Skip to main content

Flow and Functional Models for Rheological Properties of Fluid Foods

  • Chapter
  • First Online:
Rheology of Fluid, Semisolid, and Solid Foods

Part of the book series: Food Engineering Series ((FSES))

Abstract

The flow and functional models dealing with the rheology of fluid and semisolid foods are discussed. Because many foods exhibit yield stress, its role and measurement are considered. Many foods may be considered to be dispersions; therefore, the rheology of dispersions of foods, including their colloidal glass behavior is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Khalik, S. I., Hassager, O., and Bird, R. B. 1974. Prediction of melt elasticity from viscosity data. Polymer Eng. and Sci. 14: 859–867.

    Article  CAS  Google Scholar 

  • Agarwala, M. K., Patterson, B. R., and Clark, P. E. 1992. Rheological behavior of powder injection molding model slurries. J. Rheol. 36: 319–334.

    Article  CAS  Google Scholar 

  • Aguilera, J. M. and Kessler, H. G. 1989. Properties of mixed and filled dairy gels. J. Food Sei. 54: 1213–1217, 1221.

    Google Scholar 

  • Al-Malah, K.-I.-M., Abu-Jdayil, B., Zaitoun, S., and Al-Majeed-Ghzawi, A. 2001. Application of WLF and Arrhenius kinetics to rheology of selected dark-colored honey. J. Food Process Eng. 24(5): 341–357.

    Article  Google Scholar 

  • Barnes, H. A. and Walters, K. 1989. The yield stress myth? Rheol. Acta 24: 323–326.

    Article  Google Scholar 

  • Barnes, H. A., Hutton, J. F., and Walters, K. 1989. An Introduction to Rheology, Elsevier Science Publishers B.V., Amsterdam, The Netherlands.

    Google Scholar 

  • Bird, R. B., Dai, G. C., and Yarusso, B. J. 1982. The rheology and flow of viscoplastic materials. Rev. Chem. Eng. 1: 1–70.

    Google Scholar 

  • Brodkey, R. S. 1967. The Phenomena of Fluid Motions, Addison-Wesley, Reading, MA.

    Google Scholar 

  • Casson, N. 1959. A flow equation for pigment-oil suspensions of the printing ink type, in Rheology of Disperse Systems, ed. C. C. Mill, pp. 82–104, Pergamon Press, New York.

    Google Scholar 

  • Choi, G. R. and Krieger, I. M. 1986. Rheological studies on sterically stabilized model dispersions of uniform colloidal spheres II. Steady-shear viscosity. J. Colloid Interface Sei. 113: 101–113.

    Article  CAS  Google Scholar 

  • Cross, M. M. 1965. Rheology of non-Newtonian fluids: a new flow equation for pseudoplastic systems. J. Colloid Sci. 20: 417–437.

    Article  CAS  Google Scholar 

  • Da Silva, P. M. S., Oliveira, J. C., and Rao, M. A. 1997. The effect of granule size distribution on the rheological behavior of heated modified and unmodified maize starch dispersions. J. Texture Stud. 28: 123–138.

    Article  Google Scholar 

  • Demetriades, K., Coupland, J., and McClements, D. J. 1996. Investigation of emulsion stability using ultrasonic spectroscopy, in 1996 IFT Annual Meeting Book of Abstracts, pp. 109–110, Institute of Food Technologists, Chicago, IL.

    Google Scholar 

  • Demetriades, K., Coupland, J., and McClements, D. J. 1997. Physical properties of whey protein stabilized emulsions as related to pH and NaCI. J. Food Sei. 62: 342–347.

    Article  CAS  Google Scholar 

  • Dervisoglu, M. and Kokini, J. L. 1986. Steady shear rheology and fluid mechanics of four semi-solid foods. J. Food Sei. 51: 541–546, 625.

    Google Scholar 

  • Dickinson, E. 1993. Towards more natural emulsifiers. Trends Food Sei. Technol. 4: 330–334.

    CAS  Google Scholar 

  • Dickinson, E. 2006. Structure formation in casein-based gels, foams, and emulsions. Colloids Surf A 288:3–11.

    Article  CAS  Google Scholar 

  • Dickinson, E. and Pawlowsky, K. 1996. Effect of high-pressure treatment of protein on the rheology of flocculated emulsions containing protein and polysaccharide. J. Agric. Food Chem. 44: 2992–3000.

    Article  CAS  Google Scholar 

  • Dickinson, E. and Yamamoto, Y. 1996a. Viscoelastic properties of heat-set whey protein-stabilized emulsion gels with added lecithin. J. Food Sei. 61:811–816.

    Article  CAS  Google Scholar 

  • Dickinson, E. and Yamamoto, Y. 1996b. Effect of lecithin on the viscoelastic properties of β-lactoglobulin-stabilized emulsion gels. Food Hydrocollids 10: 301–307.

    Article  CAS  Google Scholar 

  • Dickinson, E., Hong, S.-T., and Yamamoto, Y. 1996. Rheology of heat-set emulsion gels containing beta-lactoglobulin and small-molecule surfactants. Neth. Milk Dairy J. 50: 199–207.

    CAS  Google Scholar 

  • Einstein, A. 1906. Eine neue bestimmung der molekuldimension. Ann. Physik 19: 289–306.

    Article  CAS  Google Scholar 

  • Einstein, A. 1911. Berichtigung zu meiner arbeit: Eine neue bestimmung der molekuldimension. Ann. Physik 34: 591–592.

    Article  CAS  Google Scholar 

  • Ellis, H. S., Ring, S. G., and Whittam, M. A. 1989. A comparison of the viscous behavior of wheat and maize starch pastes. J. Cereal Sei. 10: 33–44.

    Article  Google Scholar 

  • Fang, T. N., Tiu, C., Wu, X., and Dong, S. 1996. Rheological behaviour of cocoa dispersions. J. Texture Stud. 26: 203–215.

    Article  Google Scholar 

  • Fang, T., Zhang, H., Hsieh, T. T., and Tiu, C. 1997. Rheological behavior of cocoa dispersions with cocoa butter replacers. J. Texture Stud. 27: 11–26.

    Article  Google Scholar 

  • Farrer, D. and Lips, A. 1999. On the self-assembly of sodium caseinate. Int Dairy J 9:281–6.

    Article  CAS  Google Scholar 

  • Ferrer, M. L., Duchowicz, R., Carrasco, B., Torre, J. G., Acuña, A. U. 2001. The conformation of serum albumin in solution: A combined phosphorescence depolarization-hydrodynamic modeling study. Biophysical Journal 80:2422–2430.

    Article  CAS  Google Scholar 

  • Ferry, J. D. 1980. Viscoelastic Properties of Polymers, John Wiley, New York.

    Google Scholar 

  • Genovese, D. B. and Rao, M. A. 2003. Role of starch granule characteristics (volume fraction, rigidity, and fractal dimension) on rheology of starch dispersions with and without amylose. Cereal Chem. 80: 350–355.

    Article  CAS  Google Scholar 

  • Giboreau, A., Cuvelier, G., and Launay, B. 1994. Rheological behavior of three biopolymer/water systems with emphasis on yield stress and viscoelastic properties. J. Texture Stud. 25: 119–137.

    Article  Google Scholar 

  • Hiemenz, R C. and Rjagopalan, R. 1997. Principles of Colloid and Surface Chemistry, 3rd ed., Marcel Dekker, Inc., New York.

    Google Scholar 

  • Holdsworth, S. D. 1971. Applicability of rheological models to the interpretation of flow and processing behavior of fluid food products. J. Texture Stud. 4: 393–418.

    Article  Google Scholar 

  • Holdsworth, S. D. 1993. Rheological models used for the prediction of the flow properties of food products: a literature review. Trans. Inst. Chem. Engineers 71, Part C: 139–179.

    Google Scholar 

  • Jacon, S. A., Rao, M. A., Cooley, H. J., and Walter, R. H. 1993. The isolation and characterization of a water extract of konjac flour gum. Carbohydr. Polym. 20: 35–41.

    Article  CAS  Google Scholar 

  • Jinescu, V. V. 1974. The rheology of suspensions. Int. Chem. Eng. 143: 397–420.

    Google Scholar 

  • Kimball, L. B. and Kertesz, Z. I. 1952. Practical determination of size distribution of suspended particles in macerated tomato products. Food Technol. 6: 68–71.

    CAS  Google Scholar 

  • Kitano, T., Kataoka, T., and Shirota, T. 1981. An empirical equation of the relative viscosity of polymer melts filled with various inorganic fillers. Rheol. Acta 20: 207–209.

    Article  CAS  Google Scholar 

  • Krieger, I. J. 1985. Rheology of polymer colloids, in Polymer Colloids, eds. R. Buscall, T. Corner, and J. F. Stageman, pp. 219–246, Elsevier Applied Science, New York.

    Google Scholar 

  • Krieger, I. M. and Dougherty, T. J. 1959. A mechanism for non-Newtonian flow in suspensions of rigid spheres. Trans. Soc. Rheol. 3: 137–152.

    Article  CAS  Google Scholar 

  • Launay, B., Doublier, J. L., and Cuvelier, G. 1986. Flow properties of aqueous solutions and dispersions of polysaccharides, in Functional Properties of Food Macromolecules, eds. J. R. Mitchell and D. A. Ledward, pp. 1–78, Elsevier Applied Science Publishers, London.

    Google Scholar 

  • Lopes da Silva, J. A. L., Gonpalves, M. P., and Rao, M. A. 1992. Rheological properties of high-methoxyl pectin and locust bean gum solutions in steady shear. J. Food Sei. 57: 443–448.

    Article  CAS  Google Scholar 

  • Loveday, S. M., Creamer, L. K., Singh, H. and Rao, M. A. 2007. Phase and rheological behavior of high-concentration colloidal hard-sphere and protein dispersions. J Food Sci. 72(7): R101–107.

    Article  CAS  Google Scholar 

  • Loveday, S. M., Rao, M. A., Creamer, L. K. and Singh, H. 2010. Rheological behavior of high-concentration sodium caseinate dispersions. J Food Sci. 74:N30–N35.

    Article  Google Scholar 

  • Lucey, J. A., Srinivasan, M., Singh, H. and Munro, P. A. 2000. Characterisation of commercial and experimental sodium caseinates by multi-angle laser light scattering and size-exclusion chromatography. J Agric Food Chem 48:1610–6.

    Article  CAS  Google Scholar 

  • McClements, D. J., Monaham, F. J., and Kinsella, J. E. 1993. Effect of emulsion droplets on the rheology of whey protein isolate gels. J. Texture Stud. 24: 411–422.

    Article  Google Scholar 

  • Metz, B., Kossen, N. W. F., and van Suijdam, J. C. 1979. The rheology of mould suspensions, in Advances in Biochemical Engineering, eds. T. K. Ghose, A. Fiechter and N. Blakebrough, Vol. 2, p. 103, Springer Verlag, New York.

    Google Scholar 

  • Metzner, A. B. 1985. Rheology of suspensions in polymeric liquids. J. Rheol. 29: 739–775.

    Article  CAS  Google Scholar 

  • Mizrahi, S. and Berk, Z. 1972. Flow behaviour of concentrated orange juice: mathematical treatment. J. Texture Stud. 3: 69–79.

    Article  Google Scholar 

  • Moore, W. J. 1972. Physical Chemistry, 4th ed., Prentice Hall, Inc., Englewood Cliffs, New Jersey.

    Google Scholar 

  • Noel, T. R., Ring, S. G., and Whittam, M. A. 1993. Physical properties of starch products: structure and function, in Food Colloids and Polymers: Stability and Mechanical Properties, eds. E. Dickinson and P. Wolstra, pp. 126–137. Royal Soc. Chem., Cambridge, UK.

    Google Scholar 

  • Ofoli, R. Y., Morgan, R. G., and Steffe, J. F. 1987. A generalized rheological model for inelastic fluid foods. J. Texture Stud. 18: 213–230.

    Article  Google Scholar 

  • Panouille, M., Benyahia, L., Durand, D. and Nicolai, T. 2005. Dynamic mechanical properties of suspensions of micellar casein particles. J Colloid Interface Sci 287:468–75.

    Article  CAS  Google Scholar 

  • Paredes, M. D. C., Rao, M. A., and Bourne, M. C. 1988. Rheological characterization of salad dressings. 1. Steady shear, thixotropy and effect of temperature. J. Texture Stud. 19: 247–258.

    Article  Google Scholar 

  • Parkinson, C., Matsumoto, S., and Sherman, P. 1970. The influence of particle-size distribution on the apparent viscosity of non-Newtonian dispersed system. J. Colloid Interface Sei. 33: 150–160.

    Article  CAS  Google Scholar 

  • Pham, K. N., Puertas, A. M., Bergenholtz, J., Egelhaaf, S. U., Moussaid, A., Pusey, P. N., Schofield, A. B., and Cates, M. E. 2002. Multiple glassy states in a simple model system. Science 296: 104–106.

    Article  CAS  Google Scholar 

  • Phan, S-E., Russel, W. B., Cheng, Z., Zhu, J., Chaikin, P. M., Dunsmuir, J. H. and Ottewill, R. H. 1996. Phase transition, equation of state, and limiting shear viscosities of hard sphere dispersions. Physical Review E 54:6633–6645.

    Article  CAS  Google Scholar 

  • Pitkowski, A., Durand, D. and Nicolai, T. 2008. Structure and dynamical properties of suspensions of sodium caseinate. J. Colloid Interface Sci. 326:96–102.

    Article  CAS  Google Scholar 

  • Poslinski, A. J., Ryan, M. E., Gupta, R. K., Seshadri, S. G., and Frechette, F. J. 1988. Rheological behavior of filled polymeric systems I. Yield stress and shear-thinning effects. J. Rheol. 32: 703–735.

    Article  CAS  Google Scholar 

  • Pusey, P. N, and van Megen, W. 1986. Phase behaviour of concentrated suspensions of nearly hard colloidal spheres. Nature 320:340–342.

    Article  CAS  Google Scholar 

  • Quemada, D., Fland, P., and Jezequel, P. H. 1985. Rheological properties and flow of concentrated diperse media. Chem. Eng. Comm. 32:61–83.

    Article  CAS  Google Scholar 

  • Rao, M. A. 2007. Influence of food microstructure on food rheology, in Understanding And Controlling the Microstructure of Complex Foods, ed. D. J. McClements, Woodhead Publishing Ltd., Cambridge, UK.

    Google Scholar 

  • Rao, M. A. and Cooley, H. J. 1983. Applicability of flow models with yield for tomato concentrates. J. Food Process Eng. 6:159–173.

    Article  Google Scholar 

  • Rao, M. A., Cooley, H. J., and Vitali, A. A. 1984. Flow properties of concentrated fruit juices at low temperatures. Food Technology 38(3): 113–119.

    Google Scholar 

  • Rao, M. A., Shallenberger, R. S., and Cooley, H. J. 1986. Effect of temperature on viscosity of fluid foods with high sugar content, in Engineering and Food, eds. M. LeMaguer and P. Jelen, Vol. 1, pp. 23–31, Elsevier Applied Science Publishers, New York.

    Google Scholar 

  • Rayment, P., Ross-Murphy, S. B., and Ellis, P. R. 1998. Rheological properties of guar galactomannan and rice starch mixtures. II. Creep measurements. Carbohydr. Polym. 35: 55–63.

    Article  CAS  Google Scholar 

  • Ross-Murphy, S.B. 1984. Rheological methods. In Biophysical Methods In Food Research, pp. 138–199, ed. H.W. Chan, Blackwell Scientific Publications, London.

    Google Scholar 

  • Saunders, F. L. 1961. Rheological properties of monodisperse latex systems I. Concentration dependence of relative viscosity. J. Colloid Sei. 16: 13–22.

    Article  CAS  Google Scholar 

  • Servais, C. Ranc, H., and Roberts, I. D. 2004. Determination of chocolate viscosity. J. Texture Stud. 34(5–6): 467–498.

    Google Scholar 

  • Shih, W.-H., Shih, W. Y., Kim, S.-I., Liu, J., and Aksay, I. A. 1990. Scaling behavior of the elastic properties of colloidal gels. Phys. Rev. A 42(8): 4772–4779.

    CAS  Google Scholar 

  • Simoneau, C., McCarthy, M. J., and German, J. B. 1993. Magnetic resonance imaging and spectroscopy for food systems. Food Res. Intern. 26: 387–398.

    Article  CAS  Google Scholar 

  • Soesanto, T. and Williams, M. C. 1981. Volumetric interpretation of viscosity for concentrated and dilute sugar solutions. J. Phys. Chem. 85: 3338–3341.

    Article  CAS  Google Scholar 

  • Sopade, P.-A., Halley, P., Bhandari, B., D’Arcy, B., Doebler, C., and Caffin, N. 2003. Application of the Williams-Landel-Ferry model to the viscosity-temperature relationship of Australian honeys. J. Food Eng. 56(1): 67–75.

    Article  Google Scholar 

  • Sperling, L. H. 1986. Introduction to Physical Polymer Science, John Wiley, New York.

    Google Scholar 

  • Steiner, E. H. 1958. A new rheological relationship to express the flow properties of melted chocolate. Rev. Internationale de la Choeolatiere. 13: 290–295.

    Google Scholar 

  • Tattiyakul, J. 1997. Studies on granule growth kinetics and characteristics of tapioca starch dispersion during gelatinization using particle size analysis and rheological methods. M. S. thesis, Cornell University, Ithaca, NY.

    Google Scholar 

  • Tattiyakul, J., Liao, H-J. and Rao, M.A. 2009. Role of structure in the measurement of flow properties of food and starch dispersions: a review. International Journal of Food Properties 12(1):2–10.

    Article  Google Scholar 

  • Tiu, C. and Boger, D. V. 1974. Complete rheological characterization of time-dependent food products. J. Texture Stud. 5: 329–338.

    Article  Google Scholar 

  • Tiu, C., Podolsak, A. K., Fang, T. N., and Watkins, J. B. 1992. Rheological behavior of water-creosote and creosote-water emulsions. Rheol. Acta 31: 381–389.

    Article  CAS  Google Scholar 

  • Tsai, S. C. and Zammouri, K. 1988. Role of interparticular van der Waals force in rheology of concentrated suspensions. J. Rheol. 32: 737–750.

    Article  CAS  Google Scholar 

  • Vitali, A. A. and Rao, M. A. 1984a. Flow properties of low-pulp concentrated orange juice: effect of temperature and concentration. J. Food Sei. 49: 882–888.

    Article  Google Scholar 

  • Vitali, A. A. and Rao, M. A. 1984b. Flow properties of low-pulp concentrated orange juice: Serum viscosity and effect of pulp content. J. Food Sei. 49: 876–881.

    Article  Google Scholar 

  • Vocadlo, J. J. and Moo Young, M. 1969. Rheological properties of some commercially available fats. Can. Inst. Food Technol. J. 2: 137–140.

    Google Scholar 

  • Weltman, R.N. 1943. Breakdown of thixotropic structure as a function of time. J. Appl. Phys. 14: 343–350.

    Article  Google Scholar 

  • Wildemuth, C. R. and Williams, M. C. 1984. Viscosity of suspensions modeled with a shear-dependent maximum packing fraction. Rheol. Acta 23: 627–635.

    Article  CAS  Google Scholar 

  • Wu, H. and Morbidelli, M. 2001. A model relating structure of colloidal gels to their elastic properties. LangmuirM: 1030–1036.

    Google Scholar 

  • Yoo, B. and Rao, M. A. 1994. Effect of unimodal particle size and pulp content on rheological properties of tomato puree. J. Texture Stud. 25: 421–436.

    Article  Google Scholar 

  • Yoo, B. and Rao, M. A. 1996. Creep and dynamic rheological behavior of tomato concentrates: effect of concentration and finisher screen size. J. Texture Stud. 27: 451–459.

    Article  Google Scholar 

  • Yoo, B., Rao, M. A., and Steffe, J. F. 1995. Yield stress of food suspensions with the vane method at controlled shear rate and shear stress. J. Texture Stud. 26: 1–10.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Anandha Rao .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rao, M. (2014). Flow and Functional Models for Rheological Properties of Fluid Foods. In: Rheology of Fluid, Semisolid, and Solid Foods. Food Engineering Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-9230-6_2

Download citation

Publish with us

Policies and ethics