Skip to main content

The Potential of Nanoemulsions in Biomedicine

  • Chapter
  • First Online:
Book cover Fundamentals of Pharmaceutical Nanoscience

Abstract

Nanoemulsions are nano-sized oil-in-water or water-in-oil emulsions with a number of applications in biomedicine. Nanoemulsions are highly versatile systems, in terms of composition and physicochemical properties, which can be tailor-made using simple and mild technologies to associate a great variety of drugs and fulfil the requirements for a wide range of pharmaceutical applications. This chapter aims to provide the reader with an overview on compositions and manufacturing methodologies and covers the most recent applications that have been reported in the field of drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BCS:

Biopharmaceutical classification system

CFC:

Chlorofluorocarbon

CPI:

Catastrophic phase inversion

GRAS:

Generally Recognised As Safe by United States’ Food and Drug Administration agency

HAMPA 1:

Azobenzene substituted poly(sodium acrylate)

HIV:

Human immunodeficiency virus

HLB:

Hydrophilic–lipophilic balance

LCT:

Long chain triglycerides

LSW:

Lifshitz-Slezov-Wagner

MCT:

Medium chain triglycerides

NIRF:

Near-Infrared Fluorescent (Imaging)

O/W nanoemulsion:

Oil-in-water nanoemulsion

PARG:

Polyarginine

PCL:

Poly(ε-caprolactone)

PCL-PEG:

Poly(ε-caprolactone)-poly(ethylene oxide)

PEG:

Poly(ethylene glycol)

PELC:

Poly(ethylene oxide)-block-poly(lactide-co-ε-caprolactone)

PIC:

Phase inversion composition

PIT:

Phase inversion temperature

PLA:

Poly(lactic acid)

PLA-PEG:

Poly(lactic acid)-poly(ethylene oxide)

PLGA:

Poly(lactic-co-glycolic) acid

PLGA-PEG:

Poly(lactic-co-glycolic)-poly(ethylene oxide)

S:O ratio:

Surfactant-to-oil ratio

SANS:

Small Angle Neutron Scattering

SAXS:

Small Angle X-ray Scattering

SEM:

Scanning Electron Microscopy

Smix:

Mixing ratio of surfactant and co-surfactant

TEM:

Transmission Electron Microscopy

W/O nanoemulsion:

Water-in-oil nanoemulsion

References

  • Abdel-Mottaleb MM, Neumann D, Lamprecht A (2011) Lipid nanocapsules for dermal application: a comparative study of lipid-based versus polymer-based nanocarriers. Eur J Pharm Biopharm 79:36–42

    PubMed  CAS  Google Scholar 

  • Abismaı̈l B, Canselier JP, Wilhelm AM, Delmas H, Gourdon C (1999) Emulsification by ultrasound: drop size distribution and stability. Ultrason Sonochem 6:75–83

    PubMed  Google Scholar 

  • Aboubakar M, Puisieux F, Couvreur P, Vauthier C (1999) Physico-chemical characterization of insulin-loaded poly(isobutylcyanoacrylate) nanocapsules obtained by interfacial polymerization. Int J Pharm 183:63–66

    PubMed  CAS  Google Scholar 

  • Allard E, Passirani C, Garcion E, Pigeon P, Vessières A, Jaouen G, Benoit JP (2008) Lipid nanocapsules loaded with an organometallic tamoxifen derivative as a novel drug-carrier system for experimental malignant gliomas. J Control Release 130:146–153

    PubMed  CAS  Google Scholar 

  • Alves MP, Scarrone AL, Santos M, Pohlmann AR, Guterres SS (2007) Human skin penetration and distribution of nimesulide from hydrophilic gels containing nanocarriers. Int J Pharm 341:15–20

    Google Scholar 

  • Ameller T, Marsaud V, Legrand P, Gref R, Barratt G, Renoir JM (2003) Polyester-poly(ethylene glycol) nanoparticles loaded with the pure antiestrogen RU 58668: physicochemical and opsonisation properties. Pharm Res 20:1063–1070

    PubMed  CAS  Google Scholar 

  • Anton N, Vandamme TF (2009) The universality of low-energy nano-emulsification. Int J Pharm 377:142–147

    PubMed  CAS  Google Scholar 

  • Anton N, Vandamme TF (2011) Nano-emulsions and micro-emulsions: clarifications of the critical differences. Pharm Res 28:978–985

    PubMed  CAS  Google Scholar 

  • Anton N, Gayet P, Benoit J-P, Saulnier P (2007) Nano-emulsions and nanocapsules by the PIT method: an investigation on the role of the temperature cycling on the emulsion phase inversion. Int J Pharm 344:44–52

    PubMed  CAS  Google Scholar 

  • Anton N, de Crevoisier A, Schmitt S, Vandamme T (2012) A new application of lipid nanoemulsions as coating agent, providing zero-order hydrophilic drug release from tablets. J Drug Deliv 2012:9

    Google Scholar 

  • Atkins PW, De Paula J (2010) Atkins' physical chemistry, 9th edn. Oxford University Press, Oxford

    Google Scholar 

  • Aucouturier J, Dupuis L, Deville S, Ascarateil S, Ganne V (2002) Montanide ISA 720 and 51: a new generation of water in oil emulsions as adjuvants for human vaccines. Expert Rev Vaccines 1:111–118

    PubMed  CAS  Google Scholar 

  • Baspinar Y, Borchert HH (2012) Penetration and release studies of positively and negatively charged nanoemulsions—is there a benefit of the positive charge? Int J Pharm 430:247–252

    PubMed  CAS  Google Scholar 

  • Battaglia L, Gallarate M (2012) Lipid nanoparticles: state of the art, new preparation methods and challenges in drug delivery. Expert Opin Drug Deliv 9:497–508

    PubMed  CAS  Google Scholar 

  • Beduneau A, Saulnier P, Anton N, Hindre F, Passirani C, Rajerison H et al (2006) Pegylated nanocapsules produced by an organic solvent-free method: evaluation of their stealth properties. Pharm Res 23:2190–2199

    PubMed  CAS  Google Scholar 

  • Béduneau A, Saulnier P, Hindre F, Clavreul A, Leroux JC, Benoit JP (2007) Design of targeted lipid nanocapsules by conjugation of whole antibodies and antibody Fab’ fragments. Biomaterials 28:4978–4990

    PubMed  Google Scholar 

  • Beg S, Swain S, Rizwan M, Irfanuddin M, Malini DS (2011) Bioavailability enhancement strategies: basics, formulation approaches and regulatory considerations. Curr Drug Deliv 8:691–702

    PubMed  CAS  Google Scholar 

  • Bernardi DS, Pereira TA, Maciel NR, Bortoloto J, Viera GS, Oliveira GC et al (2011) Formation and stability of oil-in-water nanoemulsions containing rice bran oil: in vitro and in vivo assessments. J Nanobiotechnol 9

    Google Scholar 

  • Bielinska AU, Janczak KW, Landers JJ, Makidon P, Sower LE, Peterson JW et al (2007) Mucosal immunization with a novel nanoemulsion-based recombinant anthrax protective antigen vaccine protects against Bacillus anthracis spore challenge. Infect Immun 75:4020–4029

    PubMed  CAS  Google Scholar 

  • Bielinska AU, Janczak KW, Landers JJ, Markovitz DM, Montefiori DC, Baker JR (2008) Nasal immunization with a recombinant HIV gp120 and nanoemulsion adjuvant produces Th1 polarized responses and neutralizing antibodies to primary HIV type 1 isolates. AIDS Res Hum Retroviruses 24:271–281

    PubMed  CAS  Google Scholar 

  • Bilbao-Sainz C, Avena-Bustillos RJ, Wood DF, Williams TG, McHugh TH (2010) Nanoemulsions prepared by a low-energy emulsification method applied to edible films. J Agric Food Chem 58:11932–11938

    PubMed  CAS  Google Scholar 

  • Bohren CF, Huffman DR (2007) Absorption and scattering of light by small particles. Weinheim, Wiley, pp 499–519

    Google Scholar 

  • Bonetto F, Srinivas M, Heerschap A, Mailliard R, Ahrens ET, Figdor CG et al (2011) A novel (19)F agent for detection and quantification of human dendritic cells using magnetic resonance imaging. Int J Cancer 129:365–373

    PubMed  CAS  Google Scholar 

  • Borhade V, Pathak S, Sharma S, Patravale V (2012) Clotrimazole nanoemulsion for malaria chemotherapy. Part II: stability assessment, in vivo pharmacodynamic evaluations and toxicological studies. Int J Pharm 431:149–160

    PubMed  CAS  Google Scholar 

  • Bouchemal K, Briancon S, Perrier E, Fessi H (2004) Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimisation. Int J Pharm 280:241–251

    PubMed  CAS  Google Scholar 

  • Bourseau-Guilmain E, Béjaud J, Griveau A, Lautram N, Hindré F, Weyland M, Benoit JP, Garcion E (2012) Development and characterization of immuno-nanocarriers targeting the cancer stem cell marker AC133. Int J Pharm 423:93–101

    PubMed  CAS  Google Scholar 

  • Brigger I, Dubernet C, Couvreur P (2002) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 54:631–651

    PubMed  CAS  Google Scholar 

  • Bruxel F, Cojean S, Bochot A, Teixeira H, Bories C, Loiseau PM et al (2011) Cationic nanoemulsion as a delivery system for oligonucleotides targeting malarial topoisomerase II. Int J Pharm 416:402–409

    PubMed  CAS  Google Scholar 

  • Butz N, Porté C, Courrier H, Krafft MP, Vandamme TF (2002) Reverse water-in-fluorocarbon emulsions for use in pressurized metered-dose inhalers containing hydrofluoroalkane propellants. Int J Pharm 238:257–269

    PubMed  CAS  Google Scholar 

  • Calvo P, Thomas C, Alonso MJ, Vila-Jato JL, Robinson JR (1994) Study of mechanism of interaction of poly(epsilon-caprolactone) nanocapsules with the cornea by confocal laser scanning microscopy. Int J Pharm 103:283–291

    CAS  Google Scholar 

  • Calvo P, Vila-Jato JL, Alonso MJ (1996) Comparative in vitro evaluation of several colloidal systems, nanoparticles, nanocapsules, and nanoemulsions as ocular drug carriers. J Pharm Sci 85:530–536

    PubMed  CAS  Google Scholar 

  • Calvo P, Remuñán-López C, Vila-Jato JL, Alonso MJ (1997) Development of positively charged colloidal drug carriers: chitosan-coated polyester nanocapsules and submicron-emulsion. Colloid Polym Sci 275:46–53

    CAS  Google Scholar 

  • Cattani VB, Fiel LA, Jäger A, Jäger E, Marques Colomé L, Uchoa F, Stefani F, Dalla Costa T, Stanisçuaski Guterres S, Raffin Pohlmann A (2010) Lipid-core nanocapsules restrained the indomethacin ethyl ester hydrolysis in the gastrointestinal lumen and wall acting as mucoadhesive reservoirs. Eur J Pharm Sci 39:116–124

    PubMed  Google Scholar 

  • Cauchetier E, Deniau M, Fessi H, Astier A, Paul M (2003) Atovaquone-loaded nanocapsules: influence of the nature of the polymer on their in vitro characteristics. Int J Pharm 250:273–281

    PubMed  CAS  Google Scholar 

  • Chen FM, Zhang M, Wu ZF (2010) Toward delivery of multiple growth factors in tissue engineering. Biomaterials 31:6279–6308

    PubMed  CAS  Google Scholar 

  • Chen H, Khemtong C, Yang X, Chang X, Gao J (2011) Nanonization strategies for poorly water-soluble drugs. Drug Discov Today 16:354–360

    PubMed  CAS  Google Scholar 

  • Chiesa M, Garg J, Kang YT, Chen G (2008) Thermal conductivity and viscosity of water-in-oil nanoemulsions. Colloids Surf A Physicochem Eng Asp 326:67–72

    CAS  Google Scholar 

  • Contreras-Ruiz L, de la Fuente M, Parraga JE, Lopez-Garcia A, Fernandez I, Seijo B et al (2011) Intracellular trafficking of hyaluronic acid-chitosan oligomer-based nanoparticles in cultured human ocular surface cells. Mol Vis 17:279–290

    PubMed  CAS  Google Scholar 

  • Correia-Pinto JF, Csaba N, Alonso MJ (2013) Vaccine delivery carriers: insights and future perspectives. Int J Pharm 440:27–38

    PubMed  CAS  Google Scholar 

  • Courrier HM, Pons F, Lessinger JM, Frossard N, Krafft MP, Vandamme TF (2004a) In vivo evaluation of a reverse water-in-fluorocarbon emulsion stabilized with a semifluorinated amphiphile as a drug delivery system through the pulmonary route. Int J Pharm 282:131–140

    PubMed  CAS  Google Scholar 

  • Courrier HM, Vandamme TF, Krafft MP (2004b) Reverse water-in-fluorocarbon emulsions and microemulsions obtained with a fluorinated surfactant. Colloids Surf A Physicochem Eng Asp 244:141–148

    CAS  Google Scholar 

  • Cruz L, Soares LU, Dalla Costa T, Mezzalira G, da Silveira NP, Guterres SS, Pohlmann AR (2006) Diffusion and methematical modeling of release profiles from nanocarriers. Int J Pharm 313:198–205

    PubMed  CAS  Google Scholar 

  • Damgé C, Michel C, Aprahamian M, Couvreur P (1988) New approach for oral administration of insulin with polyalkylcyanoacrylate nanocapsules as drug carrier. Diabetes 37:246–251

    PubMed  Google Scholar 

  • Damgé C, Michel C, Aprahamian M, Couvreur P, Devissaguet JP (1990) Nanocapsules as carriers for oral peptide delivery. J Control Release 13:233–239

    Google Scholar 

  • Damgé C, Vranckx H, Balschmidt P, Couvreur P (1997) Poly(alkylcyanoacrylate) nanospheres for oral administration of insulin. J Pharm Sci 86:1403–1409

    PubMed  Google Scholar 

  • Damgé C, Maincent P, Ubrich N (2007) Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats. J Control Release 117:163–170

    PubMed  Google Scholar 

  • David S, Carmoy N, Resnier P, Denis C, Misery L, Pitard B, Benoit JP, Passirani C, Montier T (2012) In vivo imaging of DNA lipid nanocapsules after systemic administration in a melanoma mouse model. Int J Pharm 423:108–115

    PubMed  CAS  Google Scholar 

  • de Assis DN, Mosqueira VC, Vilela JM, Andrade MS, Cardoso VN (2008) Release profiles and morphological characterization by atomic force microscopic and photon correlation spectroscopy of 99mTechnetium-fluconazole nanocapsules. Int J Pharm 349:152–160

    PubMed  Google Scholar 

  • De Campos AM, Sanchez A, Gref R, Calvo P, Alonso MJ (2003) The effect of a PEG versus a chitosan coating on the interaction of drug colloidal carriers with the ocular mucosa. Eur J Pharm Sci 20:73–81

    PubMed  Google Scholar 

  • de la Fuente M, Seijo B, Alonso MJ (2008a) Bioadhesive hyaluronan-chitosan nanoparticles can transport genes across the ocular mucosa and transfect ocular tissue. Gene Ther 15:668–676

    PubMed  Google Scholar 

  • de la Fuente M, Seijo B, Alonso MJ (2008b) Novel hyaluronic acid-chitosan nanoparticles for ocular gene therapy. Invest Ophthalmol Vis Sci 49:2016–2024

    PubMed  Google Scholar 

  • de la Fuente M, Raviña M, Paolicelli P, Sanchez A, Seijo B, Alonso MJ (2010) Chitosan-based nanostructures: a delivery platform for ocular therapeutics. Adv Drug Deliv Rev 62:100–117

    PubMed  Google Scholar 

  • Delmas T, Piraux H, Couffin AC, Texier I, Vinet F, Poulin P et al (2011) How to prepare and stabilize very small nanoemulsions. Langmuir 27:1683–1692

    PubMed  CAS  Google Scholar 

  • Deminière B (1998) In: Brinks BP (ed) Modern aspects of emulsion science. The Royal Society of Chemistry, Cambridge, pp 261–291

    Google Scholar 

  • Desai SD, Blanchard J (1998) Evaluation of pluronic F 127 based sustained release ocular delivery systems for pilocarpine using the albino rabbit eye model. Differences between ocular inserts and eye drops. J Ocul Pharmacol Ther 12:1190–1195

    Google Scholar 

  • Dillingham EO, Lawrence WH, Autian J, Schmalz G (1983) Acrylate and methacrylate esters: relationship of hemolytic activity and in vivo toxicity. J Biomed Mater Res 17:945–957

    PubMed  CAS  Google Scholar 

  • Dvir T, Timko BP, Kohane DS, Langer R (2011) Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol 6:13–22

    PubMed  CAS  Google Scholar 

  • Engels FK, Mathot RA, Verweij J (2007) Alternative drug formulations of docetaxel: a review. Anticancer Drugs 18:95–103

    PubMed  CAS  Google Scholar 

  • Fan Y, Li X, Zhou Y, Fan C, Wang X, Huang Y et al (2011) Improved intestinal delivery of salmon calcitonin by water-in-oil microemulsions. Int J Pharm 416:323–330

    PubMed  CAS  Google Scholar 

  • Fernandez P, Andre V, Rieger J, Kuhnle A (2004) Nano-emulsion formation by emulsion phase inversion. Colloids Surf A Physicochem Eng Asp 251:53–58

    CAS  Google Scholar 

  • Fredrick E, Walstra P, Dewettinck K (2010) Factors governing partial coalescence in oil-in-water emulsions. Adv Colloid Interface Sci 153:30–42

    PubMed  CAS  Google Scholar 

  • Freund J, Cascals J, Hosmer EP (1937) Sensitization and antibody formation after injection of tubercle bacilli and paraffin oil. Proc Soc Exp Biol Med 37

    Google Scholar 

  • Friberg SE, Vesable R (1985) Microemulsions. In: Becher P (ed) Encyclopedia of emulsion technology, vol 1. Marcel Dekker, New York, pp 287–336

    Google Scholar 

  • Fryd MM, Mason TG (2012) Advanced nanoemulsions. Annu Rev Phys Chem 63:493–518

    PubMed  CAS  Google Scholar 

  • Fukui Y, Fujimoto K (2009) The preparation of sugar polymer-coated nanocapsules by the layer-by-layer deposition on the liposome. Langmuir 25:10020–10025

    PubMed  CAS  Google Scholar 

  • Furtado Mosqueira V, Legrand P, Gulik A, Bourdon O, Gref R, Labarre D, Barratt G (2001) Relationship between complement activation, cellular uptake and surface physicochemical aspects of novel PEG-modified nanocapsules. Biomaterials 22:2967–2979

    Google Scholar 

  • Gabizon AA (2001) Stealth liposomes and tumor targeting: one step further in the quest for the magic bullet. Clin Cancer Res 7:223–225

    PubMed  CAS  Google Scholar 

  • Gaikwad SG, Pandit AB (2008) Ultrasound emulsification: effect of ultrasonic and physicochemical properties on dispersed phase volume and droplet size. Ultrason Sonochem 15:554–563

    PubMed  CAS  Google Scholar 

  • Galindo-Alvarez J, Le KA, Sadtler V, Marchal P, Perrin P, Tribet C et al (2011) Enhanced stability of nanoemulsions using mixtures of non-ionic surfactant and amphiphilic polyelectrolyte. Colloids Surf A Physicochem Eng Asp 389:237–245

    CAS  Google Scholar 

  • Gaoe H, Pang ZQ, Pan SQ, Cao SJ, Yang Z, Chen C et al (2012) Anti-glioma effect and safety of docetaxel-loaded nanoemulsion. Arch Pharm Res 35:333–341

    PubMed  CAS  Google Scholar 

  • Garcia-Fuentes M, Alonso MJ (2012) Chitosan-based drug nanocarriers: where do we stand? J Control Release 161:496–504

    PubMed  CAS  Google Scholar 

  • Gaspar VM, Sousa F, Queiroz JA, Correia IJ (2011) Formulation of chitosan-TPP-pDNA nanocapsules for gene therapy applications. Nanotechnology 22:15101

    CAS  Google Scholar 

  • Gelderblom H, Verweij J, Nooter K, Sparreboom A (2001) Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer 37:1590–1598

    PubMed  CAS  Google Scholar 

  • Gianella A, Jarzyna PA, Mani V, Ramachandran S, Calcagno C, Tang J et al (2011) Multifunctional nanoemulsion platform for imaging guided therapy evaluated in experimental cancer. ACS Nano 5:4422–4433

    PubMed  CAS  Google Scholar 

  • Goldberg M, Langer R, Jia X (2007) Nanostructured materials for applications in drug delivery and tissue engineering. J Biomater Sci Polym Ed 18:241–268

    PubMed  CAS  Google Scholar 

  • González-Aramundiz JV, Lozano MV, Sousa-Herves A, Fernandez-Megia E, Csaba N (2012) Polypeptides and polyaminoacids in drug delivery. Expert Opin Drug Deliv 9:18

    Google Scholar 

  • Griffith LG, Naughton G (2002) Tissue engineering—current challenges and expanding opportunities. Science 295:1009–1014

    PubMed  CAS  Google Scholar 

  • Grigoriev D, Miller R (2009) Mono- and multilayer covered drops as carriers. Curr Opin Colloid Interface Sci 14:48–59

    CAS  Google Scholar 

  • Gundogdu E, Alvarez IG, Karasulu E (2011) Improvement of effect of water-in-oil microemulsion as an oral delivery system for fexofenadine: in vitro and in vivo studies. Int J Nanomed 6:1631–1640

    CAS  Google Scholar 

  • Gupta RK (1998) Aluminum compounds as vaccine adjuvants. Adv Drug Deliv Rev 32:155–172

    PubMed  CAS  Google Scholar 

  • Gutierrez JM, Gonzalez C, Maestro A, Sole I, Pey CM, Nolla J (2008) Nano-emulsions: new applications and optimization of their preparation. Curr Opin Colloid Interface Sci 13:245–251

    CAS  Google Scholar 

  • Hagigit T, Abdulrazik M, Valamanesh F, Behar-Cohen F, Benita S (2012) Ocular antisense oligonucleotide delivery by cationic nanoemulsion for improved treatment of ocular neovascularization: an in-vivo study in rats and mice. J Control Release 160:225–231

    PubMed  CAS  Google Scholar 

  • Hamouda T, Chepurnov A, Mank N, Knowlton J, Chepurnova T, Myc A et al (2010) Efficacy, immunogenicity and stability of a novel intranasal nanoemulsion-adjuvanted influenza vaccine in a murine model. Hum Vaccin 6:585–594

    PubMed  CAS  Google Scholar 

  • Hamouda T, Sutcliffe JA, Ciotti S, Baker JR Jr (2011) Intranasal immunization of ferrets with commercial trivalent influenza vaccines formulated in a nanoemulsion-based adjuvant. Clin Vaccine Immunol 18:1167–1175

    PubMed  CAS  Google Scholar 

  • Herbert WJ (1968) Mode of action of mineral-oil emulsion adjuvants on antibody production in mice. Immunology 14:301–318

    PubMed  CAS  Google Scholar 

  • Heurtault B, Saulnier P, Pech B, Proust JE, Benoit JP (2002) A novel phase inversion-based process for the preparation of lipid nanocarriers. Pharm Res 19(6):875–880

    PubMed  CAS  Google Scholar 

  • Heurtault B, Saulnier P, Pech B, Proust J-E, Benoit J-P (2003) Physico-chemical stability of colloidal lipid particles. Biomaterials 24:4283–4300

    PubMed  CAS  Google Scholar 

  • Howe AM, Pitt AR (2008) Rheology and stability of oil-in-water nanoemulsions stabilised by anionic surfactant and gelatin 2) addition of homologous series of sugar-based co-surfactants. Adv Colloid Interface Sci 144:30–37

    PubMed  CAS  Google Scholar 

  • Huang CY, Lee YD (2006) Core-shell type of nanoparticles composed of poly[(n-butyl cyanoacrylate)-co-(2-octyl cyanoacrylate)] copolymers for drug delivery application: synthesis, characterization and in vitro degradation. Int J Pharm 325:132–139

    PubMed  CAS  Google Scholar 

  • Huang M-H, Chou A-H, Lien S-P, Chen H-W, Huang C-Y, Chen W-W et al (2009a) Formulation and immunological evaluation of novel vaccine delivery systems based on bioresorbable poly(ethylene glycol)-block-poly(lactide-co-epsilon-caprolactone). J Biomed Mater Res B: Appl Biomater 90B:832–841

    CAS  Google Scholar 

  • Huang M-H, Huang C-Y, Lien S-P, Siao S-Y, Chou A-H, Chen H-W et al (2009b) Development of multi-phase emulsions based on bioresorbable polymers and oily adjuvant. Pharm Res 26:1856–1862

    PubMed  CAS  Google Scholar 

  • Huang M-H, Huang C-Y, Lin S-C, Chen J-H, Ku C-C, Chou A-H et al (2009c) Enhancement of potent antibody and T-cell responses by a single-dose, novel nanoemulsion-formulated pandemic influenza vaccine. Microbes Infect 11:654–660

    PubMed  CAS  Google Scholar 

  • Huang M-H, Lin S-C, Hsiao C-H, Chao H-J, Yang H-R, Liao C-C et al (2010) Emulsified nanoparticles containing inactivated influenza virus and CpG oligodeoxynucleotides critically influences the host immune responses in mice. PLoS One 5

    Google Scholar 

  • Huynh NT, Passirani C, Saulnier P, Benoit JP (2009) Lipid nanocapsules: a new platform for nanomedicine. Int J Pharm 379:2001–2009

    Google Scholar 

  • Hwang TL, Fang CL, Chen CH, Fang JY (2009) Permeation enhancer-containing water-in-oil nanoemulsions as carriers for intravesical cisplatin delivery. Pharm Res 26:2314–2323

    PubMed  CAS  Google Scholar 

  • Iannitelli AGR, Di Stefano A, Di Giulio M, Sozio P, Bessa LJ, Laserra S, Paolini C, Protasi F, Cellini L (2011) Potential antibacterial activity of carvacrol-loaded poly(DL-lactide-co-glycolide) (PLGA) nanoparticles against microbial biofilm. Int J Mol Sci 12:13

    Google Scholar 

  • Ikada Y (2006) Challenges in tissue engineering. J R Soc Interface 3:589–601

    PubMed  CAS  Google Scholar 

  • Israelachvili JN (2011) Thermodynamic principles of self-assembly. In: Intermolecular and surface forces (Chapter 19), 3rd edn. Academic, San Diego, pp 503–534

    Google Scholar 

  • Izquierdo P, Esquena J, Tadros TF, Dederen JC, Feng J, Garcia-Celma MJ et al (2004) Phase behavior and nano-emulsion formation by the phase inversion temperature method. Langmuir 20:6594–6598

    PubMed  CAS  Google Scholar 

  • Jacob L, Baure JT, Kaufman HE (1990) Investigation of pilocarpine-loaded polybutyl cyanoacrylate nanocapsules in collagen shields as a drug delivery system. Invest Opthalmol Vis Sci 31:485

    Google Scholar 

  • Jansen T, Hofmans MPM, Theelen MJG, Schijns V (2005) Structure-activity relations of water-in-oil vaccine formulations and induced antigen-specific antibody responses. Vaccine 23:1053–1060

    PubMed  CAS  Google Scholar 

  • Johnson C, Robinson P, Flack MR, Gracon S, Hamouda T, Stanberry L et al (2010) Phase I study of a nanoemulsion adjuvanted nasal influenza vaccine demonstrates both mucosal and systemic immune responses in humans. Abstracts of the Interscience Conference on Antimicrobial Agents and Chemotherapy, vol 50

    Google Scholar 

  • Jokerst JV, Lobovkina T, Zare RN, Gambhir SS (2011) Nanoparticle PEGylation for imaging and therapy. Nanomedicine 6:715–728

    PubMed  CAS  Google Scholar 

  • Klang SH, Baszkin A, Benita S (1996) The stability of piroxicam incorporated in a positively-charged submicron emulsion for ocular administration. Int J Pharm 132:33–44

    CAS  Google Scholar 

  • Klang S, Abdulrazik M, Benita S (2000) Influence of emulsion droplet surface charge on indomethacin ocular tissue distribution. Pharm Dev Technol 5:521–532

    PubMed  CAS  Google Scholar 

  • Klang V, Matsko BN, Valenta C, Hofer F (2012) Electron microscopy of nanoemulsions: an essential tool for characterisation and stability assessment. Micron 43:85–103

    PubMed  CAS  Google Scholar 

  • Koroleva MY, Yurtov EV (2012) Nanoemulsions: the properties, methods of preparation and promising applications. Russ Chem Rev 81:21–43

    CAS  Google Scholar 

  • Kotta S, Khan AW, Pramod K, Ansari SH, Sharma RK, Ali J (2012) Exploring oral nanoemulsions for bioavailability enhancement of poorly water-soluble drugs. Expert Opin Drug Deliv 9:585–598

    PubMed  CAS  Google Scholar 

  • Krafft MP (2001) Fluorocarbons and fluorinated amphiphiles in drug delivery and biomedical research. Adv Drug Deliv Rev 47:209–228

    PubMed  CAS  Google Scholar 

  • Krafft MP, Vierling P, Riess JG (1991) Synthesis and preliminary data on the biocompatibility and emulsifying properties of perfluoroalkylated phosphoramidates as injectable surfactants. Eur J Med Chem 26:545–550

    CAS  Google Scholar 

  • Krafft MP, Chittofrati A, Riess JG (2003) Emulsions and microemulsions with a fluorocarbon phase. Current Opin Colloid Interface Sci 8:251–258

    CAS  Google Scholar 

  • Laine A-L, Huynh NT, Clavreul A, Balzeau J, Béjaud J, Vessieres A, Benoit J-P, Eyer J, Passirani C (2012) Brain tumor targeting strategies via coated ferrociphenol lipid nanocapsule. Eur J Pharm Biopharm 81:690–693

    PubMed  CAS  Google Scholar 

  • Lallemand F, Daull P, Benita S, Buggage R, Garrigue JS (2012) Successfully improving ocular drug delivery using the cationic nanoemulsion, novasorb. J Drug Deliv 2012:604204

    PubMed  Google Scholar 

  • Landfester K, Willert M, Antonietti M (2000) Preparation of polymer particles in nonaqueous direct and inverse miniemulsions. Macromolecules 33:2370–2376

    CAS  Google Scholar 

  • Lerma-Garcia MJ, Herrero-Martinez JM, Simo-Alfonso EF, Mendonca CRB, Ramis-Ramos G (2009) Composition, industrial processing and applications of rice bran gamma-oryzanol. Food Chem 115:389–404

    CAS  Google Scholar 

  • Lertsutthiwong P, Noomun K, Jongaroonngamsang N, Rojsitthisak P, Nimmannit U (2008) Preparation of alginate nanocapsules containing turmeric oil. Carbohydr Polym 74:209–214

    CAS  Google Scholar 

  • Lertsutthiwong P, Rojsitthhisak P, Nimmannit U (2009) Preparation of turmeric oil-loaded chitosan-alginate biopolymeric nanocapsules. Mater Sci Eng C 29:856–860

    CAS  Google Scholar 

  • Letchford K, Burt H (2007) A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm 65:259–269

    PubMed  CAS  Google Scholar 

  • Lisfshitz IM, Slezov VV (1961) The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids 19:35–50

    Google Scholar 

  • Liu CH, Yu SY (2010) Cationic nanoemulsions as non-viral vectors for plasmid DNA delivery. Colloids Surf B: Biointerfaces 79:509–515

    PubMed  CAS  Google Scholar 

  • Losa C, Marchal-Heussler L, Orallo F, Vila Jato JL, Alonso MJ (1993) Design of new formulations for topical ocular administration: polymeric nanocapsules containing metipranolol. Pharm Res 10:80–87

    PubMed  CAS  Google Scholar 

  • Lozano MV, Lollo G, Alonso-Nocelo M, Brea J, Vidal A, Torres D, Alonso MJ (2013) Polyarginine nanocapsules: a new platform for intracellular drug delivery. J Nanopart Res 15(3):1–14

    Google Scholar 

  • Lozano MV, Torrecilla D, Torres D, Vidal A, Dominguez F, Alonso MJ (2008) Highly efficient system to deliver taxanes into tumor cells: docetaxel-loaded chitosan oligomer colloidal carriers. Biomacromolecules 9:2186–2193

    PubMed  CAS  Google Scholar 

  • Maestro A, Solè I, González C, Solans C, Gutiérrez JM (2008) Influence of the phase behavior on the properties of ionic nanoemulsions prepared by the phase inversion composition method. J Colloid Interface Sci 327:433–439

    PubMed  CAS  Google Scholar 

  • Maincent P, Marchal-Heussler L, Thouvenot P, Sirbat D, Hoffman M, Vallet JA, Bergamini M (1995) Ocular distribution of indium oxine following topical administration of poly(epsilon caprolactone)nanocapsules. Proc Control Release Soc 22:1

    Google Scholar 

  • Makidon PE, Bielinska AU, Nigavekar SS, Janczak KW, Knowlton J, Scott AJ et al (2008) Pre-clinical evaluation of a novel nanoemulsion-based hepatitis B mucosal vaccine. PLoS One 3:e2954

    PubMed  Google Scholar 

  • Makidon PE, Knowlton J, Groom JV, Blanco LP, LiPuma JJ, Bielinska AU et al (2010) Induction of immune response to the 17 kDa OMPA Burkholderia cenocepacia polypeptide and protection against pulmonary infection in mice after nasal vaccination with an OMP nanoemulsion-based vaccine. Med Microbiol Immunol 199:81–92

    PubMed  CAS  Google Scholar 

  • Malafaya PB, Silva GA, Reis RL (2007) Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev 59:207–233

    PubMed  CAS  Google Scholar 

  • Marie P, Perrier-Cornet JM, Gervais P (2002) Influence of major parameters in emulsification mechanisms using a high-pressure jet. J Food Eng 53:43–51

    Google Scholar 

  • McClements DJ (2010) Emulsion design to improve the delivery of functional lipophilic components. Annu Rev Food Sci Technol 1:241–269

    PubMed  CAS  Google Scholar 

  • McClements DJ (2011) Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter 7:2297–2316

    CAS  Google Scholar 

  • McClements DJ (2012) Nanoemulsions versus microemulsions: terminology, differences and similarities. Soft Matter 8:1719–1729

    CAS  Google Scholar 

  • McClements DJ, Dungan SR (1995) Light scattering study of solubilization of emulsion droplets by non-ionic surfactant solutions. Colloids Surf A Physicochem Eng Asp 104:127–135

    CAS  Google Scholar 

  • Mengual O, Meunier G, Cayre I, Puech K, Snabre P (1999) Characterization of instability of concentrated dispersions by a new optical analyzer: the TURBISCAN MA 1000. Colloids Surf A Physicochem Eng Asp 152:111–123

    CAS  Google Scholar 

  • Moinard-Checot D, Chevalier Y, Briançon S, Fessi H, Guinebretière S (2006) Nanoparticles for drug delivery: review of the formulation and process difficulties illustrated by the emulsion–diffusion process. J Nanosci Nanotechnol 6:2664–2681

    PubMed  CAS  Google Scholar 

  • Moinard-Chécot D, Chevalier Y, Briançon S, Beney L, Fessi H (2008) Mechanism of nanocapsules formation by the emulsion–diffusion process. J Colloid Interface Sci 317(2):458–468

    PubMed  Google Scholar 

  • Mora-Huertas CE, Fessi H, Elaisari A (2010) Polymer-based nanocapsules for drug delivery. Int J Pharm 385:113–142

    PubMed  CAS  Google Scholar 

  • Morille M, Passirani C, Letrou-Bonneval E, Benoita JP, Pitard B (2009) Galactosylated DNA lipid nanocapsules for efficient hepatocyte targeting. Int J Pharm 379:293–300

    PubMed  CAS  Google Scholar 

  • Myc A, Kukowska-Latallo JF, Bielinska AU, Cao P, Myc PP, Janczak K et al (2003) Development of immune response that protects mice from viral pneumonitis after a single intranasal immunization with influenza A virus and nanoemulsion. Vaccine 21:3801–3814

    PubMed  CAS  Google Scholar 

  • Nagarajan R (2001) Molecular packing parameter and surfactant self-assembly: the neglected role of the surfactant tail†. Langmuir 18:31–38

    Google Scholar 

  • Neubert RH (2011) Potentials of new nanocarriers for dermal and transdermal drug delivery. Eur J Pharm Biopharm 77:1–2

    PubMed  CAS  Google Scholar 

  • Ngwuluka N (2010) Application of in situ polymerization for design and development of oral drug delivery systems. AAPS Pharm Sci Technol 11:1603–1611

    CAS  Google Scholar 

  • Nicolas J, Covreur P (2009) Synthesis of poly(alkyl cyanoacrylate)-based colloidal nanomedicines. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1:111–127

    PubMed  CAS  Google Scholar 

  • Ohguchi Y, Kawano K, Hattori Y, Maitani Y (2008) Selective delivery of folate-PEG-linked, nanoemulsion-loaded aclacinomycin A to KB nasopharyngeal cells and xenograft: effect of chain length and amount of folate-PEG linker. J Drug Target 16:660–667

    PubMed  CAS  Google Scholar 

  • Oyarzun-Ampuero FA, Rivera-Rodríguez GR, Alonso MJ, Torres D (2013) Hyaluronan nanocapsules as a new vehicle for intracellular drug delivery. Eur J Pharm Sci 49(4):483–490

    PubMed  CAS  Google Scholar 

  • Pal R (2011) Rheology of simple and multiple emulsions. Curr Opin Colloid Interface Sci 16:41–60

    CAS  Google Scholar 

  • Parveen R, Baboota S, Ali J, Ahuja A, Vasudev SS, Ahmad S (2011) Oil based nanocarrier for improved oral delivery of silymarin: in vitro and in vivo studies. Int J Pharm 413:245–253

    PubMed  CAS  Google Scholar 

  • Peltier S, Oger JM, Lagarce F, Couet W, Benoit JP (2006) Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded lipid nanocapsules. Pharm Res 23:1243–1250

    PubMed  CAS  Google Scholar 

  • Peng LC, Liu CH, Kwan CC, Huang KF (2010) Optimization of water-in-oil nanoemulsions by mixed surfactants. Colloids Surf A Physicochem Eng Asp 370:136–142

    CAS  Google Scholar 

  • Peulen TO, Wilkinson KJ (2011) Diffusion of nanoparticles in a biofilm. Environ Sci Technol 45:3367–3373

    PubMed  CAS  Google Scholar 

  • Poletto FS, Jäger E, Cruz L, Pohlmann AR, Guterres SS (2008) The effect of polymeric wall on the permeability of drug-loaded nanocapsules. Mater Sci Eng C 28:472–478

    CAS  Google Scholar 

  • Porras M, Solans C, Gonzalez C, Martinez A, Guinart A, Gutierrez JM (2004) Studies of formation of W/O nano-emulsions. Colloids Surf A Physicochem Eng Asp 249:115–118

    CAS  Google Scholar 

  • Porras M, Solans C, Gonzalez C, Gutierrez JM (2008) Properties of water-in-oil (W/O) nano-emulsions prepared by a low-energy emulsification method. Colloids Surf A Physicochem Eng Asp 324:181–188

    CAS  Google Scholar 

  • Prego C, García M, Torres D, Alonso MJ (2005) Transmucosal macromolecular drug delivery. J Control Release 101:151–162

    PubMed  CAS  Google Scholar 

  • Prego C, Torres D, Alonso MJ (2006a) Chitosan nanocapsules as carriers for oral peptide delivery: effect of chitosan molecular weight and type of salt on the in vitro behaviour and in vivo effectiveness. J Nanosci Nanotechnol 6:2921–2928

    PubMed  CAS  Google Scholar 

  • Prego C, Torres D, Fernandez-Megia E, Novoa-Carballal R, Quiñoá E, Alonso MJ (2006b) Chitosan–PEG nanocapsules as new carriers for oral peptide delivery: effect of chitosan pegylation degree. J Control Release 111:299–308

    PubMed  CAS  Google Scholar 

  • Prego C, Paolicelli P, Díaz B, Vicente S, Sánchez A, González-Fernández A, Alonso MJ (2010) Chitosan-based nanoparticles for improving immunization against hepatitis B infection. Vaccine 28:2607–2614

    PubMed  CAS  Google Scholar 

  • Psathas PA, Janowiak ML, Garcia-Rubio LH, Johnston KP (2002) Formation of carbon dioxide in water miniemulsions using the phase inversion temperature method. Langmuir 18:3039–3046

    CAS  Google Scholar 

  • Quintanar-Guerrero D, Allémann E, Fessi H, Doelker E (1998) Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers. Drug Deliv Ind Pharm 24:1112–1128

    Google Scholar 

  • Quintanar D, Fessi H, Doelker E, Alleman E (2005) Method for preparing vesicular nanocapsules. US 6884438 B1

    Google Scholar 

  • Rahman MA, Hussain A, Hussain MS, Mirza MA, Iqbal Z (2013) Role of excipients in successful development of self-emulsifying/microemulsifying drug delivery system (SEDDS/SMEDDS). Drug Deliv Ind Pharm 39:1–19

    CAS  Google Scholar 

  • Rajpoot P, Bali V, Pathak K (2012) Anticancer efficacy, tissue distribution and blood pharmacokinetics of surface modified nanocarrier containing melphalan. Int J Pharm 426:219–230

    PubMed  CAS  Google Scholar 

  • Riess JG (2005) Understanding the fundamentals of perfluorocarbons and perfluorocarbon emulsions relevant to in vivo oxygen delivery. Artif Cells Blood Substit Immobil Biotechnol 33:47–63

    PubMed  CAS  Google Scholar 

  • Rolland A (2005) Gene medicines: the end of the beginning? Adv Drug Deliv Rev 57:669–673

    PubMed  CAS  Google Scholar 

  • Russell-Jones G, Himes R (2011) Water-in-oil microemulsions for effective transdermal delivery of proteins. Expert Opin Drug Deliv 8:537–546

    PubMed  CAS  Google Scholar 

  • Sadtler VM, Krafft MP, Riess JG (1996) Achieving stable, reverse water-in-fluorocarbon emulsions. Angew Chem Int Ed Engl 35:1976–1978

    CAS  Google Scholar 

  • Sadtler VM, Jeanneaux F, Krafft MP, Rabai J, Riess JG (1998) Perfluoroalkylated amphiphiles with a morpholinophosphate or a dimorpholinophosphate polar head group. New J Chem 22:609–613

    CAS  Google Scholar 

  • Sadtler VM, Krafft MP, Riess JG (1999) Reverse water-in-fluorocarbon emulsions as a drug delivery system: an in vitro study. Colloids Surf A Physicochem Eng Asp 147:309–315

    CAS  Google Scholar 

  • Scarioti GD, Lubambo A, Feitosa JPA, Sierakowski MR, Bresolina TMB, de Freitas RA (2011) Nanocapsule of cationic liposomes obtained using “in situ” acrylic acid polymerization: stability, surface charge and biocompatibility. Colloids Surf B Biointerfaces 87:267–272

    PubMed  CAS  Google Scholar 

  • Schatzlein AG (2001) Non-viral vectors in cancer gene therapy: principles and progress. Anticancer Drugs 12:275–304

    PubMed  CAS  Google Scholar 

  • Schijns V (2000) Immunological concepts of vaccine adjuvant activity—commentary. Curr Opin Immunol 12:456–463

    PubMed  CAS  Google Scholar 

  • Schultz S, Wagner G, Urban K, Ulrich J (2004) High-pressure homogenization as a process for emulsion formation. Chem Eng Technol 27:361–368

    CAS  Google Scholar 

  • Seijo B, Fattal E, Roblottreupel L, Couvreur P (1990) Design of nanoparticles of less than 50 nm diameter—preparation, characterization and drug loading. Int J Pharm 62:1–7

    CAS  Google Scholar 

  • Shafiq S, Shakeel F, Talegaonkar S, Ahmad FJ, Khar RK, Ali M (2007) Development and bioavailability assessment of ramipril nanoemulsion formulation. Eur J Pharm Biopharm 66:227–243

    PubMed  CAS  Google Scholar 

  • Shan L (2004) Aqueous colloidal nanoemulsion of perfluorocarbon polymers. In: Molecular Imaging and Contrast Agent Database (MICAD). National Center for Biotechnology Information (US); 2004–2013, Bethesda, MD. http://www.ncbi.nlm.nih.gov/books/NBK53699/. Accessed 24 Feb 2011 [updated 31 Mar 2011]

  • Shan L. Aqueous colloidal nanoemulsion of perfluorocarbon polymers. 2011 Feb 24 [Updated 2011 Mar 31]. In: Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2004–2013. Available from: http://www.ncbi.nlm.nih.gov/books/NBK53699/

  • Shen Q, Wang Y, Zhang Y (2011) Improvement of colchicine oral bioavailability by incorporating eugenol in the nanoemulsion as an oil excipient and enhancer. Int J Nanomed 6:1237–1243

    CAS  Google Scholar 

  • Shi J, Votruba AR, Farokhzad OC, Langer R (2010) Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett 10:3223–3230

    PubMed  CAS  Google Scholar 

  • Shu S, Zhang X, Wu Z, Wang Z, Li C (2010) Gradient cross-linked biodegradable polyelectrolyte nanocapsules for intracellular protein drug delivery. Biomaterials 31:6039–6049

    PubMed  CAS  Google Scholar 

  • Solè I, Maestro A, González C, Solans C, Gutiérrez JM (2006) Optimization of nano-emulsion preparation by low-energy methods in an ionic surfactant system. Langmuir 22:8326–8332

    PubMed  Google Scholar 

  • Sonneville-Aubrun O, Simonnet JT, L’Alloret F (2004) Nanoemulsions: a new vehicle for skincare products. Adv Colloid Interface Sci 108:145–149

    PubMed  Google Scholar 

  • Stanberry LR, Simon JK, Johnson C, Robinson PL, Morry J, Flack MR et al (2012) Safety and immunogenicity of a novel nanoemulsion mucosal adjuvant W(80)5EC combined with approved seasonal influenza antigens. Vaccine 30:307–316

    PubMed  CAS  Google Scholar 

  • Stella B, Arpicco S, Rocco F, Marsaud V, Renoir JM, Cattel L, Couvreur P (2007) Encapsulation of gemcitabine lipophilic derivatives into polycyanoacrylate nanospheres and nanocapsules. Int J Pharm 344:71–77

    PubMed  CAS  Google Scholar 

  • Taden A, Antonietti M, Heilig A, Landfester K (2004) Inorganic films from three different phosphors via a liquid coating route from inverse miniemulsions. Chem Mater 16:5081–5087

    CAS  Google Scholar 

  • Tadros TF (2005) Applied surfactants: principles and applications. Wiley-VCH, Weinheim

    Google Scholar 

  • Tadros T, Izquierdo P, Esquena J, Solans C (2004) Formation and stability of nano-emulsions. Adv Colloid Interface Sci 108–109:303–318

    PubMed  Google Scholar 

  • Taisne L, Walstra P, Cabane B (1996) Transfer of oil between emulsion droplets. J Colloid Interface Sci 184:378–390

    PubMed  CAS  Google Scholar 

  • Tang SY, Sivakumar M, Ng AM-H, Shridharan P (2012) Anti-inflammatory and analgesic activity of novel oral aspirin-loaded nanoemulsion and nano multiple emulsion formulations generated using ultrasound cavitation. Int J Pharm 430:299–306

    PubMed  CAS  Google Scholar 

  • Taylor P (1995) Ostwald ripening in emulsions. Colloid Surf A Physicochem Eng Asp 99:175–185

    CAS  Google Scholar 

  • Teixeira H, Dubernet C, Puisieux F, Benita S, Couvreur P (1999) Submicron cationic emulsions as a new delivery system for oligonucleotides. Pharm Res 16:30–36

    PubMed  CAS  Google Scholar 

  • Teixeira M, Alonso MJ, Pinto MMM, Barbosa CM (2005) Development and characterization of PLGA nanospheres and nanocapsules containing xanthone and 3-methoxyxanthone. Eur J Pharm Biopharm 59:491–500

    PubMed  CAS  Google Scholar 

  • Teixeira Z, Zanchetta B, Meloa BAG, Oliveira LL, Santana MHA, Paredes-Gamerod EJ, Justod GZ, Naderd HB, Guterrese SS, Durána N (2010) Retinyl palmitate flexible polymeric nanocapsules: characterization and permeation studies. Colloids Surf B Biointerfaces 81:374–380

    PubMed  CAS  Google Scholar 

  • Torrecilla D, Lozano MV, Lallana E, Neissa JI, Novoa-Carballal R, Vidal A, Fernández-Megia E, Torres D, Riguera R, Alonso MJ, Dominguez F (2013) Efficacy of chitosan-g-poly (ethylene glycol) nanocapsules containing docetaxel: anti-TMEFF-2 functionalized nanocapsules vs non-functionalized nanocapsules. Eur J Pharm Biopharm 83(3):330–337

    Google Scholar 

  • Uson N, Garcia MJ, Solans C (2004) Formation of water-in-oil (W/O) nano-emulsions in a water/mixed non-ionic surfactant/oil systems prepared by a low-energy emulsification method. Colloids Surf A Physicochem Eng Asp 250:415–421

    CAS  Google Scholar 

  • Utada AS, Chu LY, Fernandez-Nieves A, Link DR, Holtze C, Weitz DA (2007a) Dripping, jetting, drops, and wetting: the magic of microfluidics. MRS Bull 32:702–708

    CAS  Google Scholar 

  • Utada AS, Fernandez-Nieves A, Stone HA, Weitz DA (2007b) Dripping to jetting transitions in coflowing liquid streams. Phys Rev Lett 99

    Google Scholar 

  • van der Graaf S, Schroen C, Boom RM (2005) Preparation of double emulsions by membrane emulsification—a review. J Membr Sci 251:7–15

    Google Scholar 

  • van Hoogevest P, Liu X, Fahr A (2011) Drug delivery strategies for poorly water-soluble drugs: the industrial perspective. Expert Opin Drug Deliv 8:1481–1500

    PubMed  Google Scholar 

  • Vicente S, Diaz-Freitas B, Peleteiro M, Sanchez A, Pascual DW, et al. (2013) A Polymer/Oil Based Nanovaccine as a Single-Dose Immunization Approach. PLoS ONE 8(4):e62500

    Google Scholar 

  • Vicente S, Díaz B, Sánchez A, González-Fernández A, Alonso MJ (2009) Polysaccharide-based nanocapsules as vehicles for nasal immunization against hepatitis B. In: Proceeding of the 2nd pharmaceutical sciences fair and exhibition, June 8–12, Nice (France). Academy of Pharmaceutical Sciences, Leicester, Abstract 1091

    Google Scholar 

  • Vicente S, Prego C, Csaba N, Alonso MJ (2010) From single-dose vaccine delivery systems to nanovaccines. J Drug Deliv Sci Technol 20:267–276

    CAS  Google Scholar 

  • Vonarbourg A, Passirani C, Desigaux L, Allard E, Saulnier P, Lambert O, Benoit JP, Pitard B (2009) The encapsulation of DNA molecules within biomimetic lipid nanocapsules. Biomaterials 30:3197–3204

    PubMed  CAS  Google Scholar 

  • Wadhwa S, Jain S, Woodward JG, Mumper RJ (2012) Lipid nanocapsule as vaccine carriers for his-tagged proteins: evaluation of antigen-specific immune responses to HIV I His-Gag p41 and systemic inflammatory responses. Eur J Pharm Biopharm 80:315–322

    PubMed  CAS  Google Scholar 

  • Wang JJ, Hung CF, Yeh CH, Fang JY (2008a) The release and analgesic activities of morphine and its ester prodrug, morphine propionate, formulated by water-in-oil nanoemulsions. J Drug Target 16:294–301

    PubMed  CAS  Google Scholar 

  • Wang R, Xia B, Li BJ, Penga SL, Dinga LS, Zhang S (2008b) Semi-permeable nanocapsules of konjac glucomannan–chitosan for enzyme immobilization. Int J Pharm 364:102–107

    PubMed  CAS  Google Scholar 

  • Wang SH, Fan Y, Makidon PE, Cao Z, Baker JR (2012) Induction of immune tolerance in mice with a novel mucosal nanoemulsion adjuvant and self-antigen. Nanomedicine 7:867–876

    PubMed  CAS  Google Scholar 

  • Watnasirichaikul S, Rades T, Tucker IG, Davies NM (2002) Effects of formulation variables on characteristics of poly (ethylcyanoacrylate) nanocapsules prepared from w/o microemulsions. Int J Pharm 235:237–246

    PubMed  CAS  Google Scholar 

  • Webster AJ, Cates ME (1998) Stabilization of emulsions by trapped species. Langmuir 14:2068–2079

    CAS  Google Scholar 

  • Wooster TJ, Golding M, Sanguansri P (2008) Impact of oil type on nanoemulsion formation and Ostwald ripening stability. Langmuir 24:12758–12765

    PubMed  CAS  Google Scholar 

  • Wu HL, Ramachandran C, Bielinska AU, Kingzett K, Sun R, Weiner ND et al (2001a) Topical transfection using plasmid DNA in a water-in-oil nanoemulsion. Int J Pharm 221:23–34

    PubMed  CAS  Google Scholar 

  • Wu HL, Ramachandran C, Weiner ND, Roessler BJ (2001b) Topical transport of hydrophilic compounds using water-in-oil nanoemulsions. Int J Pharm 220:63–75

    PubMed  CAS  Google Scholar 

  • Yan Y, Xiong W, Li X, Lu T, Huang J, Li Z et al (2007) Molecular packing parameter in bolaamphiphile solutions: adjustment of aggregate morphology by modifying the solution conditions. J Phys Chem B 111:2225–2230

    PubMed  CAS  Google Scholar 

  • Yilgor P, Sousa R, Reis RL, Hasirci N, Hasirci V (2010) Effect of scaffold architecture and BMP-2/BMP-7 delivery on in vitro bone regeneration. J Mater Sci Mater Med 21:2999–3008

    PubMed  CAS  Google Scholar 

  • Yoshida N, Takagi A, Kitazawa H, Kawakami J, Adachi I (2005) Inhibition of P-glycoprotein-mediated transport by extracts of and monoterpenoids contained in Zanthoxyli Fructus. Toxicol Appl Pharmacol 209:167–173

    PubMed  CAS  Google Scholar 

  • Zhang LW, Al-Suwayeh SA, Hung CF, Chen CC, Fang JY (2011a) Oil components modulate the skin delivery of 5-aminolevulinic acid and its ester prodrug from oil-in-water and water-in-oil nanoemulsions. Int J Nanomed 6:12

    Google Scholar 

  • Zhang XM, Sun X, Li JL, Zhang XN, Gong T, Zhang ZR (2011b) Lipid nanoemulsions loaded with doxorubicin-oleic acid ionic complex: characterization, in vitro and in vivo studies. Pharmazie 66:496–505

    PubMed  CAS  Google Scholar 

  • Zhao M, Biswas A, Hud B, Joo KI, Wang P, Gu Z, Tang Y (2011a) Redox-responsive nanocapsules for intracellular protein delivery. Biomaterials 32:5223–5230

    PubMed  CAS  Google Scholar 

  • Zhao Y, Zhang J, Wang Q, Li J, Han B (2011b) Water-in-oil-in-water double nanoemulsion induced by CO2. Phys Chem Chem Phys 13:684–689

    PubMed  CAS  Google Scholar 

  • Zhi J, Wang YJ, Luo GS (2005) Adsorption of diuretic furosemide onto chitosan nanoparticles prepared with a water-in-oil nanoemulsion system. React Funct Polym 65:249–257

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. de la Fuente .

Editor information

Editors and Affiliations

Glossary

Capmul® MCM-C8 

Glyceryl monocaprylate

CapryolTM 90 

Propylene glycol monocaprylate (type II)

Cremophor® WO7 (BASF Corp) 

Pegylated hydrogenated castor oil manufactured by reacting 1 mol of the oil with 7 mol of ethylene oxide

Cremophor® EL (BASF Corp) 

Pegylated hydrogenated castor oil manufactured by reacting 1 mol of the oil with 35 mol of ethylene oxide. Now known as Kolliphor EL®

Gelucire®

Glycerides and esters of polyethylene glycol

Miglyol® 812 

Caprylic/capric triglyceride

NIRF imaging 

Near-Infrared Fluorescent Imaging

Solutol® HS 15 

2-Hydroxyethyl 12-hydroxyoctadecanoate. Now known as Kolliphor® HS 15

SpanTM 20 

Sorbitan laurate

SpanTM 85 

Sorbitan trioleate

Sylibin 

2-[2R,3R-dihydro-3-(4-hydroxy-3-methoxyphenyl)-2-(hydroxymethyl)-1,4-benzodioxin-6-yl]-2R,3R-dihydro-3,5,7-trihydroxy-4H-1-benzopyran-4-one

Sylimarin 

A mixture of flavolignans rich in Silybin with hepatoprotectant properties

Tween® 20 

Polyoxyethylene(20) sorbitan monolaurate

Tween® 80 

Polyoxyethylene(20) sorbitan monooleate

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mazza, M., Alonso-Sande, M., Jones, MC., de la Fuente, M. (2013). The Potential of Nanoemulsions in Biomedicine. In: Uchegbu, I., Schätzlein, A., Cheng, W., Lalatsa, A. (eds) Fundamentals of Pharmaceutical Nanoscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9164-4_6

Download citation

Publish with us

Policies and ethics