PubMed  Google Scholar 

  121. Boveris A, Costa LE, Poderoso JJ et al (2000) Regulation of mitochondrial respiration by oxygen and nitric oxide. Ann N Y Acad Sci 899:121–135

    CAS  PubMed  Google Scholar 

  122. Lee J, Giordano S, Zhang J (2012) Autophagy, mitochondria and oxidative stress: cross-talk and redox signaling. Biochem J 441:523–540

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82:291–295

    CAS  PubMed  Google Scholar 

  124. Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605

    CAS  PubMed  Google Scholar 

  125. Boveris A, Cadenas E (1997) Cellular sources and steady-state levels of reactive oxygen species. In: Biadasz Clerch L, Massaro, DJ (eds) Oxygen, Gene Expression and Cellular Function. Marcel Dekker, New York, pp. 1–25

    Google Scholar 

  126. Antunes F, Cadenas E (2001) Cellular titration of apoptosis with steady-state concentrations of H2O2: submicromolar levels of H2O2 induce apoptosis through Fenton chemistry independent of the cellular thiol state. Free Radic Biol Med 9:1008–1018

    Google Scholar 

  127. Antunes F, Cadenas E, Brunk U (2001) Apoptosis induced by exposure to a low steady-state concentration of H2O2 is a consequence of lysosomal rupture. Biochem J 356:549–555

    CAS  PubMed  Google Scholar 

  128. Ermak G, Sojitra S, Yin F et al (2012) Chronic expression of RCAN1-1 L protein induces mitochondrial autophagy and metabolic shift from oxidative phosphorylation to glycolysis in neuronal cells. J Biol Chem 287:14088–14098

    CAS  PubMed  Google Scholar 

  129. BelAiba RS, Djordjevic T, Bonello S et al (2004) Redox-sensitive regulation of the HIF pathway under non-hypoxic conditions in pulmonary artery smooth muscle cells. Biol Chem 385:249–257

    CAS  PubMed  Google Scholar 

  130. Yao J, Hamilton RT, Cadenas E (2010) Decline in mitochondrial bioenergetics and shift to ketogenic profile in brain during reproductive senescence. Biochim. Biophys Acta 1800: 1121–1126

    Google Scholar 

  131. Tzagaloff A (1982) Mitochondria. Plenum Press, London

    Google Scholar 

  132. Vonck J, Schafer E (2009) Supramolecular organization of protein complexes in the mitochondrial inner membrane. Biochim Biophys Acta 1793:117–124

    CAS  PubMed  Google Scholar 

  133. Nisoli E, Clementi E, Moncada S et al (2004) Mitochondrial biogenesis as a signaling framework. Biochem Pharmacol 67:1–15

    CAS  PubMed  Google Scholar 

  134. Scarpulla RC (2008) Transcriptional paradigs in mammalian mitochondrial biogenesis and function. Physiol Rev 88:611–638

    CAS  PubMed  Google Scholar 

  135. Sotgia F, Whitaker-Menezes D, Martinez-Outschoon UE et al (2012) Mitochondrial metabolism in cancer metastasis. Cell Cycle 11:1445–1454

    CAS  PubMed  Google Scholar 

  136. Rausch V, Liu L, Apel A, Rettig T, Gladkich J, Labsch S et al (2012) Autophagy mediates survival of pancreatic tumour-initiating cells in a hypoxic microenvironment. J Pathol 227:325–335

    CAS  PubMed  Google Scholar 

  137. Smith-Vikos T (2012) A report of the James Watson lecture at Yale University. Yale J Biol Med 85:417–419

    PubMed Central  PubMed  Google Scholar 

  138. Del Barco SVazquez-Martin, Cufi S et al (2011) Metformin: multi-faceted protection against cancer. Oncotarget 2:896–917

    PubMed  Google Scholar 

  139. Chiavarina B, Whitaker-Menezes D, Martinez-Outschoorn UE et al (2011) Pyruvate kinase expression (PKM1 and PKM2) in cancer-associated fibroblasts drives stromal nutrient production and tumor growth. Cancer Biol Ther 12:1101–1113

    CAS  PubMed  Google Scholar 

  140. Vazquez-Martin A, Corominas-Faja B, Cufi S et al (2013) The mitochondrial H(+)-ATP synthase and the lipogenic switch: new core components of metabolic reprogramming in induced pluripotent stem (iPS) cells. Cell Cycle 12:207–218

    CAS  PubMed  Google Scholar 

  141. Amaravadi RK, Lippincott-Schwartz J, Yin XM et al (2011) Principles and current strategies for targeting autophagy for cancer treatment. Clin Cancer Res 17:654–666

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Mancias JD, Kimmelman AC (2011) Targeting autophagy addiction in cancer. Oncotarget 2:1302–1306

    PubMed  Google Scholar 

  143. Ewald B, Sampath D, Plankett W (2008) Nucleoside analogs: molecular mechanisms signaling cell death. Oncogene 27:6522–6237

    CAS  PubMed  Google Scholar 

  144. Jackson AS, Jain P, Watkins CR et al (2010) Efficacy and tolerability of limited field radiotherapy with concurrent capecitabine in local advanced pancreatic cancer. Clin Oncol (R Coll Radiol) 22:570–577

    CAS  Google Scholar 

  145. Vivanco I, Sawyers C (2002) The phosphatidylinositol 3-kinase Akt pathway in human cancer. Nat Rev Cancer 2:489–501

    CAS  PubMed  Google Scholar 

  146. Sheith R, Walsh N, Clynes M et al (2010) Challenges of drug resistance on the management of pancreatic cancer. Expert Rev Anticancer Ther 10:1647–1661

    Google Scholar 

  147. Conroy T, Desseigne F, Ychoy M et al (2010) Randomized phase III trial comparing FOLFIRINOZ (F: 5FU/leucovorine [LV], irinotecan [I] and oxaliplatin [O]) versus gemcitabine (G) as first-line treatment for metastatic pancreatic adenocarcinoma (MPA): prepanned interim analysis results of the PRODIGE 4/ACOORD 11 trial. J Clin Oncol 28 (May 20 supplement): 4010

    Google Scholar 

  148. Tung W, Wang Y, Cout PW et al (2011) Use of irinotecan for treatment of small cell carcinoma of prostate. Prostate 71:675–681

    CAS  PubMed  Google Scholar 

  149. Ropolo A, Bagnes CI, Molejon M et al (2012) Chemotherapy and autophagy-mediated cell death in pancreatic cancer cells. Pancreatology 12:1–7

    CAS  PubMed  Google Scholar 

  150. Hughson LR, Poon VI, Spowart JE et al (2012) Implications of therapy-induced selective autophagy on tumor metabolism and survival. Int J Cell Biol 2012:872091

    Google Scholar 

  151. Zhang L, Yu J, Pan H et al (2007) Small molecule regulators of autophagy identified by an image-based high-throughput screen. Proc Natl Acad Sci USA 104:19023–19028

    CAS  PubMed  Google Scholar 

  152. Farkas T, Høyer-Hansen M, Jäättelä M (2009) Identification of novel autophagy regulators by a luciferase-based assay for the kinetics of autophagic flux. Autophagy 5:1018–1025

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Our work is supported by grants from the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), and the University of Buenos Aires.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria I. Vaccaro PhD, AGAF .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vaccaro, M., Gonzalez, C., Alvarez, S., Ropolo, A. (2014). Modulating Autophagy and the “Reverse Warburg Effect”. In: Kanner, S. (eds) Tumor Metabolome Targeting and Drug Development. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9545-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9545-1_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9544-4

  • Online ISBN: 978-1-4614-9545-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics