Skip to main content

Ecology and Physiology of Non-Frankia Actinobacteria from Actinorhizal Plants

  • Chapter
  • First Online:
Plasticity in Plant-Growth-Promoting and Phytopathogenic Bacteria

Abstract

Actinorhizal plants are well-known for their symbiotic association with the actinobacteria Frankia. However, little is known about their association with other diverse non-Frankia actinobacteria. These bacteria are found within same microniche as Frankia, and have attracted interest in regard to their ecophysiological roles in these environments. Most of these actinobacteria isolated from actinorhizal plants are classified as members of the Streptomyces, Micromonospora, Nocardia, and Actinoplanes genera. Analysis of the physiological properties of these actinobacteria demonstrated their metabolic versatility including biosynthetic potential to produce phytohormones and antimicrobials, and their capacity to act as “helper” bacteria to facilitate plant nodulation. Three genomes from these non-Frankia actinobacteria have been sequenced. Initial analysis of the first two genome sequences available indicates differences in their genome plasticity and genetic content reflecting genome stability variation between the two genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Benson DR, Dawson JO (2007) Recent advances in the biogeography and genecology of symbiotic Frankia and its host plants. Physiol Plant 130(3):318–330

    Article  CAS  Google Scholar 

  • Benson DR, Silvester WB (1993) Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol Rev 57(2):293–319

    CAS  Google Scholar 

  • Berg RH, Liu LX, Dawson JO et al (1992) Induction of pseudoactinorhizae by the plant pathogen Agrobacterium rhizogenes. Plant Physiol 98(2):777–779

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Berry AM, Harriott OT, Moreau RA et al (1993) Hopanoid lipids compose the Frankia vesicle envelope, presumptive barrier of oxygen diffusion to nitrogenase. Proc Natl Acad Sci U S A 90(13):6091–6094

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bickhart DM, Gogarten JP, Lapierre P et al (2009) Insertion sequence content reflects genome plasticity in strains of the root nodule actinobacterium Frankia. BMC Genomics 10:468

    Article  PubMed Central  PubMed  Google Scholar 

  • Capellano A, Dequatre B, Valla G, Moiroud A (1987) Root-nodules formation by Penicillium sp. on Alnus glutinosa and Alnus incana. Plant Soil 104(1):45–51

    Article  Google Scholar 

  • Chaia EE, Wall LG, Huss-Danell K (2010) Life in soil by the actinorhizal root nodule endophyte Frankia. A review. Symbiosis 51(3):201–226

    Article  Google Scholar 

  • Dobritsa SV, Sharaya LS (1986) Genome identity of different Nocardia autotrophica isolates from Alnus spp. root nodules and rhizosphere. In: Szabo G, Biro S, Goodfellow M (eds) Biological, biochemical and biomedical aspects of Actinomycetes. Akademiai Kiado, Budapest, pp 497–506

    Google Scholar 

  • Ghodbhane-Gtari F, Beauchemin N, Bruce D et al (2013) Draft genome sequence of Frankia sp. strain CN3, an atypical, non-infective (Nod¯) ineffective (Fix¯) isolate from Coriaria nepalensis. Genome Announc 1(2):00085–13

    Google Scholar 

  • Ghodhbane-Gtari F, Essoussi I, Chattaoui M et al (2010) Isolation and characterization of non-Frankia actinobacteria from root nodules of Alnus glutinosa, Casuarina glauca and Elaeagnus angustifolia. Symbiosis 50(1–2):51–57

    Article  CAS  Google Scholar 

  • Gtari M, Brusetti L, Skander G et al (2004) Isolation of Elaeagnus-compatible Frankia from soils collected in Tunisia. FEMS Microbiol Lett 234(2):349–355

    Article  CAS  PubMed  Google Scholar 

  • Gtari M, Daffonchio D, Boudabous A (2007) Assessment of the genetic diversity of Frankia microsymbionts of Elaeagnus angustifolia L. plants growing in a Tunisian date-palm oasis by analysis of PCR amplified nifD-K intergenic spacer. Can J Microbiol 53(3):440–445

    Article  CAS  PubMed  Google Scholar 

  • Gtari M, Ghodhbane-Gtari F, Nouioui I et al (2012) Phylogenetic perspectives of nitrogen-fixing actinobacteria. Arch Microbiol 194(1):3–11

    Article  CAS  PubMed  Google Scholar 

  • Guillén GM, Valdès M, Liao J, Hirsch AM (1993) Identificacion de actinobacterias aisladas de nódulos de Casuarina, por técnicas tradicionales y moleculares. Rev Lat-Am Microbiol 35:195–200

    Google Scholar 

  • Huss-Danell K (1997) Tansley review no. 93. Actinorhizal symbioses and their N2 fixation. New Phytol 136(3):375–405

    Article  CAS  Google Scholar 

  • Knowlton S, Dawson JO (1983) Effects of Pseudomonas cepacia and cultural factors on the nodulation of Alnus rubra roots by Frankia. Can J Bot 61(11):2877–2882

    Article  Google Scholar 

  • Knowlton S, Berry A, Torrey JG (1980) Evidence that associated soil bacteria may influence root hair infection of actinorhizal plants by Frankia. Can J Microbiol 26(8):971–977

    Article  CAS  PubMed  Google Scholar 

  • Liu N, Wang HB, Liu M et al (2009) Streptomyces alni sp nov., a daidzein-producing endophyte isolated from a root of Alnus nepalensis D. Don. Int J Syst Evol Microbiol 59(2):254–258

    Article  CAS  PubMed  Google Scholar 

  • Markowitz V, Korzeniewski F, Palaniappan K et al (2006) The integrated microbial genomes (IMG) system. Nucleic Acids Res 34:D344–D348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mastronunzio JE, Tisa LS, Normand P, Benson DR (2008) Comparative secretome analysis suggests low plant cell wall degrading capacity in Frankia symbionts. BMC Genomics 9:47

    Article  PubMed Central  PubMed  Google Scholar 

  • Medema MH, Blin K, Cimermancic P et al (2011) antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 39(suppl 2):W339–W346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murry MA, Fontaine MS, Tjepkema JD (1984) Oxygen protection of nitrogenase in Frankia sp. HFPArl3. Arch Microbiol 139(2–3):162–166

    Article  CAS  PubMed  Google Scholar 

  • Nazaret S, Simonet P, Normand P, Bardin R (1989) Genetic diversity among Frankia isolated from Casuarina nodules. Plant Soil 118(1–2):241–247

    Article  CAS  Google Scholar 

  • Niner BM, Brandt JP, Villegas M et al (1996) Analysis of partial sequences of genes coding for 16S rRNA of actinomycetes isolated from Casuarina equisetifolia nodules in Mexico. Appl Environ Microbiol 62(8):3034–3036

    CAS  PubMed Central  PubMed  Google Scholar 

  • Normand P, Lapierre P, Tisa LS et al (2007a) Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography. Genome Res 17(1):7–15

    Article  PubMed  Google Scholar 

  • Normand P, Queiroux C, Tisa LS et al (2007b) Exploring the genomes of Frankia. Physiol Plant 130(3):331–343

    Article  CAS  Google Scholar 

  • Persson T, Benson DR, Normand P et al (2011) Genome sequence of “Candidatus Frankia datiscae” Dg1, the uncultured microsymbiont from nitrogen-fixing root nodules of the dicot Datisca glomerata. J Bacteriol 193(24):7017–7018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qin S, Xing K, Jiang JH et al (2011) Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria. Appl Microbiol Biotechnol 89(3):457–473

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Saad H, Janse JD, Akkermans ADL (1998) Root nodules of Ceanothus caeruleus contain both the N2-fixing Frankia endophyte and a phylogenetically related Nod¯/Fix¯ actinomycete. Can J Microbiol 44(2):140–148

    CAS  Google Scholar 

  • Sen A, Beauchemin N, Bruce D et al (2013) Draft genome sequence of Frankia sp. strain QA3, a nitrogen-fixing actinobacterium isolated from the root nodule of Alnus nitida. Genome Announc 1(2):e00103–13

    PubMed Central  Google Scholar 

  • Sequerra J, Capellano A, Faure-Raynard M, Moiroud A (1994) Root hair infection process and myconodule formation on Alnus incana by Penicillium nodositatum. Can J Bot 72(7):955–962

    Article  Google Scholar 

  • Solans M (2007) Discaria trinervis—Frankia symbiosis promotion by saprophytic actinomycetes. J Basic Microbiol 47(3):243–250

    Article  PubMed  Google Scholar 

  • Solans M, Vobis G (2003) Actinomycetes saprofíticos asociados a la rizósfera de Discaria trinervis. Ecología Austral 13:97–107

    Google Scholar 

  • Solans M, Vobis G, Cassán F et al (2011) Production of phytohormones by root-associated saprophytic actinomycetes isolated from the actinorhizal plant Ochetophila trinervis. World J Microbiol Biotechnol 27(9):2195–2202

    Article  CAS  Google Scholar 

  • Trujillo ME, Willems A, Abril A et al (2005) Nodulation of Lupinus albus by strains of Ochrobactrum lupini sp. nov. Appl Environ Microbiol 71(3):1318–1327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trujillo ME, Kroppenstedt RM, Schumann P et al (2006) Micromonospora coriariae sp nov., isolated from root nodules of Coriaria myrtifolia. Int J Syst Evol Microbiol 56(10):2381–2385

    Article  CAS  PubMed  Google Scholar 

  • Udwary DW, Gontang EA, Jones AC et al (2011) Significant natural product biosynthetic potential of actinorhizal symbionts of the genus Frankia, as revealed by comparative genomic and proteomic analyses. Appl Environ Microbiol 77(11):3617–3625

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Valdés M, Pérez NO, Estrada-de los Santos P (2005) Non-Frankia actinomycetes isolated from surface-sterilized roots of Casuarina equisetifolia fix nitrogen. Appl Environ Microbiol 71(1):460–466

    Article  PubMed Central  PubMed  Google Scholar 

  • Valdés D, Huss-Danell K, Lavire C et al (2006) Further characterization of new symbiotic nitrogen fixing non-Frankia actiomycetes isolated from nodules of Alnus acuminata. Paper presented at the 14th International Meeting on Frankia and Actinorhizal Plants, Umea University, Umea, Sweden

    Google Scholar 

  • Wollum AG, Youngberg CT, Gilmour CM (1966) Characterization of Streptomyces sp. isolated from root nodules of Ceanothus velutinus Dougl. Soil Sci Soc Am J 30(4):463–467

    Article  Google Scholar 

  • Wolters DJ, Van Dijk C, Akkermans ADL, Woldendorp JW (1999) Ineffective Frankia and host resistance in natural populations of Alnus glutinosa (L.) Gaertn. Acta Oecol 20(2):71–79

    Article  Google Scholar 

Download references

Acknowledgments

FG-G was supported in part by a Visiting Scientist and Postdoctoral Fellowship Program administered by the NH Agricultural Experimental Station at the University of New Hampshire. LST was supported in part by Agriculture and Food Research Initiative Grant 2010-65108-20581 from the USDA National Institute of Food and Agriculture, Hatch grant NH530, and The College of Life Sciences and Agriculture at the University of New Hampshire, Durham, NH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis S. Tisa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ghodhbane-Gtari, F., Tisa, L.S. (2014). Ecology and Physiology of Non-Frankia Actinobacteria from Actinorhizal Plants. In: Katsy, E. (eds) Plasticity in Plant-Growth-Promoting and Phytopathogenic Bacteria. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9203-0_2

Download citation

Publish with us

Policies and ethics