Skip to main content

Biodegradable Polymers for Focal Delivery Systems

  • Chapter
  • First Online:

Part of the book series: Advances in Delivery Science and Technology ((ADST))

Abstract

Biodegradable polymers for focal drug delivery application play both structural and functional roles. Delivery via these biodegradable polymeric carriers is one of the simplest and most successful approaches due to its physicochemical properties and biocompatibility of these polymers. Thus, these polymers have been increasingly used as implants, invasive delivery systems, and to deliver drugs to a specific site or body compartment. Biodegradable materials used in clinically tested for focal drug therapy are both from natural origin (gelatin, collagen, hyaluronic acid, etc.) and synthetic origin (prepared from lactic acid, glycolic acid, caprolactone, etc.). This chapter provides a review of both introductory and state-of-the-art information about the polymeric carriers used in focal drug therapy for diseased states that are most exploited for localized treatment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jain JP, Yenet Ayen W, Domb AJ, Kumar N (2011) Biodegradable polymers in clinical use and clinical development. Wiley, Hoboken, NJ, pp 1–58

    Google Scholar 

  2. Mittal A, Chitkara D, Kumar N, Pawar R, Domb A, Corn B (2007) Polymeric Carriers for Regional Drug Therapy, Smart polymers. CRC, Boca Raton, FL, pp 359–400

    Google Scholar 

  3. Dang JM, Leong KW (2006) Natural polymers for gene delivery and tissue engineering. Adv Drug Deliv Rev 58(4):487–499

    CAS  PubMed  Google Scholar 

  4. Lee CH, Singla A, Lee Y (2001) Biomedical applications of collagen. Int J Pharm 221(1–2):1–22

    CAS  PubMed  Google Scholar 

  5. Capito RM, Spector M (2007) Collagen scaffolds for nonviral IGF-1 gene delivery in articular cartilage tissue engineering. Gene Ther 14(9):721–732

    CAS  PubMed  Google Scholar 

  6. Eliopoulos N, Lejeune L, Martineau D, Galipeau J (2004) Human-compatible collagen matrix for prolonged and reversible systemic delivery of erythropoietin in mice from gene-modified marrow stromal cells. Mol Ther 10(4):741–748

    CAS  PubMed  Google Scholar 

  7. Aishwarya S, Mahalakshmi S, Sehgal PK (2008) Collagen-coated polycaprolactone microparticles as a controlled drug delivery system. J Microencapsul 25(5):298–306

    CAS  PubMed  Google Scholar 

  8. Ananta M, Aulin CE, Hilborn J, Aibibu D, Houis S, Brown RA, Mudera V (2009) A poly(lactic acid-co-caprolactone)-collagen hybrid for tissue engineering applications. Tissue Eng Part A 15(7):1667–1675

    CAS  PubMed  Google Scholar 

  9. Beier JP, Klumpp D, Rudisile M, Dersch R, Wendorff JH, Bleiziffer O, Arkudas A, Polykandriotis E, Horch RE, Kneser U (2009) Collagen matrices from sponge to nano: new perspectives for tissue engineering of skeletal muscle. BMC Biotechnol 9:34

    PubMed Central  PubMed  Google Scholar 

  10. Duan X, McLaughlin C, Griffith M, Sheardown H (2007) Biofunctionalization of collagen for improved biological response: scaffolds for corneal tissue engineering. Biomaterials 28:78–88

    CAS  PubMed  Google Scholar 

  11. Becker C, Olde Damink L, Laeufer T, Brehmer B, Heschel I, Jakse G (2006) ‘UroMaix’ scaffolds: novel collagen matrices for application in tissue engineering of the urinary tract. Int J Artif Organs 29(8):764–771

    CAS  PubMed  Google Scholar 

  12. Khan W, Yadav D, Domb AJ, Kumar N (2011) Biodegradable polymers in clinical use and clinical development. Wiley, Hoboken, NJ, pp 59–89

    Google Scholar 

  13. Cai S, Zhai Y, Xu G, Lu S, Zhou W, Ye X (2011) Preparation and properties of calcium phosphate cements incorporated gelatin microspheres and calcium sulfate dihydrate as controlled local drug delivery system. J Mater Sci Mater Med 22(11):2487–2496

    CAS  PubMed  Google Scholar 

  14. Samad A, Sultana Y, Khar RK, Chuttani K, Mishra AK (2009) Gelatin microspheres of rifampicin cross-linked with sucrose using thermal gelation method for the treatment of tuberculosis. J Microencapsul 26(1):83–89

    CAS  PubMed  Google Scholar 

  15. Cao FL, Xi YW, Tang L, Yu AH, Zhai GX (2009) Preparation and characterization of curcumin loaded gelatin microspheres for lung targeting. Zhong Yao Cai 32(3):423–426

    CAS  PubMed  Google Scholar 

  16. Ohta S, Nitta N, Sonoda A, Seko A, Tanaka T, Takahashi M, Kimura Y, Tabata Y, Murata K (2009) Cisplatin-conjugated degradable gelatin microspheres: fundamental study in vitro. Br J Radiol 82(977):380–385

    CAS  PubMed  Google Scholar 

  17. Featherstone C (1997) Fibrin sealants for haemostasis and drug delivery. Lancet 349(9048):334

    CAS  PubMed  Google Scholar 

  18. Greco F, de Palma L, Spagnolo N, Rossi A, Specchia N, Gigante A (1991) Fibrin-antibiotic mixtures: an in vitro study assessing the possibility of using a biologic carrier for local drug delivery. J Biomed Mater Res 25(1):39–51

    CAS  PubMed  Google Scholar 

  19. Cruysberg LP, Nuijts RM, Gilbert JA, Geroski DH, Hendrikse F, Edelhauser HF (2005) In vitro sustained human transscleral drug delivery of fluorescein-labeled dexamethasone and methotrexate with fibrin sealant. Curr Eye Res 30(8):653–660

    CAS  PubMed  Google Scholar 

  20. Miyazaki S, Ishii K, Takada M (1982) Use of fibrin film as a carrier for drug delivery: a long-acting delivery system for pilocarpine into the eye. Chem Pharm Bull (Tokyo) 30(9):3405–3407

    CAS  Google Scholar 

  21. Senderoff RI, Sheu MT, Sokoloski TD (1991) Fibrin based drug delivery systems. J Parenter Sci Technol 45(1):2–6

    CAS  PubMed  Google Scholar 

  22. Kupcsik L, Alini M, Stoddart MJ (2009) Epsilon-aminocaproic acid is a useful fibrin degradation inhibitor for cartilage tissue engineering. Tissue Eng Part A 15(8):2309–2313

    CAS  PubMed  Google Scholar 

  23. Sugitachi A, Takatsuka Y, Numata N, Kawahara T, Hirata M, Kido T, Sakamoto I (1989) Loco-regional cancer chemotherapy with a new drug delivery system, “anticancer drug-fibrin clot”. Gan To Kagaku Ryoho 16(8 Pt 2):2814–2817

    CAS  PubMed  Google Scholar 

  24. Ahmed TA, Dare EV, Hincke M (2008) Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng Part B Rev 14(2):199–215

    CAS  PubMed  Google Scholar 

  25. Breen A, Dockery P, O’Brien T, Pandit A (2009) Fibrin scaffold promotes adenoviral gene transfer and controlled vector delivery. J Biomed Mater Res A 89(4):876–884

    PubMed  Google Scholar 

  26. Mol A, van Lieshout MI, Dam-de Veen CG, Neuenschwander S, Hoerstrup SP, Baaijens FP, Bouten CV (2005) Fibrin as a cell carrier in cardiovascular tissue engineering applications. Biomaterials 26(16):3113–3121

    CAS  PubMed  Google Scholar 

  27. Ye Q, Zund G, Benedikt P, Jockenhoevel S, Hoerstrup SP, Sakyama S, Hubbell JA, Turina M (2000) Fibrin gel as a three dimensional matrix in cardiovascular tissue engineering. Eur J Cardiothorac Surg 17(5):587–591

    CAS  PubMed  Google Scholar 

  28. Lammel AS, Hu X, Park SH, Kaplan DL, Scheibel TR (2010) Controlling silk fibroin particle features for drug delivery. Biomaterials 31(16):4583–4591

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Hofmann S, Foo CT, Rossetti F, Textor M, Vunjak-Novakovic G, Kaplan DL, Merkle HP, Meinel L (2006) Silk fibroin as an organic polymer for controlled drug delivery. J Control Release 111(1–2):219–227

    CAS  PubMed  Google Scholar 

  30. Cilurzo F, Gennari CG, Selmin F, Marotta LA, Minghetti P, Montanari L (2011) An investigation into silk fibroin conformation in composite materials intended for drug delivery. Int J Pharm 414(1–2):218–224

    CAS  PubMed  Google Scholar 

  31. Wenk E, Wandrey AJ, Merkle HP, Meinel L (2008) Silk fibroin spheres as a platform for controlled drug delivery. J Control Release 132(1):26–34

    CAS  PubMed  Google Scholar 

  32. Bessa PC, Balmayor ER, Azevedo HS, Nurnberger S, Casal M, van Griensven M, Reis RL, Redl H (2010) Silk fibroin microparticles as carriers for delivery of human recombinant BMPs. Physical characterization and drug release. J Tissue Eng Regen Med 4(5):349–355

    CAS  PubMed  Google Scholar 

  33. Gobin AS, Rhea R, Newman RA, Mathur AB (2006) Silk-fibroin-coated liposomes for long-term and targeted drug delivery. Int J Nanomedicine 1(1):81–87

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Bhowmik BB, Sa B, Mukherjee A (2006) Preparation and in vitro characterization of slow release testosterone nanocapsules in alginates. Acta Pharm 56(4):417–429

    CAS  PubMed  Google Scholar 

  35. Dettmar PW, Strugala V, Tselepis C (2007) The effect of alginates on deoxycholic-acid-induced changes in oesophageal mucosal biology at pH 4. J Biomater Sci Polym Ed 18(3):317–333

    CAS  PubMed  Google Scholar 

  36. Varshosaz J (2012) Dextran conjugates in drug delivery. Expert Opin Drug Deliv 9(5):509–523

    CAS  PubMed  Google Scholar 

  37. Liu L, Zheng M, Renette T, Kissel T (2012) Modular synthesis of folate conjugated ternary copolymers: polyethylenimine-graft-polycaprolactone-block-poly(ethylene glycol)-folate for targeted gene delivery. Bioconjug Chem 23:1211–1220

    CAS  PubMed  Google Scholar 

  38. Varshosaz J, Emami J, Ahmadi F, Tavakoli N, Minaiyan M, Fassihi A, Mahzouni P, Dorkoosh F (2010) Preparation of budesonide-dextran conjugates using glutarate spacer as a colon-targeted drug delivery system: in vitro/in vivo evaluation in induced ulcerative colitis. J Drug Target 19(2):140–153

    PubMed  Google Scholar 

  39. Varshosaz J, Emami J, Fassihi A, Tavakoli N, Minaiyan M, Ahmadi F, Mahzouni P, Dorkoosh F (2010) Effectiveness of budesonide-succinate-dextran conjugate as a novel prodrug of budesonide against acetic acid-induced colitis in rats. Int J Colorectal Dis 25(10):1159–1165

    PubMed  Google Scholar 

  40. Namkung S, Chu CC (2007) Partially biodegradable temperature- and pH-responsive poly(N-isopropylacrylamide)/dextran-maleic acid hydrogels: formulation and controlled drug delivery of doxorubicin. J Biomater Sci Polym Ed 18(7):901–924

    CAS  PubMed  Google Scholar 

  41. Abdullah S, Wendy-Yeo WY, Hosseinkhani H, Hosseinkhani M, Masrawa E, Ramasamy R, Rosli R, Rahman SA, Domb AJ (2010) Gene transfer into the lung by nanoparticle dextran-spermine/plasmid DNA complexes. J Biomed Biotechnol 2010:284840

    PubMed Central  PubMed  Google Scholar 

  42. Mattioli-Belmonte M, Gigante A, Muzzarelli RA, Politano R, De Benedittis A, Specchia N, Buffa A, Biagini G, Greco F (1999) N,N-dicarboxymethyl chitosan as delivery agent for bone morphogenetic protein in the repair of articular cartilage. Med Biol Eng Comput 37(1):130–134

    CAS  PubMed  Google Scholar 

  43. Trapani A, De Giglio E, Cafagna D, Denora N, Agrimi G, Cassano T, Gaetani S, Cuomo V, Trapani G (2011) Characterization and evaluation of chitosan nanoparticles for dopamine brain delivery. Int J Pharm 419(1–2):296–307

    CAS  PubMed  Google Scholar 

  44. Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62(1):83–99

    CAS  PubMed  Google Scholar 

  45. Bowman K, Leong KW (2006) Chitosan nanoparticles for oral drug and gene delivery. Int J Nanomedicine 1(2):117–128

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 100(1):5–28

    CAS  PubMed  Google Scholar 

  47. Alonso MJ, Sanchez A (2003) The potential of chitosan in ocular drug delivery. J Pharm Pharmacol 55(11):1451–1463

    CAS  PubMed  Google Scholar 

  48. Al-Ghananeem AM, Saeed H, Florence R, Yokel RA, Malkawi AH (2010) Intranasal drug delivery of didanosine-loaded chitosan nanoparticles for brain targeting; an attractive route against infections caused by AIDS viruses. J Drug Target 18(5):381–388

    CAS  PubMed  Google Scholar 

  49. Anitha A, Maya S, Deepa N, Chennazhi KP, Nair SV, Jayakumar R (2012) Curcumin-loaded N, O-carboxymethyl chitosan nanoparticles for cancer drug delivery. J Biomater Sci Polym Ed 23:1381–1400

    CAS  Google Scholar 

  50. Chen R, Chen Q, Huo D, Ding Y, Hu Y, Jiang X (2012) In situ formation of chitosan-gold hybrid hydrogel and its application for drug delivery. Colloids Surf B Biointerfaces 97:132–137

    CAS  PubMed  Google Scholar 

  51. Chan P, Kurisawa M, Chung JE, Yang YY (2007) Synthesis and characterization of chitosan-g-poly(ethylene glycol)-folate as a non-viral carrier for tumor-targeted gene delivery. Biomaterials 28(3):540–549

    CAS  PubMed  Google Scholar 

  52. Huang W, Shi X, Ren L, Du C, Wang Y (2010) PHBV microspheres–PLGA matrix composite scaffold for bone tissue engineering. Biomaterials 31(15):4278–4285

    CAS  PubMed  Google Scholar 

  53. Ye C, Hu P, Ma MX, Xiang Y, Liu RG, Shang XW (2009) PHB/PHBHHx scaffolds and human adipose-derived stem cells for cartilage tissue engineering. Biomaterials 30(26):4401–4406

    CAS  PubMed  Google Scholar 

  54. Novikova LN, Pettersson J, Brohlin M, Wiberg M, Novikov LN (2008) Biodegradable poly-beta-hydroxybutyrate scaffold seeded with Schwann cells to promote spinal cord repair. Biomaterials 29(9):1198–1206

    CAS  PubMed  Google Scholar 

  55. Falk R, Domb AJ, Polacheck I (1999) A novel injectable water-soluble amphotericin B-arabinogalactan conjugate. Antimicrob Agents Chemother 43(8):1975–1981

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Golenser J, Frankenburg S, Ehrenfreund T, Domb AJ (1999) Efficacious treatment of experimental leishmaniasis with amphotericin B-arabinogalactan water-soluble derivatives. Antimicrob Agents Chemother 43(9):2209–2214

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Avramoff A, Khan W, Mizrahi B, Domb AJ (2012) Preparation and characterization of a novel once-daily formulation of diltiazem using arabinogalactan as a channeling agent. J Appl Polym Sci 126(S1):E197–E203

    Google Scholar 

  58. Elgart A, Farber S, Domb AJ, Polacheck I, Hoffman A (2010) Polysaccharide pharmacokinetics: amphotericin B arabinogalactan conjugate-a drug delivery system or a new pharmaceutical entity? Biomacromolecules 11(8):1972–1977

    CAS  PubMed  Google Scholar 

  59. Groman EV, Enriquez PM, Jung C, Josephson L (1994) Arabinogalactan for hepatic drug delivery. Bioconjug Chem 5(6):547–556

    CAS  PubMed  Google Scholar 

  60. Gunatillake PA, Adhikari R (2003) Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater 5:1–16, discussion 16

    CAS  PubMed  Google Scholar 

  61. Buchter A, Kleinheinz J, Meyer U, Joos U (2004) Treatment of severe peri-implant bone loss using autogenous bone and a bioabsorbable polymer that delivered doxycycline (Atridox). Br J Oral Maxillofac Surg 42(5):454–456

    PubMed  Google Scholar 

  62. Sinclair G (2000) The A-X of atridox. Ann R Australas Coll Dent Surg 15:157–158

    CAS  PubMed  Google Scholar 

  63. Wessely R, Kastrati A, Mehilli J, Dibra A, Pache J, Schomig A (2007) Randomized trial of rapamycin- and paclitaxel-eluting stents with identical biodegradable polymeric coating and design. Eur Heart J 28(22):2720–2725

    PubMed  Google Scholar 

  64. Asbury RF, Brunetto VL, Lee RB, Reid G, Rocereto TF (2002) Goserelin acetate as treatment for recurrent endometrial carcinoma: a Gynecologic Oncology Group study. Am J Clin Oncol 25(6):557–560

    PubMed  Google Scholar 

  65. Matsuura M, Fujiwara T, Kataoka K, Itoh M, Ohtani S, Higaki K, Senoo N (2009) Catamenial pneumothorax with breast cancer treated successfully by goserelin acetate. Kyobu Geka 62(11):1015–1018

    PubMed  Google Scholar 

  66. Roach M III, Izaguirre A (2007) Goserelin acetate in combination with radiotherapy for prostate cancer. Expert Opin Pharmacother 8(2):257–264

    CAS  PubMed  Google Scholar 

  67. Litjens TT, Fernandez del Moral P, van Laarhoven JP, Weil EH, Debruyne FM (1986) Treatment of advanced prostate carcinoma with a depot form of an LH-RH analog: preliminary endocrinological and clinical results. Ned Tijdschr Geneeskd 130(17):787–790

    CAS  PubMed  Google Scholar 

  68. Sartor O (2003) Eligard: leuprolide acetate in a novel sustained-release delivery system. Urology 61(2 Suppl 1):25–31

    PubMed  Google Scholar 

  69. Ruiz-Hornillos J, Henriquez-Santana A, Moreno-Fernandez A, Gonzalez IG, Sanchez SR (2009) Systemic allergic dermatitis caused by the solvent of Eligard. Contact Dermatitis 61(6):355–356

    CAS  PubMed  Google Scholar 

  70. Woltering EA, Mamikunian PM, Zietz S, Krutzik SR, Go VL, Vinik AI, Vinik E, O’Dorisio TM, Mamikunian G (2005) Effect of octreotide LAR dose and weight on octreotide blood levels in patients with neuroendocrine tumors. Pancreas 31(4):392–400

    CAS  PubMed  Google Scholar 

  71. Fasano CJ, O’Malley G, Dominici P, Aguilera E, Latta DR (2008) Comparison of octreotide and standard therapy versus standard therapy alone for the treatment of sulfonylurea-induced hypoglycemia. Ann Emerg Med 51(4):400–406

    PubMed  Google Scholar 

  72. Brin YS, Golenser J, Mizrahi B, Maoz G, Domb AJ, Peddada S, Tuvia S, Nyska A, Nyska M (2008) Treatment of osteomyelitis in rats by injection of degradable polymer releasing gentamicin. J Control Release 131(2):121–127

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Kotler DP, Muurahainen N, Grunfeld C, Wanke C, Thompson M, Saag M, Bock D, Simons G, Gertner JM (2004) Effects of growth hormone on abnormal visceral adipose tissue accumulation and dyslipidemia in HIV-infected patients. J Acquir Immune Defic Syndr 35(3):239–252

    CAS  PubMed  Google Scholar 

  74. Gefvert O, Eriksson B, Persson P, Helldin L, Bjorner A, Mannaert E, Remmerie B, Eerdekens M, Nyberg S (2005) Pharmacokinetics and D2 receptor occupancy of long-acting injectable risperidone (Risperdal Consta) in patients with schizophrenia. Int J Neuropsychopharmacol 8(1):27–36

    CAS  PubMed  Google Scholar 

  75. Bobo WV, Shelton RC (2010) Risperidone long-acting injectable (Risperdal Consta(R)) for maintenance treatment in patients with bipolar disorder. Expert Rev Neurother 10(11):1637–1658

    CAS  PubMed  Google Scholar 

  76. Ballabio E, Armesto M, Breeze CE, Manterola L, Arestin M, Tramonti D, Hatton CS, Lawrie CH (2012) Bortezomib action in multiple myeloma: microRNA-mediated synergy (and miR-27a/CDK5 driven sensitivity)? Blood Cancer J 2:e83

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Al-Qashi S, Al-Qaoud KM, Ja’fer M, Khali AM (2006) Immunocytogenetic effects of gonadotropin releasing hormone analogue: Triptorelin Pamoate (Decapeptyl) during in vitro fertilization treatment. Hum Exp Toxicol 25(10):593–597

    CAS  PubMed  Google Scholar 

  78. Palatynski A, Gruszczynska J (2001) Decapeptyl (triptorelin) in the treatment of endometriosis genitalis externa. Ginekol Pol 72(5):290–295

    CAS  PubMed  Google Scholar 

  79. Choktanasiri W, Rojanasakul A (2001) Buserelin acetate implants in the treatment of pain in endometriosis. J Med Assoc Thai 84(5):656–660

    CAS  PubMed  Google Scholar 

  80. Harada T, Momoeda M, Taketani Y, Aso T, Fukunaga M, Hagino H, Terakawa N (2009) Dienogest is as effective as intranasal buserelin acetate for the relief of pain symptoms associated with endometriosis–a randomized, double-blind, multicenter, controlled trial. Fertil Steril 91(3):675–681

    CAS  PubMed  Google Scholar 

  81. Ory SJ, Hammond CB, Yancy SG, Hendren RW, Pitt CG (1983) The effect of a biodegradable contraceptive capsule (Capronor) containing levonorgestrel on gonadotropin, estrogen, and progesterone levels. Am J Obstet Gynecol 145(5):600–605

    CAS  PubMed  Google Scholar 

  82. Attenello FJ, Mukherjee D, Datoo G, McGirt MJ, Bohan E, Weingart JD, Olivi A, Quinones-Hinojosa A, Brem H (2008) Use of Gliadel (BCNU) wafer in the surgical treatment of malignant glioma: a 10-year institutional experience. Ann Surg Oncol 15(10):2887–2893

    PubMed  Google Scholar 

  83. Bota DA, Desjardins A, Quinn JA, Affronti ML, Friedman HS (2007) Interstitial chemotherapy with biodegradable BCNU (Gliadel) wafers in the treatment of malignant gliomas. Ther Clin Risk Manag 3(5):707–715

    CAS  PubMed Central  PubMed  Google Scholar 

  84. McGirt MJ, Than KD, Weingart JD, Chaichana KL, Attenello FJ, Olivi A, Laterra J, Kleinberg LR, Grossman SA, Brem H, Quinones-Hinojosa A (2009) Septacin. J Neurosurg 110(3):583–588

    CAS  PubMed  Google Scholar 

  85. Karr J (2008) Utilization of living bilayered cell therapy (Apligraf) for heel ulcers. Adv Skin Wound Care 21(6):270–274

    PubMed  Google Scholar 

  86. Edmonds M (2009) Apligraf in the treatment of neuropathic diabetic foot ulcers. Int J Low Extrem Wounds 8(1):11–18

    PubMed  Google Scholar 

  87. Saffarzadeh A, Gauthier O, Bilban M, Bagot D’Arc M, Daculsi G (2009) Comparison of two bone substitute biomaterials consisting of a mixture of fibrin sealant (Tisseel) and MBCP (TricOs) with an autograft in sinus lift surgery in sheep. Clin Oral Implants Res 20(10):1133–1139

    PubMed  Google Scholar 

  88. Guimard NK, Gomez N, Schmidt CE (2007) Conducting polymers in biomedical engineering. Prog Polym Sci 32(8–9):876–921

    CAS  Google Scholar 

  89. Wang YC, Lin MC, Wang DM, Hsieh HJ (2003) Fabrication of a novel porous PGA-chitosan hybrid matrix for tissue engineering. Biomaterials 24(6):1047–1057

    CAS  PubMed  Google Scholar 

  90. Bishara A, Domb AJ (2005) PLA stereocomplexes for controlled release of somatostatin analogue. J Control Release 107(3):474–483

    CAS  PubMed  Google Scholar 

  91. Bunger CM, Grabow N, Sternberg K, Kroger C, Ketner L, Schmitz KP, Kreutzer HJ, Ince H, Nienaber CA, Klar E, Schareck W (2007) Sirolimus-eluting biodegradable poly-L-lactide stent for peripheral vascular application: a preliminary study in porcine carotid arteries. J Surg Res 139(1):77–82

    PubMed  Google Scholar 

  92. Montjovent MO, Mark S, Mathieu L, Scaletta C, Scherberich A, Delabarde C, Zambelli PY, Bourban PE, Applegate LA, Pioletti DP (2008) Human fetal bone cells associated with ceramic reinforced PLA scaffolds for tissue engineering. Bone 42(3):554–564

    CAS  PubMed  Google Scholar 

  93. Stock UA, Mayer JE Jr (2001) Tissue engineering of cardiac valves on the basis of PGA/PLA Co-polymers. J Long Term Eff Med Implants 11(3–4):249–260

    CAS  PubMed  Google Scholar 

  94. Karp JM, Shoichet MS, Davies JE (2003) Bone formation on two-dimensional poly(DL-lactide-co-glycolide) (PLGA) films and three-dimensional PLGA tissue engineering scaffolds in vitro. J Biomed Mater Res A 64(2):388–396

    PubMed  Google Scholar 

  95. Kim H, Kim HW, Suh H (2003) Sustained release of ascorbate-2-phosphate and dexamethasone from porous PLGA scaffolds for bone tissue engineering using mesenchymal stem cells. Biomaterials 24(25):4671–4679

    CAS  PubMed  Google Scholar 

  96. Tian JG, Bai DH, Liu ZG, Tang HT, Xia ZF (2003) Experimental studies on the biocompatibility of spongy PLGA-collagen membrane as a tissue-engineering dermal scaffold. Zhonghua Shao Shang Za Zhi 19(Suppl):1–4

    CAS  PubMed  Google Scholar 

  97. Bivas-Benita M, Romeijn S, Junginger HE, Borchard G (2004) PLGA-PEI nanoparticles for gene delivery to pulmonary epithelium. Eur J Pharm Biopharm 58(1):1–6

    CAS  PubMed  Google Scholar 

  98. Csaba N, Caamano P, Sanchez A, Dominguez F, Alonso MJ (2005) PLGA:poloxamer and PLGA:poloxamine blend nanoparticles: new carriers for gene delivery. Biomacromolecules 6(1):271–278

    CAS  PubMed  Google Scholar 

  99. Duvvuri S, Janoria KG, Pal D, Mitra AK (2007) Controlled delivery of ganciclovir to the retina with drug-loaded Poly(d, L-lactide-co-glycolide) (PLGA) microspheres dispersed in PLGA-PEG-PLGA Gel: a novel intravitreal delivery system for the treatment of cytomegalovirus retinitis. J Ocul Pharmacol Ther 23(3):264–274

    CAS  PubMed  Google Scholar 

  100. Bae SE, Son JS, Park K, Han DK (2009) Fabrication of covered porous PLGA microspheres using hydrogen peroxide for controlled drug delivery and regenerative medicine. J Control Release 133(1):37–43

    CAS  PubMed  Google Scholar 

  101. Chan JM, Zhang L, Yuet KP, Liao G, Rhee JW, Langer R, Farokhzad OC (2009) PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery. Biomaterials 30(8):1627–1634

    CAS  PubMed  Google Scholar 

  102. Chen S, Singh J (2008) Controlled release of growth hormone from thermosensitive triblock copolymer systems: in vitro and in vivo evaluation. Int J Pharm 352(1–2):58–65

    CAS  PubMed  Google Scholar 

  103. Danhier F, Vroman B, Lecouturier N, Crokart N, Pourcelle V, Freichels H, Jerome C, Marchand-Brynaert J, Feron O, Preat V (2009) Targeting of tumor endothelium by RGD-grafted PLGA-nanoparticles loaded with paclitaxel. J Control Release 140(2):166–173

    CAS  PubMed  Google Scholar 

  104. Sinha VR, Bansal K, Kaushik R, Kumria R, Trehan A (2004) Poly-ε-caprolactone microspheres and nanospheres: an overview. Int J Pharm 278(1):1–23

    CAS  PubMed  Google Scholar 

  105. Byrro RM, Miyashita D, Albuquerque VB, Velasco e Cruz AA, Cunha Junior Ada S (2009) Biodegradable systems containing prednisolone acetate for orbital administration. Arq Bras Oftalmol 72(4):444–450

    PubMed  Google Scholar 

  106. Kyun KD, Yun KS, Young JS, Pyoung CC, Heui SS (1990) Development of minocycline containing polycaprolactone film as a local drug delivery. Taehan Chikkwa Uisa Hyophoe Chi 28(3):279–290

    CAS  PubMed  Google Scholar 

  107. Hoque ME, Hutmacher DW, Feng W, Li S, Huang MH, Vert M, Wong YS (2005) Fabrication using a rapid prototyping system and in vitro characterization of PEG-PCL-PLA scaffolds for tissue engineering. J Biomater Sci Polym Ed 16(12):1595–1610

    CAS  PubMed  Google Scholar 

  108. Williamson MR, Black R, Kielty C (2006) PCL-PU composite vascular scaffold production for vascular tissue engineering: attachment, proliferation and bioactivity of human vascular endothelial cells. Biomaterials 27(19):3608–3616

    CAS  PubMed  Google Scholar 

  109. Zhao J, Gou M, Dai M, Li X, Cao M, Huang M, Wen Y, Kan B, Qian Z, Wei Y (2009) Preparation, characterization, and in vitro cytotoxicity study of cationic PCL-pluronic-PCL (PCFC) nanoparticles for gene delivery. J Biomed Mater Res A 90(2):506–513

    PubMed  Google Scholar 

  110. Benagiano G, Gabelnick HL (1979) Biodegradable systems for the sustained release of fertility-regulating agents. J Steroid Biochem 11(1B):449–455

    CAS  PubMed  Google Scholar 

  111. Sokolsky-Papkov M, Agashi K, Olaye A, Shakesheff K, Domb AJ (2007) Polymer carriers for drug delivery in tissue engineering. Adv Drug Deliv Rev 59(4–5):187–206

    CAS  PubMed  Google Scholar 

  112. Heller J, Barr J, Ng SY, Shen HR, Schwach-Abdellaoui K, Einmahl S, Rothen-Weinhold A, Gurny R (2000) Poly(ortho esters) – their development and some recent applications. Eur J Pharm Biopharm 50(1):121–128

    CAS  PubMed  Google Scholar 

  113. Einmahl S, Behar-Cohen F, Tabatabay C, Savoldelli M, D’Hermies F, Chauvaud D, Heller J, Gurny R (2000) A viscous bioerodible poly(ortho ester) as a new biomaterial for intraocular application. J Biomed Mater Res 50(4):566–573

    CAS  PubMed  Google Scholar 

  114. Einmahl S, Zignani M, Varesio E, Heller J, Veuthey JL, Tabatabay C, Gurny R (1999) Concomitant and controlled release of dexamethasone and 5-fluorouracil from poly(ortho ester). Int J Pharm 185(2):189–198

    CAS  PubMed  Google Scholar 

  115. Andriano KP, Daniels AU, Heller J (1992) Biocompatibility and mechanical properties of a totally absorbable composite material for orthopaedic fixation devices. J Appl Biomater 3(3):197–206

    CAS  PubMed  Google Scholar 

  116. Barr J, Woodburn KW, Ng SY, Shen HR, Heller J (2002) Post surgical pain management with poly(ortho esters). Adv Drug Deliv Rev 54(7):1041–1048

    CAS  PubMed  Google Scholar 

  117. Chasin M, Lewis D, Langer R (1988) Polyanhydrides for controlled drug delivery. Biopharm Manuf 1:33–46

    CAS  Google Scholar 

  118. Ibim SE, Uhrich KE, Attawia M, Shastri VR, El-Amin SF, Bronson R (1998) Preliminary in vivo report on the osteocompatibility of poly(anhydride-co-imides) evaluated in a tibial model. J Biomed Mater Res 43:374–379

    CAS  PubMed  Google Scholar 

  119. Jain JP, Chitkara D, Kumar N (2008) Polyanhydrides as localized drug delivery carrier: an update. Expert Opin Drug Deliv 5(8):889–907

    CAS  PubMed  Google Scholar 

  120. Jain JP, Modi S, Domb AJ, Kumar N (2005) Role of polyanhydrides as localized drug carriers. J Control Release 103:541–563

    CAS  PubMed  Google Scholar 

  121. Jain JP, Modi S, Kumar N (2008) Hydroxy fatty acid based polyanhydride as drug delivery system: synthesis, characterization, in vitro degradation, drug release, and biocompatibility. J Biomed Mater Res A 84:740–752

    PubMed  Google Scholar 

  122. Domb AJ (1995) Polymeric carriers for regional drug therapy. Mol Med Today 1(3):134–139

    CAS  PubMed  Google Scholar 

  123. Manoharan C, Singh J (2009) Evaluation of polyanhydride microspheres for basal insulin delivery: effect of copolymer composition and zinc salt on encapsulation, in vitro release, stability, in vivo absorption and bioactivity in diabetic rats. J Pharm Sci 98(11):4237–4250

    CAS  PubMed  Google Scholar 

  124. Shikanov A, Vaisman B, Shikanov S, Domb AJ (2010) Efficacy of poly(sebacic acid-co-ricinoleic acid) biodegradable delivery system for intratumoral delivery of paclitaxel. J Biomed Mater Res A 92(4):1283–1291

    PubMed  Google Scholar 

  125. Shikanov S, Shikanov A, Gofrit O, Nyska A, Corn B, Domb AJ (2009) Intratumoral delivery of paclitaxel for treatment of orthotopic prostate cancer. J Pharm Sci 98(3):1005–1014

    CAS  PubMed  Google Scholar 

  126. Shikanov A, Domb AJ, Weiniger CF (2007) Long acting local anesthetic-polymer formulation to prolong the effect of analgesia. J Control Release 117(1):97–103

    CAS  PubMed  Google Scholar 

  127. Burkoth AK, Anseth KS (2000) A review of photocrosslinked polyanhydrides: in situ forming degradable networks. Biomaterials 21(23):2395–2404

    CAS  PubMed  Google Scholar 

  128. Jiang HL, Zhu KJ (2000) Pulsatile protein release from a laminated device comprising polyanhydrides and pH-sensitive complexes. Int J Pharm 194(1):51–60

    CAS  PubMed  Google Scholar 

  129. Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32(8–9):762–798

    CAS  Google Scholar 

  130. Gorna K, Gogolewski S (2002) Biodegradable polyurethanes for implants. II. In vitro degradation and calcification of materials from poly(epsilon-caprolactone)-poly(ethylene oxide) diols and various chain extenders. J Biomed Mater Res 60:592–606

    CAS  PubMed  Google Scholar 

  131. Gunatillake PA, Meijs GF (2008) In: Buschow KHJ, Cahn RW, Flemings MC, Ilschner BI, Kramer EJ, Mahajan S, Veyssière P (eds) Encyclopedia of materials: science and technology. Amsterdam, Elsevier, pp 7746–7752

    Google Scholar 

  132. Bil M, Ryszkowska J, Wozniak P, Kurzydlowski KJ, Lewandowska-Szumiel M (2009) Optimization of the structure of polyurethanes for bone tissue engineering applications. Acta Biomater 6(7):2501–2510

    PubMed  Google Scholar 

  133. Bonzani IC, Adhikari R, Houshyar S, Mayadunne R, Gunatillake P, Stevens MM (2007) Synthesis of two-component injectable polyurethanes for bone tissue engineering. Biomaterials 28(3):423–433

    CAS  PubMed  Google Scholar 

  134. Jiang X, Wang K, Ding M, Li J, Tan H, Wang Z, Fu Q (2011) Quantitative grafting of peptide onto the nontoxic biodegradable waterborne polyurethanes to fabricate peptide modified scaffold for soft tissue engineering. J Mater Sci Mater Med 22(4):819–827

    CAS  PubMed  Google Scholar 

  135. Cui W, Zhu X, Yang Y, Li X, Jin Y (2009) Evaluation of electrospun fibrous scaffolds of poly(dl-lactide) and poly(ethylene glycol) for skin tissue engineering. Mater Sci Eng C 29:1869–1876

    CAS  Google Scholar 

  136. Strehin I, Nahas Z, Arora K, Nguyen T, Elisseeff J (2010) A versatile pH sensitive chondroitin sulfate–PEG tissue adhesive and hydrogel. Biomaterials 31(10):2788–2797

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Vashi AV, Keramidaris E, Abberton KM, Morrison WA, Wilson JL, O’Connor AJ, Cooper-White JJ, Thompson EW (2008) Adipose differentiation of bone marrow-derived mesenchymal stem cells using Pluronic F-127 hydrogel in vitro. Biomaterials 29:573–579

    CAS  PubMed  Google Scholar 

  138. Ruszymah BH, Chua K, Latif MA, Hussein FN, Saim AB (2005) Formation of in vivo tissue engineered human hyaline cartilage in the shape of a trachea with internal support. Int J Pediatr Otorhinolaryngol 69:1489–1495

    PubMed  Google Scholar 

  139. Liu Y, Chen F, Liu W, Cui L, Shang Q, Xia W (2002) Repairing large porcine full-thickness defects of articular cartilage using autologous chondrocyte-engineered cartilage. Tissue Eng 8:709–721

    CAS  PubMed  Google Scholar 

  140. Cortiella J, Nichols JE, Kojima K, Bonassar LJ, Dargon P, Roy AK (2006) Tissue-engineered lung: an in vivo and in vitro comparison of polyglycolic acid and Pluronic F-127 hydrogel/somatic lung progenitor cell constructs to support tissue growth. Tissue Eng 12:1213–1225

    CAS  PubMed  Google Scholar 

  141. Shachaf Y, Gonen-Wadmany M, Seliktar D (2010) The biocompatibility of Pluronic®F127 fibrinogen-based hydrogels. Biomaterials 31(10):2836–2847

    CAS  PubMed  Google Scholar 

  142. Khan W, Muthupandian S, Farah S, Kumar N, Domb AJ (2011) Biodegradable polymers derived from amino acids. Macromol Biosci 11(12):1625–1636

    CAS  PubMed  Google Scholar 

  143. Bourke SL, Kohn J (2003) Polymers derived from the amino acidL-tyrosine:polycarbonates, polyarylates and copolymers with poly(ethylene glycol). Adv Drug Deliv Rev 55:447–466

    CAS  PubMed  Google Scholar 

  144. Gonzalez-Aramundiz JV, Lozano MV, Sousa-Herves A, Fernandez-Megia E, Csaba N (2012) Polypeptides and polyaminoacids in drug delivery. Expert Opin Drug Deliv 9(2):183–201

    CAS  PubMed  Google Scholar 

  145. Cavallaro G, Pitarresi G, Giammona G (2011) Macromolecular prodrugs based on synthetic polyaminoacids: drug delivery and drug targeting in antitumor therapy. Curr Top Med Chem 11(18):2382–2389

    CAS  PubMed  Google Scholar 

  146. Benns JM, Choi JS, Mahato RI, Park JS, Kim SW (2000) pH-sensitive cationic polymer gene delivery vehicle: N-Ac-poly(L-histidine)-graft-poly(L-lysine) comb shaped polymer. Bioconjug Chem 11(5):637–645

    CAS  PubMed  Google Scholar 

  147. Davis PB, Kowalczyk TH (2010) Preparation and analysis of PEGylated poly-L-lysine DNA nanoparticles for gene delivery. Cold Spring Harb Protoc 2010(5):pdb.prot5419

    Google Scholar 

  148. Holland TA, Tabata Y, Mikos AG (2005) Dual growth factor delivery from degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds for cartilage tissue engineering. J Control Release 101(1–3):111–125

    CAS  PubMed  Google Scholar 

  149. Peter SJ, Lu L, Kim DJ, Mikos AG (2000) Marrow stromal osteoblast function on a poly(propylene fumarate)/β-tricalcium phosphate biodegradable orthopaedic composite. Biomaterials 21:1207–1213

    CAS  PubMed  Google Scholar 

  150. Yaszemski MJ, Payne RG, Hayes WC, Langer R, Mikos AG (1996) In vitro degradation of a poly(propylene fumarate)-based composite materials. Biomaterials 17:2120–2130

    Google Scholar 

  151. Horch RA, Shahid N, Mistry AS, Timmer MD, Mikos AG, Barron AR (2004) Nanoreinforcement of poly(propylene fumarate)-based networks with surface modified alumoxane nanoparticles for bone tissue engineering. Biomacromolecules 5(5):1990–1998

    CAS  PubMed  Google Scholar 

  152. Jabbari E, Wang SF, Lu LC, Gruetzmacher JA, Ameenuddin S, Hefferan TE, Currier BL, Windebank AJ, Yaszemski MJ (2005) Synthesis, material properties, and biocompatibility of a novel self-cross-linkable poly(caprolactone fumarate) as an injectable tissue engineering scaffold. Biomaterials 6:2503–2511

    CAS  Google Scholar 

  153. Domb AJ, Laurencin CT, Israeli O, Gerhart TN, Langer R (1990) The formation of propylene fumarate oligomers for use in bioerodible bone cement composites. J Polym Sci A Polym Chem 28:973–985

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraham J. Domb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Controlled Release Society

About this chapter

Cite this chapter

Khan, W., Challa, V.G.S., Langer, R., Domb, A.J. (2014). Biodegradable Polymers for Focal Delivery Systems. In: Domb, A., Khan, W. (eds) Focal Controlled Drug Delivery. Advances in Delivery Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-9434-8_1

Download citation

Publish with us

Policies and ethics