Skip to main content

Solid Lipid Nanoparticles (SLN™)

  • Chapter
  • First Online:

Abstract

Solid lipid nanoparticles (SLN™) are a new generation of drug delivery systems being exploited for several drugs since the nineties. These particles can be composed of different types of solid lipids, such as glycerides, waxes, and fatty acids, and stabilized by a wide range of surfactants. In the present chapter, the chemical structure, production methodology, and physicochemical characterization are systematically discussed. Parameters such as particle size, distribution, polymorphic behaviour, and crystallization are required to characterize SLN and may predict their in vitro stability and in vivo profile, therefore structural parameters can influence the biopharmaceutical properties. The use of SLN for drug delivery is also dependent on their toxicological profile in vitro. Nanotoxicology is also discussed addressing the key points that may limit the clinical use of SLN.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aditya NP et al (2010) Arthemeter-loaded lipid nanoparticles produced by modified thin-film hydration: pharmacokinetics, toxicological and in vivo anti-malarial activity. Eur J Pharm Sci 40(5):448–455

    PubMed  CAS  Google Scholar 

  • Aji Alex MR et al (2011) Lopinavir loaded solid lipid nanoparticles (SLN) for intestinal lymphatic targeting. Eur J Pharm Sci 42(1–2):11–18

    PubMed  CAS  Google Scholar 

  • Almeida AJ, Souto E (2007) Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv Drug Deliv Rev 59(6):478–490

    PubMed  CAS  Google Scholar 

  • Almeida AJ, Runge S, Müller RH (1997) Peptide-loaded solid lipid nanoparticles (SLN): influence of production parameters. Int J Pharm 149(2):255–265

    CAS  Google Scholar 

  • Ann PD (2004) Development of nanotechnologies. Mater Today 7(12 suppl):30–35

    Google Scholar 

  • Araújo J et al (2009) Nanomedicines for ocular NSAIDs: safety on drug delivery. Nanomed Nanotechnol Biol Med 5(4):394–401

    Google Scholar 

  • Attama AA, Müller-Goymann CC (2008) Effect of beeswax modification on the lipid matrix and solid lipid nanoparticle crystallinity. Colloids Surf, A Physicochem Eng Asp 315(1–3):189–195

    CAS  Google Scholar 

  • Attama AA, Reichl S, Muller-Goymann CC (2009) Sustained release and permeation of timolol from surface-modified solid lipid nanoparticles through bioengineered human cornea. Curr Eye Res 34:698–705

    PubMed  CAS  Google Scholar 

  • Barber TA (1993) Pharmaceutical particulate matter: analysis and control. Interpharm Press, Buffalo Grove, IL

    Google Scholar 

  • Başaran E et al (2010) Cyclosporine-A incorporated cationic solid lipid nanoparticles for ocular delivery. J Microencapsul 27(1):37–47

    PubMed  Google Scholar 

  • Battaglia L, Gallarate M (2012) Lipid nanoparticles: state of the art, new preparation methods and challenges in drug delivery. Exp Opin Drug Deliv 9:497–508

    CAS  Google Scholar 

  • Battaglia L et al (2010) Solid lipid nanoparticles produced through a coacervation method. J Microencapsul 27(1):78–85

    PubMed  CAS  Google Scholar 

  • Berne BJ, Pecora R (2000) Dynamic light scattering: with applications to chemistry, biology, and physics. Wiley, Mineola

    Google Scholar 

  • Bhargava R, Levin IW (2001) Fourier transform infrared imaging: theory and practice. Anal Chem 73:5157–5167

    PubMed  CAS  Google Scholar 

  • Blasi P et al (2007) Solid lipid nanoparticles for targeted brain drug delivery. Adv Drug Deliv Rev 59(6):454–477

    PubMed  CAS  Google Scholar 

  • Blasi P et al (2011) Lipid nanoparticles for brain targeting I. Formulation optimization. Int J Pharm 419(1–2):287–295

    PubMed  CAS  Google Scholar 

  • Bunjes H (2005) Characterization of solid lipid nano- and microparticles. In: Nastruzzi C (ed) Lipospheres in drug targets and delivery. CRC Press, Florida

    Google Scholar 

  • Bunjes H, Unruh T (2007) Characterization of lipid nanoparticles by differential scanning calorimetry, X-ray and neutron scattering. Adv Drug Deliv Rev 59(6):379–402

    PubMed  CAS  Google Scholar 

  • Bunjes H, Koch MHJ, Westesen K (2003) Influence of emulsifiers on the crystallization of solid lipid nanoparticles. J Pharm Sci 92(7):1509–1520

    PubMed  CAS  Google Scholar 

  • Carbone C et al (2012) Preparation and optimization of PIT solid lipid nanoparticles via statistical factorial design. Eur J Med Chem 49:110–117

    PubMed  CAS  Google Scholar 

  • Cavadas M, González-Fernández Á, Franco R (2011) Pathogen-mimetic stealth nanocarriers for drug delivery: a future possibility. Nanomed Nanotechnol Biol Med 7(6):730–743

    CAS  Google Scholar 

  • Cavalli R et al (2002) Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin. Int J Pharm 238(1–2):241–245

    PubMed  CAS  Google Scholar 

  • Cengiz E et al (2006) Sunblocking efficiency of various TiO(2)-loaded solid lipid nanoparticle formulations(1). Int J Cosmet Sci 28(5):371–378

    PubMed  CAS  Google Scholar 

  • Christian GD, O’Reilly JE (1986) Instrumental analysis, 2nd edn. Allyn & Bacon, Boston

    Google Scholar 

  • Corrias F, Lai F (2011) New methods for lipid nanoparticles preparation. Recent Pat Drug Deliv Formul 5(3):212–213

    Google Scholar 

  • Coutts-Lendon CA et al (2003) The use of FT-IR imaging as an analytical tool for the characterization of drug delivery systems. J Control Release 93(3):223–248

    PubMed  CAS  Google Scholar 

  • Cui Z, Qiu F, Sloat BR (2006) Lecithin-based cationic nanoparticles as a potential DNA delivery system. Int J Pharm 313(1–2):206–213

    PubMed  CAS  Google Scholar 

  • Das S et al (2011) Formulation design, preparation and physicochemical characterizations of solid lipid nanoparticles containing a hydrophobic drug: effects of process variables. Colloids Surf B: Biointerfaces 88(1):483–489

    PubMed  CAS  Google Scholar 

  • del Pozo-Rodríguez A et al (2008) Solid lipid nanoparticles for retinal gene therapy: transfection and intracellular trafficking in RPE cells. Int J Pharm 360(1–2):177–183

    PubMed  Google Scholar 

  • del Pozo-Rodríguez A et al (2010) Solid lipid nanoparticles as potential tools for gene therapy: in vivo protein expression after intravenous administration. Int J Pharm 385(1–2):157–162

    PubMed  Google Scholar 

  • Dhont JKG (2001) An Introduction to Dynamics of Colloids Volume 2 in: Colloid and Surface Chemistry- Studies in Interface Science, Möbius D, Miller R (eds). Elsevier Science B. V. Amsterdam

    Google Scholar 

  • Doktorovova S et al (2010) Formulating fluticasone propionate in novel PEG-containing nanostructured lipid carriers (PEG-NLC). Colloids Surf B: Biointerfaces 75(2):538–542

    PubMed  CAS  Google Scholar 

  • Doktorovova S et al (2011) Cationic solid lipid nanoparticles (cSLN): structure, stability and DNA binding capacity correlation studies. Int J Pharm 420(2):341–349

    PubMed  CAS  Google Scholar 

  • Doktorovova S et al (2012) Modified Rose Bengal assay for surface hydrophobicity evaluation of cationic solid lipid nanoparticles (cSLN). Eur J Pharm Sci 45:606–612

    PubMed  CAS  Google Scholar 

  • Dong X, Mumper RJ (2006) The metabolism of fatty alcohols in lipid nanoparticles by alcohol dehydrogenase. Drug Dev Ind Pharm 32(8):973–980

    PubMed  CAS  Google Scholar 

  • Dong Y et al (2012) Solid lipid nanoparticles: continuous and potential large-scale nanoprecipitation production in static mixers. Colloids Surf B: Biointerfaces 94:68–72

    PubMed  CAS  Google Scholar 

  • Dowling A et al (2004) Nanoscience and nanotechnologies: opportunities and uncertainties. The Royal Society and the Royal Academy of Engineering, London

    Google Scholar 

  • Dreher F et al (1997) Interaction of a lecithin microemulsion gel with human stratum corneum and its effect on transdermal transport. J Control Release 45(2):131–140

    CAS  Google Scholar 

  • Dubes A et al (2003) Scanning electron microscopy and atomic force microscopy imaging of solid lipid nanoparticles derived from amphiphilic cyclodextrins. Eur J Pharm Biopharm 55(3):279–282

    PubMed  CAS  Google Scholar 

  • Eshel G et al (1991) Critical evaluation of the use of laser diffraction for particle-size distribution analysis. Soil Sci Soc Am J 68(3):736–743

    Google Scholar 

  • Fangueiro J et al (2012) Thermodynamic behaviour of lipid nanoparticles upon delivery of vitamin E derivatives into the skin: in vitro studies. J Thermal Analysis Calorim 108:275–282

    Google Scholar 

  • Fangueiro JF et al (2013) A novel lipid nanocarrier for insulin delivery: production, characterization and toxicity testing. Pharm Dev Technol 18:545–549

    PubMed  CAS  Google Scholar 

  • Souza, A.L. et al (2012) Loading of praziquantel in the crystal lattice of solid lipid nanoparticles: Studies by DSC and SAXS. J Thermal Analysis Calorim 108:353–360

    Google Scholar 

  • Filion MC, Phillips NC (1997) Anti-inflammatory activity of cationic lipids. Br J Pharmacol 122(3):551–557

    PubMed  CAS  Google Scholar 

  • Fontana G et al (2005) Preparation, characterization and in vitro antitumoral activity of solid lipid nanoparticles (SLN) containing tamoxifen. Drug Deliv 12(6):385–392

    PubMed  CAS  Google Scholar 

  • Ford JL, Mann TE (2012) Fast-Scan DSC and its role in pharmaceutical physical form characterisation and selection. Adv Drug Deliv Rev 64:422–430

    PubMed  CAS  Google Scholar 

  • Friedrich H et al (2010) Imaging of self-assembled structures: interpretation of TEM and cryo-TEM images. Angew Chem Int 49:7850–7858

    CAS  Google Scholar 

  • Garcia-Fuentes M, Torres MR, Alonso JM (2002) Design of lipid nanoparticles for the oral delivery of hydrophilic macromolecules. Colloids Surf B: Biointerfaces 27:159–168

    Google Scholar 

  • Gasco MR (1997) Solid lipid nanospheres from warm microemulsion. Pharm Tech Eur 9:52–58

    CAS  Google Scholar 

  • Geisse NA (2009) AFM and combined optical techniques. Mater Today 12(7–8):40–45

    CAS  Google Scholar 

  • Gethner JS, Gaskin F (1978) Dynamic light scattering from solutions of microtubules. Biophys J 24:505–515

    PubMed  CAS  Google Scholar 

  • Ghadiri M et al (2012) Loading hydrophilic drug in solid lipid media as nanoparticles: statistical modeling of entrapment efficiency and particle size. Int J Pharm 424(1–2):128–137

    PubMed  CAS  Google Scholar 

  • Gill P, Moghadam TT, Ranjbar B (2010) Differential scanning calorimetry techniques: applications in biology and nanoscience. J Biomol Tech 21(4):167–193

    PubMed  Google Scholar 

  • Gokce EH et al (2008) Cyclosporine a loaded SLNs: evaluation of cellular uptake and corneal cytotoxicity. Int J Pharm 364(1):76–86

    PubMed  CAS  Google Scholar 

  • Harms M, Müller-Goymann CC (2011) Solid lipid nanoparticles for drug delivery. J Drug Del Sci Tech 21(1):89–99

    CAS  Google Scholar 

  • Heike B (2011) Structural properties of solid lipid based colloidal drug delivery systems. Curr Opin Colloid Interface Sci 16(5):405–411

    Google Scholar 

  • Heurtault B et al (2002) A novel phase inversion-based process for the preparation of lipid nanocarriers. Pharm Res 19(6):875–880

    PubMed  CAS  Google Scholar 

  • Heurtault B et al (2003) Physico-chemical stability of colloidal lipid particles. Biomaterials 24(23):4283–4300

    PubMed  CAS  Google Scholar 

  • Hiemenz PC, Rajagopalan R (1997) Principles of colloid and surface chemistry, 3rd edn. Marcel Dekker, New York

    Google Scholar 

  • Hu FQ et al (2002) Preparation of solid lipid nanoparticles with clobetasol propionate by a novel solvent diffusion method in aqueous system and physicochemical characterization. Int J Pharm 239(1–2):121–128

    PubMed  CAS  Google Scholar 

  • Jenknins R (2000) X-ray techniques: overview. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester, pp 1–20

    Google Scholar 

  • Jenning V, Gohla S (2000) Comparison of wax and glyceride solid lipid nanoparticles (SLN®). Int J Pharm 196(2):219–222

    PubMed  CAS  Google Scholar 

  • Kalam MA et al (2010) Preparation, characterization, and evaluation of gatifloxacin loaded solid lipid nanoparticles as colloidal ocular drug delivery system. J Drug Target 18(3):191–204

    PubMed  CAS  Google Scholar 

  • Kaneko F (2001) Polymorphism and phase transitions of fatty acids and acylglycerols. In: Garti N, Sato K (eds) Crystallization processes in fats and lipid systems. Marcel Dekker, New York, pp 53–98

    Google Scholar 

  • Kheradmandnia S et al (2010) Preparation and characterization of ketoprofen-loaded solid lipid nanoparticles made from beeswax and carnauba wax. Nanomed Nanotechnol Biol Med 6(6):753–759

    CAS  Google Scholar 

  • Kim B-D, Na K, Choi H-K (2005) Preparation and characterization of solid lipid nanoparticles (SLN) made of cacao butter and curdlan. Eur J Pharm Sci 24(2–3):199–205

    PubMed  CAS  Google Scholar 

  • Krakty O (1982) Part I- A Survey in Small Angle X-Ray Scattering, Glatter O, Krakty O (eds). Academic Press Inc., London p 3–15

    Google Scholar 

  • Kuntsche J, Horst JC, Bunjes H (2011) Cryogenic transmission electron microscopy (cryo-TEM) for studying the morphology of colloidal drug delivery systems. Int J Pharm 417:120–137

    PubMed  CAS  Google Scholar 

  • Kuo Y-C, Chen H-H (2009) Entrapment and release of saquinavir using novel cationic solid lipid nanoparticles. Int J Pharm 365(1–2):206–213

    PubMed  CAS  Google Scholar 

  • Kuo Y-C, Chung C-Y (2011) Solid lipid nanoparticles comprising internal Compritol 888 ATO, tripalmitin and cacao butter for encapsulating and releasing stavudine, delavirdine and saquinavir. Colloids Surf B: Biointerfaces 88(2):682–690

    PubMed  CAS  Google Scholar 

  • Kuo Y-C, Lin C-W (2009) Effect of electromagnetic field and surface modification on the electrical behavior of novel solid lipid nanoparticles covered with l-arginine. Colloids Surf B: Biointerfaces 71(1):45–51

    PubMed  CAS  Google Scholar 

  • Kuo Y-C, Wang C-C (2010) Electrophoresis of human brain microvascular endothelial cells with uptake of cationic solid lipid nanoparticles: effect of surfactant composition. Colloids Surf B: Biointerfaces 76(1):286–291

    PubMed  CAS  Google Scholar 

  • Liu J et al (2008) Solid lipid nanoparticles for pulmonary delivery of insulin. Int J Pharm 356(1–2):333–344

    PubMed  CAS  Google Scholar 

  • Lu W et al (2008) The use of solid lipid nanoparticles to target a lipophilic molecule to the liver after intravenous administration to mice. Int J Biol Macromol 43(3):320–324

    PubMed  CAS  Google Scholar 

  • Ma Z et al (2000) New developments in particle characterization by laser diffraction: size and shape. Powder Technol 111(1–2):66–78

    CAS  Google Scholar 

  • Manjunath K, Venkateswarlu V (2005) Pharmacokinetics, tissue distribution and bioavailability of clozapine solid lipid nanoparticles after intravenous and intraduodenal administration. J Control Release 107(2):215–228

    PubMed  CAS  Google Scholar 

  • Martins S et al (2012) Multivariate design for the evaluation of lipid and surfactant composition effect for optimisation of lipid nanoparticles. Eur J Pharm Sci 45:613–623

    PubMed  CAS  Google Scholar 

  • McCauley JA, Brittain HG (1995) Thermal methods of analysis. In: Brittain HG (ed) Physical characterization of pharmaceutical solids. Marcel Dekker, New York, pp 224–250

    Google Scholar 

  • McElhaney RN (1982) The use of differential scanning calorimetry and differential thermal analysis in studies of model and biological membranes. Chem Phys Lipids 30(2–3):229–259

    PubMed  CAS  Google Scholar 

  • Mishra B, Patel BB, Tiwari S (2010) Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine 6(1):9–24

    PubMed  CAS  Google Scholar 

  • Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53(2):283–318

    PubMed  CAS  Google Scholar 

  • Mrsny RJ (2012) Perspective: oral drug delivery research in Europe. J Control Release 161:247–253

    PubMed  CAS  Google Scholar 

  • Mühlen AZ et al (1996) Atomic force microscopy studies of solid lipid nanoparticles. Pharm Res 13(9):1411–1416

    PubMed  Google Scholar 

  • Müller RH, Mäder K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of the art. Eur J Pharm Biopharm 50(1):161–177

    PubMed  Google Scholar 

  • Müller RH et al (2008) Cyclosporine-loaded solid lipid nanoparticles (SLN®): drug–lipid physicochemical interactions and characterization of drug incorporation. Eur J Pharm Biopharm 68(3):535–544

    PubMed  Google Scholar 

  • Muller-Goymann CC (2004) Physicochemical characterization of colloidal drug delivery systems such as reverse micelles, vesicles, liquid crystals and nanoparticles for topical administration. Eur J Pharm Biopharm 58(2):343–356

    PubMed  CAS  Google Scholar 

  • Nassimi M et al (2010) A toxicological evaluation of inhaled solid lipid nanoparticles used as a potential drug delivery system for the lung. Eur J Pharm Biopharm 75(2):107–116

    PubMed  CAS  Google Scholar 

  • Neubert RHH (2011) Potentials of new nanocarriers for dermal and transdermal drug delivery. Eur J Pharm Biopharm 77(1):1–2

    PubMed  CAS  Google Scholar 

  • Noack A, Hause G, Mäder K (2012) Physicochemical characterization of curcuminoid-loaded solid lipid nanoparticles. Int J Pharm 423:440–451

    PubMed  CAS  Google Scholar 

  • Olbrich C et al (2001) Cationic solid-lipid nanoparticles can efficiently bind and transfect plasmid DNA. J Control Release 77(3):345–355

    PubMed  CAS  Google Scholar 

  • Olbrich C, Kayser O, Müller RH (2002) Lipase degradation of Dynasan 114 and 116 solid lipid nanoparticles (SLN)—effect of surfactants, storage time and crystallinity. Int J Pharm 237(1–2):119–128

    PubMed  CAS  Google Scholar 

  • Pandey R, Khuller GK (2005) Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis. Tuberculosis 85(4):227–234

    PubMed  CAS  Google Scholar 

  • Patel PA, Patravale VB (2011) AmbiOnp: solid lipid nanoparticles of amphotericin B for oral administration. J Biomed Nanotechnol 7(5):632–639

    PubMed  CAS  Google Scholar 

  • Pedersen N et al (2006) Solid lipid nanoparticles can effectively bind DNA, streptavidin and biotinylated ligands. Eur J Pharm Biopharm 62(2):155–162

    PubMed  CAS  Google Scholar 

  • Petersen S et al (2011) The physical state of lipid nanoparticles influences their effect on in vitro cell viability. Eur J Pharm Biopharm 79(1):150–161

    PubMed  CAS  Google Scholar 

  • Quintanar-Guerrero D et al (1999) Pseudolatex preparation using a novel emulsion–diffusion process involving direct displacement of partially water-miscible solvents by distillation. Int J Pharm 188(2):155–164

    PubMed  CAS  Google Scholar 

  • Rahman Z, Zidan AS, Khan MA (2010) Non-destructive methods of characterization of risperidone solid lipid nanoparticles. Eur J Pharm Biopharm 76(1):127–137

    PubMed  CAS  Google Scholar 

  • Renliang X (2008) Progress in nanoparticles characterization: sizing and zeta potential measurement. Particuology 6(2):112–115

    Google Scholar 

  • Rosen MJ (2004) Surfactants and interfacial phenomena, 3rd edn. Wiley, New Jersey

    Google Scholar 

  • Sandri G et al (2010) Chitosan-associated SLN: in vitro and ex vivo characterization of cyclosporine A loaded ophthalmic systems. J Microencapsul 27(8):735–746

    PubMed  CAS  Google Scholar 

  • Sanna V, Caria G, Mariani A (2010) Effect of lipid nanoparticles containing fatty alcohols having different chain length on the ex vivo skin permeability of Econazole nitrate. Powder Technol 201(1):32–36

    CAS  Google Scholar 

  • Sant S et al (2012) Microfabrication technologies for oral drug delivery. Adv Drug Deliv Rev 64:496–507

    PubMed  CAS  Google Scholar 

  • Sarmento B et al (2011) Effect of chitosan coating in overcoming the phagocytosis of insulin loaded solid lipid nanoparticles by mononuclear phagocyte system. Carbohydr Polym 84(3):919–925

    CAS  Google Scholar 

  • Schubert MA, Muller-Goymann CC (2005) Characterisation of surface-modified solid lipid nanoparticles (SLN): influence of lecithin and nonionic emulsifier. Eur J Pharm Biopharm 61(1–2):77–86

    PubMed  CAS  Google Scholar 

  • Schubert MA, Harms M, Müller-Goymann CC (2006) Structural investigations on lipid nanoparticles containing high amounts of lecithin. Eur J Pharm Sci 27(2–3):226–236

    PubMed  CAS  Google Scholar 

  • Severino P et al (2011) Polymorphism, crystallinity and hydrophilic–lipophilic balance of stearic acid and stearic acid–capric/caprylic triglyceride matrices for production of stable nanoparticles. Colloids Surf B: Biointerfaces 86(1):125–130

    PubMed  CAS  Google Scholar 

  • Severino P et al (2012) Current state-of-art and new trends on lipid nanoparticles (SLN and NLC) for oral drug delivery. J Drug Deliv 2012:750891

    PubMed  Google Scholar 

  • Shahgaldian P et al (2003) AFM imaging of calixarene based solid lipid nanoparticles in gel matrices. Eur J Pharm Biopharm 55(1):107–113

    PubMed  CAS  Google Scholar 

  • Sinha VR et al (2011) Solid lipid nanoparticles (SLN´s)—trends and implications in drug targeting. Int J Adv Pharm Sci 1:212–238

    Google Scholar 

  • Sivaramakrishnan R et al (2004) Glucocorticoid entrapment into lipid carriers—characterisation by parelectric spectroscopy and influence on dermal uptake. J Control Release 97(3):493–502

    PubMed  CAS  Google Scholar 

  • Sjöström B, Bergenstahl B (1992) Preparation of submicron drug particles in lecithin-stabilized o/w emulsions I. Model studies of the precipitation of cholestreryl acetate. Int J Pharm 88:53–62

    Google Scholar 

  • Souto EB, Doktorovova S (2009) Chapter 6—solid lipid nanoparticle formulations pharmacokinetic and biopharmaceutical aspects in drug delivery. Methods Enzymol 464:105–129

    PubMed  CAS  Google Scholar 

  • Souto EB, Müller RH (2005) The use of SLN® and NLC® as topical particulate carriers for imidazole antifungal agents. Die Pharmazie 61(5):431–437

    Google Scholar 

  • Souto EB, Muller RH (2006) Investigation of the factors influencing the incorporation of clotrimazole in SLN and NLC prepared by hot high-pressure homogenization. J Microencapsul 23:377–388

    PubMed  CAS  Google Scholar 

  • Souto EB, Müller RH (2007) Lipid nanoparticles (SLN and NLC) for drug delivery. In: Domb J et al (eds) Nanoparticles for pharmaceutical applications. American Scientific Publishers, Los Angeles, CA, pp 103–122

    Google Scholar 

  • Souto EB, Muller RH (2010) Lipid nanoparticles: effect on bioavailability and pharmacokinetic changes. Handb Exp Pharmacol 197:115–141

    PubMed  CAS  Google Scholar 

  • Souto EB, Muller RH (2011) Solid lipid nanoparticles and nanostructures lipid carriers—lipid nanoparticles for medicals and pharmaceuticals. Encyclopedia Nanosci Nanotechnol 23:313–328

    Google Scholar 

  • Souto EB et al (2004a) Comparative study between the viscoelastic behaviors of different lipid nanoparticle formulations. J Cosmet Sci 55:463–471

    PubMed  CAS  Google Scholar 

  • Souto EB et al (2004b) Evaluation of the physical stability of SLN and NLC before and after incorporation into hydrogel formulations. Eur J Pharm Biopharm 58(1):83–90

    PubMed  CAS  Google Scholar 

  • Souto EB, Mehnert W, Müller RH (2006) Polymorphic behaviour of Compritol 888 ATO as bulk lipid and as SLN and NLC. J Microencapsul 23(4):417–433

    PubMed  CAS  Google Scholar 

  • Souto EB et al (2011a) Lipid-based nanocarriers for cutaneous administration of pharmaceutics. Encyclopedia Nanosci Nanotechnol 15:479–491

    Google Scholar 

  • Souto EB, Doktorovova S, Boonme P (2011b) Lipid-based colloidal systems (nanoparticles, microemulsions) for drug delivery to the skin: materials and end-product formulations. J Drug Del Sci Tech 21(1):43–54

    CAS  Google Scholar 

  • Sznitowska M et al (2001) Bioavailability of diazepam from aqueous-organic solution, submicron emulsion and solid lipid nanoparticles after rectal administration in rabbits. Eur J Pharm Biopharm 52(2):159–163

    PubMed  CAS  Google Scholar 

  • Tabatt K et al (2004) Transfection with different colloidal systems: comparison of solid lipid nanoparticles and liposomes. J Control Release 97(2):321–332

    PubMed  CAS  Google Scholar 

  • Venishetty VK et al (2012) Design and evaluation of polymer coated carvedilol loaded solid lipid nanoparticles to improve the oral bioavailability: a novel strategy to avoid intraduodenal administration. Colloids Surf B: Biointerfaces 95:1–9

    PubMed  CAS  Google Scholar 

  • Videira MA et al (2002) Lymphatic uptake of pulmonary delivered radiolabelled solid lipid nanoparticles. J Drug Target 10(8):607–613

    PubMed  CAS  Google Scholar 

  • Videira M, Almeida AJ, Fabra À (2012) Preclinical evaluation of a pulmonary delivered paclitaxel-loaded lipid nanocarrier antitumor effect. Nanomed Nanotechnol Biol Med 8:1208–1215

    CAS  Google Scholar 

  • Vieira V et al (2012) Characterization of the physicochemical performance of nimesulide-loaded lipid nanoparticulates. In: Third scientific meeting of the institute for biotechnology and bioengineering. Lisbon, Portugal

    Google Scholar 

  • Vighi E et al (2007) Re-dispersible cationic solid lipid nanoparticles (SLNs) freeze-dried without cryoprotectors: characterization and ability to bind the pEGFP-plasmid. Eur J Pharm Biopharm 67(2):320–328

    PubMed  CAS  Google Scholar 

  • Vighi E et al (2010) PDNA condensation capacity and in vitro gene delivery properties of cationic solid lipid nanoparticles. Int J Pharm 389(1–2):254–261

    PubMed  CAS  Google Scholar 

  • Westesen K, Siekmann B, Koch MHJ (1993) Investigations on the physical state of lipid nanoparticles by synchrotron radiation X-ray diffraction. Int J Pharm 93(1–3):189–199

    CAS  Google Scholar 

  • Westesen K, Bunjes H, Koch MHJ (1997) Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential. J Control Release 48(2–3):223–236

    CAS  Google Scholar 

  • Wiechers J, Souto EB (2010) Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) as novel delivery systems for cosmetic actives. Part I. Cosmet Toiletries 10:22–30

    Google Scholar 

  • Wissing SA, Kayser O, Muller RH (2004) Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev 56(9):1257–1272

    PubMed  CAS  Google Scholar 

  • Yang W, Peters JI, Williams RO III (2008) Inhaled nanoparticles—a current review. Int J Pharm 356(1–2):239–247

    PubMed  CAS  Google Scholar 

  • Yoo J-W, Doshi N, Mitragotri S (2011) Adaptive micro and nanoparticles: temporal control over carrier properties to facilitate drug delivery. Adv Drug Deliv Rev 63(14–15):1247–1256

    PubMed  CAS  Google Scholar 

  • Zhang Q et al (2000) Studies on the cyclosporin A loaded stearic acid nanoparticles. Int J Pharm 200(2):153–159

    PubMed  CAS  Google Scholar 

  • Zhang S-H et al (2008) Preparation of solid lipid nanoparticles in co-flowing microchannels. Chem Eng J 144(2):324–328

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliana B. Souto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Souto, E.B., Fangueiro, J.F., Müller, R.H. (2013). Solid Lipid Nanoparticles (SLN™). In: Uchegbu, I., Schätzlein, A., Cheng, W., Lalatsa, A. (eds) Fundamentals of Pharmaceutical Nanoscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9164-4_5

Download citation

Publish with us

Policies and ethics