Skip to main content

Role of Biotechnology in Drug Delivery for Cancer

  • Chapter
  • First Online:
Applications of Biotechnology in Oncology
  • 3237 Accesses

Abstract

Drug delivery is an important part of pharmacotherapy of cancer. Merely developing an effective anticancer agent is not enough unless it is delivered to the site of action. Traditional drug development considered formulations for different routes of administration, mostly oral or injectable. Cancer drug delivery is no longer simply wrapping the drug in new formulations for different routes of delivery. Knowledge and experience from other technologies such as nanotechnology, advanced polymer chemistry, and electronic engineering are being brought together in developing novel methods of drug delivery. The focus is on targeted cancer therapy. The newer approaches to cancer treatment not only supplement the conventional chemotherapy and radiotherapy but also aim to prevent damage to the normal tissues and overcome drug resistance. Innovative methods of cancer treatment, e.g., cell and gene therapies, require new concepts of drug delivery in cancer. New biotechnologies have contributed considerably to drug delivery in cancer and some of these have been considered in other chapters: monoclonal antibodies (MAbs) (Chap. 8), nanobiotechnology/nanooncology (Chap. 9), cell therapy (Chap. 10), gene therapy (Chap. 11), and RNAi (Chap. 12).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arena S, Pisacane A, Mazzone M, et al. Genetic targeting of the kinase activity of the Met receptor in cancer cells. PNAS 2007;104:11412-7.

    Article  CAS  Google Scholar 

  • Al-Batran SE, Bischoff J, von Minckwitz G, et al. The clinical benefit of pegylated liposomal doxorubicin in patients with metastatic breast cancer previously treated with conventional anthracyclines: a multicentre phase II trial. Br J Cancer 2006;94:1615-20.

    Google Scholar 

  • Badgwell BD, Valentino DJ, Jeffes EB, et al. Intra-arterial administration of TNF-alpha followed by arterial ablation is an effective therapy for a regionally confined TNF-resistant rat mammary adenocarcinoma. Cancer Immunol Immunother 2003;52:10-6.

    CAS  Google Scholar 

  • Baish JW, Stylianopoulos T, Lanning RM, et al. Scaling rules for diffusive drug delivery in tumor and normal tissues. Proc Natl Acad Sci U S A 2011;108:1799-803.

    Article  CAS  Google Scholar 

  • Biju SS, Talegaonkar S, Mishra PR, Khar RK. Vesicular systems: An overview. Indian J Pharm Sci 2006;68:141-53.

    Article  CAS  Google Scholar 

  • Buchanan CM, Shih JH, Astin JW, et al. DMXAA (Vadimezan, ASA404) is a multi-kinase inhibitor targeting VEGFR2 in particular. Clin Sci (Lond) 2012;122:449-57.

    Article  CAS  Google Scholar 

  • Cheng H, Kastrup CJ, Ramanathan R, et al. Nanoparticulate cellular patches for cell-mediated tumoritropic delivery. ACS Nano 2010;4:625-31.

    Article  CAS  Google Scholar 

  • Choi MR, Stanton-Maxey KJ, Stanley JK, et al. A cellular Trojan horse for delivery of therapeutic nanoparticles into tumors. Nano Lett 2007;7:3759-65.

    Google Scholar 

  • Dharap SS, Wang Y, Chandna P, et al. Tumor-specific targeting of an anticancer drug delivery system by LHRH peptide. PNAS 2005;102:12962-7.

    Article  CAS  Google Scholar 

  • Dosio F, Stella B, Arpicco S, Cattel L. Macromolecules as taxane delivery systems. Expert Opinion Drug Deliv 2011;8:33-55.

    Article  CAS  Google Scholar 

  • Dromi S, Frenkel V, Luk A, et al. Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect. Clin Cancer Res 2007;13:2722-7.

    Article  CAS  Google Scholar 

  • Exner AA, Saidel GM. Drug-eluting polymer implants in cancer therapy. Expert Opinion on Drug Delivery 2008;5:775-88.

    Article  CAS  Google Scholar 

  • Gao W, Liu W, Mackay JA, et al. In situ growth of a stoichiometric PEG-like conjugate at a protein's N-terminus with significantly improved pharmacokinetics. Proc Natl Acad Sci USA 2009;106:15231-6.

    Article  CAS  Google Scholar 

  • Gardlik R, Fruehauf JH. Bacterial vectors and delivery systems in cancer therapy. IDrugs 2010;13:701-6.

    CAS  Google Scholar 

  • Gilyazova DG, Rosenkranz AA, Gulak PV, et al. Targeting cancer cells by novel engineered modular transporters. Cancer Res 2006 Nov 1;66:10534-40.

    Article  CAS  Google Scholar 

  • Ginj M, Zhang H, Waser B, et al. Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. PNAS 2006;103:16436-41.

    Article  CAS  Google Scholar 

  • Grantab R, Sivananthan S, Tannock IF. The Penetration of Anticancer Drugs through Tumor Tissue as a Function of Cellular Adhesion and Packing Density of Tumor Cells. Cancer Res 2006;66:1033-9.

    Article  CAS  Google Scholar 

  • Green DJ, Pagel JM, Nemecek ER, et al. Pretargeting CD45 enhances the selective delivery of radiation to hematolymphoid tissues in nonhuman primates. Blood 2009;114:1226-35.

    Article  CAS  Google Scholar 

  • Head M, Jameson MB. The development of the tumor vascular-disrupting agent ASA404 (vadimezan, DMXAA): current status and future opportunities. Expert Opin Investig Drugs 2010;19:295-304.

    Article  CAS  Google Scholar 

  • Jaggi JS, Henke E, Seshan SV, et al. Selective alpha-particle mediated depletion of tumor vasculature with vascular normalization. PLoS ONE 2007;2:e267.

    Article  Google Scholar 

  • Jain RK. Taming vessels to treat cancer. Scientific American 2008a;298:40-47.

    Article  Google Scholar 

  • Jain KK. Textbook of Hyperbaric Medicine, 5th ed. Hogrefe & Huber, Seattle-Göttingen, 2009.

    Google Scholar 

  • Jain KK. Drug Delivery in Cancer. Jain Pharmabiotech Publications, Basel, 2013.

    Google Scholar 

  • Korpanty G, Carbon JG, Grayburn PA, et al. Monitoring response to anticancer therapy by targeting microbubbles to tumor vasculature. Clin Cancer Res 2007;13:323-30.

    Article  CAS  Google Scholar 

  • Lewis AL, Holden RR. DC Bead embolic drug-eluting bead: clinical application in the locoregional treatment of tumours. Expert Opin Drug Deliv 2011;8:153-69.

    Article  CAS  Google Scholar 

  • Lila AS, Ishida T, Kiwada H. Recent advances in tumor vasculature targeting using liposomal drug delivery systems. Expert Opin Drug Deliv 2009;6:1297-1309.

    Article  Google Scholar 

  • Livi L, Meattini I, Cardillo Cde L, et al. Non-pegylated liposomal doxorubicin in combination with cyclophosphamide or docetaxel as first-line therapy in metastatic breast cancer: a retrospective analysis. Tumori 2009;95:422-6.

    CAS  Google Scholar 

  • MezÅ‘ G, Manea M. Receptor-mediated tumor targeting based on peptide hormones. Expert Opin Drug Deliv 2010;7:79-96.

    Article  Google Scholar 

  • Muzykantov VR. Drug delivery by red blood cells: vascular carriers designed by mother nature. Expert Opin Drug Deliv 2010;7:403-27.

    Article  CAS  Google Scholar 

  • Myhr G, Moan J. Synergistic and tumour selective effects of chemotherapy and ultrasound treatment. Cancer Lett 2006;232:206-13.

    Article  CAS  Google Scholar 

  • Myhr G. Multimodal ultrasound mediated drug release model in local cancer therapy. Med Hypotheses 2007;69:1325-33.

    Article  CAS  Google Scholar 

  • Myhr G. MR guided cancer treatment system for an elevated therapeutic index - a macroscopic approach. Med Hypotheses 2008a;70:665-70.

    Article  Google Scholar 

  • Myhr G. Multimodal cancer treatment: real time monitoring, optimization, and synergistic effects. Technol Cancer Res Treat 2008b;7:409-14.

    Google Scholar 

  • Nolan DJ, Ciarrocchi A, Mellick AS, et al. Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization. Genes Dev 2007;21:1546-58.

    Article  CAS  Google Scholar 

  • Peng L, Marik J, Wang X, et al. Combinatorial chemistry identifies high-affinity peptidomimetics against α4β1 integrin for in vivo tumor imaging. Nat Chem Biol 2006;2:381-9.

    Article  CAS  Google Scholar 

  • Pöpperl G, Helmberger T, Münzing W, et al. Selective Internal Radiation Therapy with SIR-Spheres® in Patients with Nonresectable Liver Tumors. Cancer Biother Radiopharm 2005;20:200-8.

    Article  Google Scholar 

  • Rad AM, Iskander A, Janic B, et al. AC133+ progenitor cells as gene delivery vehicle and cellular probe in subcutaneous tumor models: a preliminary study. BMC Biotechnology 2009;9:28

    Article  Google Scholar 

  • Raj L, Ide T, Gurkar AU, et al. Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature 2011;475:231-4.

    Article  CAS  Google Scholar 

  • Romero Rosales K, Singh G, Wu K, et al. Sphingolipid-based drugs selectively kill cancer cells by down-regulating nutrient transporter proteins. Biochem J 2011;439:299-311.

    Article  CAS  Google Scholar 

  • Sakamoto J, Annapragada A, Decuzzi P, et al. Antibiological barrier nanovector technology for cancer applications. Expert Opin Drug Deliv 2007;4:359-69.

    Article  CAS  Google Scholar 

  • Skirtach AG, Munoz Javier A, Kreft O, et al. Laser-induced release of encapsulated materials inside living cells. Angew Chem Int Ed Engl 2006;45:4612-7.

    Article  CAS  Google Scholar 

  • Sofou S, Sgouros G. Antibody-targeted liposomes in cancer therapy and imaging. Expert Opinion on Drug Delivery 2008;5:189-204.

    Article  CAS  Google Scholar 

  • Sulchek TA, Friddle RW, Langry K, et al. Dynamic force spectroscopy of parallel individual Mucin1-antibody bonds. PNAS 2005;102:16638-43.

    Article  CAS  Google Scholar 

  • Tandon P, Farahani K. NCI Image-Guided Drug Delivery Summit. Cancer Res 2011;71;314-7.

    Article  CAS  Google Scholar 

  • Tolmachev V, Orlova A, Nilsson FY, et al. Affibody molecules: potential for in vivo imaging of molecular targets for cancer therapy. Expert Opin Biol Ther 2007;7:555-68.

    Article  CAS  Google Scholar 

  • Veldman RJ, Koning GA, van Hell A, et al. Coformulated N-Octanoyl-glucosylceramide Improves Cellular Delivery and Cytotoxicity of Liposomal Doxorubicin. J Pharmacol Exp Ther 2005;315:704-10.

    Article  CAS  Google Scholar 

  • Wang GP, Guan YS, Jin XR, et al. Development of novel 5-fluorouracil carrier erythrocyte with pharmacokinetics and potent antitumor activity in mice bearing malignant ascites. J Gastroenterol Hepatol 2010;25:985-90.

    Google Scholar 

  • Wei Q, Kullberg EB, Gedda L. Trastuzumab-conjugated boron-containing liposomes for tumor-cell targeting; development and cellular studies. Int J Oncol 2003;23:1159-65.

    CAS  Google Scholar 

  • Wells J, Sen A, Hui SW. Localized delivery to CT-26 tumors in mice using thermosensitive liposomes. Int J Pharm 2003;261:105-14.

    Article  CAS  Google Scholar 

  • Xie S, Wang J, Zhang Y, Wang C. Antitumor conjugates with polyamine vectors and their molecular mechanisms. Expert Opin Drug Deliv 2010;7:1049-61.

    Article  CAS  Google Scholar 

  • Yarom N, Stewart D, Malik R, et al. Phase I clinical trial of Exherin (ADH-1) in patients with advanced solid tumors. Curr Clin Pharmacol 2013;8:81-8.

    CAS  Google Scholar 

  • Yoon JK, Park BK, Paik JY, et al. Effects of Theophylline on Radioiodide Uptake in MCF-7 Breast Cancer and NIS Gene–Transduced SNU-C5 Colon Cancer Cells. Cancer Biother Radiopharm 2009;24:201-8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jain, K.K. (2014). Role of Biotechnology in Drug Delivery for Cancer. In: Applications of Biotechnology in Oncology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-9245-0_15

Download citation

Publish with us

Policies and ethics