Skip to main content

X-Ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES)

  • Chapter
  • First Online:

Abstract

X-ray photoelectron spectroscopy (XPS), also known as electron spectroscopy for chemical analysis (ESCA), and Auger electron spectroscopy (AES) are widely used materials characterization techniques belonging to the general class of methods referred to as surface analysis. These non-destructive techniques provide, to varying degrees, semi-quantitative elemental, chemical-state and electronic-structure information from the top 10 nm of a material and are sensitive to elements Li and above. XPS and Auger have both found applications over a vast range of material classes; such as metallic, ceramic, polymeric, and composite; and technologies such as microelectronics, solar energy, and nanotechnology. Modern spectrometers are now not only capable of achieving high-energy resolution spectroscopy, but are also capable of 2-dimensional imaging.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Röntgen W 1901 Nobel Prize in physics. “In recognition of the extraordinary services he has rendered by the discovery of the remarkable rays subsequently named after him”

    Google Scholar 

  2. Hertz H (1887) Über einen Einfluss des ultravioletten Lichtes auf die electrische Entladung. Ann Physik 267:983. The IEEE Heinrich Hertz Medal was established by the Board of Directors in 1987 “for outstanding achievements in Hertzian (radio) waves”

    Article  Google Scholar 

  3. Einstein A (1905) Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann Physik 17:132. 1921 Nobel Prize in Physics “for his services to Theoretical Physics, and especially for his discovery of the law of the photoelectric effect”

    Article  Google Scholar 

  4. Siegbahn K (1967) Vetenskaps-Societeten: Esca; Atomic molecular and solid state structure by means of electronspectroscopy. Nova Acta Regiae Soc Sci Ser IV 20. 1981 Nobel Prize in Physics “for his contribution to the development of high resolution electron spectroscopy”

    Google Scholar 

  5. Kittel C, Kroemer H (1980) Thermal physics, 2nd edn. W. H. Freeman, New York

    Google Scholar 

  6. Bain CD, Whitesides GM (1989) Attenuation lengths of photoelectrons in hydrocarbon films. J Phys Chem 93:1670

    Article  Google Scholar 

  7. Tougaard S, Sigmund P (1982) Influence of elastic and inelastic scattering on energy spectra of electrons emitted from solids. Phys Rev B 25:4452

    Article  Google Scholar 

  8. Tanuma S, Powell CJ, Penn DR (1991) Calculations of electron inelastic mean free paths II. Data for 27 elements over the 50-2000 eV range. Surf Interface Anal 17:911

    Article  Google Scholar 

  9. Tanuma S, Powell CJ, Penn DR (1993) Calculations of electron inelastic mean free paths V. Data for 14 organic compounds over the 50-2000 eV range. Surf Interface Anal 21:165

    Article  Google Scholar 

  10. Tanuma S, Powell CJ, Penn DR (2004) Calculations of electron inelastic mean free paths VIII. Data for 15 elements over the 50-2000 eV range. Surf Interface Anal 36:1

    Article  Google Scholar 

  11. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1995) In: Chastain J, King RC Jr (eds) Handbook of x-ray photoelectron spectroscopy. Physical Electronics, Eden Prairie

    Google Scholar 

  12. Haasch RT, Lee T-Y, Gall D, Greene JE, Petrov I (2000) Epitaxial ScN(001) grown and analyzed in situ by XPS and UPS. I analysis of As-deposited layers. Surf Sci Spectra 7:169

    Article  Google Scholar 

  13. Haasch RT, Lee T-Y, Gall D, Greene JE, Petrov I (2000) Epitaxial TiN(001) grown and analyzed in situ by XPS and UPS. I analysis of As-deposited layers. Surf Sci Spectra 7:193

    Article  Google Scholar 

  14. Haasch RT, Lee T-Y, Gall D, Greene JE, Petrov I (2000) Epitaxial VN(001) grown and analyzed in situ by XPS and UPS. I analysis of As-deposited layers. Surf Sci Spectra 7:221

    Article  Google Scholar 

  15. Haasch RT, Lee T-Y, Gall D, Greene JE, Petrov I (2000) Epitaxial CrN(001) grown and analyzed in situ by XPS and UPS. I analysis of As-deposited layers. Surf Sci Spectra 7:250

    Article  Google Scholar 

  16. Patscheider J, Hellgren N, Haasch RT, Petrov I, Greene JE (2011) Electronic structure of the SiNx/TiN interface: a model system for superhard nanocomposites. Phys Rev B 83:125124

    Article  Google Scholar 

  17. Haasch RT, Patscheider J, Hellgren N, Petrov I, Greene JE (2012) The Si3N4 interface: an introduction to a series of ultrathin films grown and analyzed in situ using x-ray photoelectron spectroscopy. Surf Sci Spectra 19:30

    Article  Google Scholar 

  18. Haasch RT, Patscheider J, Hellgren N, Petrov I, Greene JE (2012) The Si3N4 interface: 1. TiN(001) grown and analyzed in situ using angle-resolved x-ray photoelectron spectroscopy. Surf Sci Spectra 19:33

    Article  Google Scholar 

  19. Haasch RT, Patscheider J, Hellgren N, Petrov I, Greene JE (2012) The Si3N4 interface: 2. Si3N4/TiN(001) grown with a -7 V substrate bias and analyzed in situ using angle-resolved x-ray photoelectron spectroscopy. Surf Sci Spectra 19:42

    Article  Google Scholar 

  20. Haasch RT, Patscheider J, Hellgren N, Petrov I, Greene JE (2012) The Si3N4 interface: 3. Si3N4/TiN(001) grown with a -150 V substrate bias and analyzed in situ using angle-resolved x-ray photoelectron spectroscopy. Surf Sci Spectra 19:52

    Article  Google Scholar 

  21. Haasch RT, Patscheider J, Hellgren N, Petrov I, Greene JE (2012) The Si3N4 interface: 4. Si3N4/TiN(001) grown with a -250 V substrate bias and analyzed in situ using angle-resolved x-ray photoelectron spectroscopy. Surf Sci Spectra 19:62

    Article  Google Scholar 

  22. Gall D, Städele M, Järrendahl K, Petrov I, Desjardins P, Haasch RT, Lee T-Y, Greene JE (2001) Electronic structure of ScN determined using optical spectroscopy, photoemission, and ab initio calculations. Phys Rev B 63:125119

    Article  Google Scholar 

  23. Gall D, Shin C-S, Haasch RT, Petrov I, Greene JE (2002) Band gap in epitaxial NaCl-structure CrN(001) layers. J Appl Phys 91:5882

    Article  Google Scholar 

  24. Haasch RT, Lee T-Y, Gall D, Greene JE, Petrov I (2000) Epitaxial ScN(001) grown and analyzed in situ by XPS and UPS. II. Analysis of Ar+ sputter etched layers. Surf Sci Spectra 7:178

    Article  Google Scholar 

  25. Haasch RT, Lee T-Y, Gall D, Greene JE, Petrov I (2000) Epitaxial TiN(001) grown and analyzed in situ by XPS and UPS. II. Analysis of Ar+ sputter etched layers. Surf Sci Spectra 7:204

    Article  Google Scholar 

  26. Haasch RT, Lee T-Y, Gall D, Greene JE, Petrov I (2000) Epitaxial VN(001) grown and analyzed in situ by XPS and UPS. II. Analysis of Ar+ sputter etched layers. Surf Sci Spectra 7:233

    Article  Google Scholar 

  27. Haasch RT, Lee T-Y, Gall D, Greene JE, Petrov I (2000) Epitaxial CrN(001) grown and analyzed in situ by XPS and UPS. II. Analysis of Ar+ sputter etched layers. Surf Sci Spectra 7:262

    Article  Google Scholar 

  28. Unarunotai S, Koepke JC, Tsai C-L, Du F, Chialvo CE, Murata Y, Haasch R, Petrov I, Mason N, Shim M, Lyding J, Rogers JA (2010) Layer-by-layer transfer of multiple, large area sheets of graphene grown in multilayer stacks on a single SiC wafer. ACS Nano 4:5591

    Article  Google Scholar 

  29. Porte L, Roux L, Hanus J (1983) Vacancy effects in the x-ray photoelectron spectra of TiNx. Phys Rev B 28:3214

    Article  Google Scholar 

  30. Harada Y, Li X, Bohn PW, Nuzzo RG (2001) Catalytic amplification of the soft lithographic patterning of Si. Nonelectrochemical orthogonal fabrication of photoluminescent porous Si pixel arrays. J Am Chem Soc 123:8709

    Article  Google Scholar 

  31. Meitner L (1922) Über die Entstehung der β-Strahl-Spektren radioaktiver Substanzen. Z Physik 9:131

    Article  Google Scholar 

  32. Auger P (1925) Sur l’effet photoélectrique compose. J Phys Radium 6:205

    Article  Google Scholar 

  33. Lander JJ (1953) Auger peaks in the energy spectra of secondary electrons from various materials. Phys Rev 91:1382

    Article  Google Scholar 

  34. Stein DF (1988) The historical development of Auger electron spectroscopy. In: Briant CL, Messmer RP (eds) Treatise on materials science and technology, vol 30, Auger electron spectroscopy. Acedemic, San Diego, pp 1–15

    Google Scholar 

  35. Harris LA (1967) Analysis of materials by electron-excited Auger electrons. J Appl Phys 39:1419

    Article  Google Scholar 

  36. Palmberg PW, Bohn GK, Tracy JC (1969) High sensitivity Auger electron spectrometer. Appl Phys Lett 15:254

    Article  Google Scholar 

  37. Finnegan N, Lee T-Y, Haasch RT, Greene JE, Petrov I (2000) Epitaxial ScN(001) grown and analyzed in situ by AES after (1) deposition and (2) Ar+ sputter etching. Surf Sci Spectra 7:185

    Article  Google Scholar 

  38. Finnegan N, Lee T-Y, Haasch RT, Greene JE, Petrov I (2000) Epitaxial TiN(001) grown and analyzed in situ by AES after (1) deposition and (2) Ar+ sputter etching. Surf Sci Spectra 7:213

    Article  Google Scholar 

  39. Finnegan N, Lee T-Y, Haasch RT, Greene JE, Petrov I (2000) Epitaxial VN(001) grown and analyzed in situ by AES after (1) deposition and (2) Ar+ sputter etching. Surf Sci Spectra 7:242

    Article  Google Scholar 

  40. Finnegan N, Lee T-Y, Haasch RT, Greene JE, Petrov I (2000) Epitaxial CrN(001) grown and analyzed in situ by AES after (1) deposition and (2) Ar+ sputter etching. Surf Sci Spectra 7:262

    Article  Google Scholar 

  41. Houston JE, Rye RR (1988) Local electronic structure information in Auger electron spectroscopy: solid surfaces. In: Briant CL, Messmer RP (eds) Treatise on materials science and technology, vol 30, Auger electron spectroscopy. Acedemic, San Diego, pp 65–110

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard T. Haasch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Haasch, R.T. (2014). X-Ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). In: Sardela, M. (eds) Practical Materials Characterization. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9281-8_3

Download citation

Publish with us

Policies and ethics