Skip to main content

Cytotoxicity and Genotoxicity of Iron Oxides Nanoparticles

  • Chapter
  • First Online:
Nanotoxicology

Part of the book series: Nanomedicine and Nanotoxicology ((NANOMED))

Abstract

The interest in the development of nanoparticles for diverse applications, mainly biomedical and technological purposes, has been greatly increasing in recent years. Among the nanostructured materials, metallic nanoparticles, in particular, iron oxide magnetic nanoparticles have been the focus of intensive research. Recently, the biomedical applications of iron oxide magnetic nanoparticles, such as magnetite (Fe3O4) and maghemite (γ-Fe2O3), have been increasing. Due to their special properties, such as small sizes and superparamagnetic behavior at room temperature, these nanoparticles find important pharmacological applications, such as drug delivery and contrast agents in magnetic resonance imaging. Iron oxide nanoparticles, with different sizes and coating surfaces, can be synthesized by well-established physical, chemical, and, more recent, biogenic techniques. Biogenic synthesis of iron oxide nanoparticles has emerged as a new and environment-friendly approach to obtain biocompatible nanomaterials. It must be noted that, for biomedical or technological applications of iron oxide nanoparticles, it is of paramount importance to fully characterize the in vitro and in vivo toxicity of these nanoparticles. In recent years, important studies have been characterized the cyto- and genotoxicity, as well as the biological consequences due to in vivo administration of iron oxide nanoparticles. In despite of these advances in toxicological evaluations of these nanoparticles, there are still some important questions to be answered. For biomedical or technological applications, it is mandatory to characterize in details the toxicity of this nanomaterial, as well as its fate upon in vivo administration. In this regard, this chapter summarizes the recent progress in the synthesis of iron oxide nanoparticles and the in vitro and in vivo characterization of nanoparticle toxicities.

The present chapter highlights the drawbacks and challenges that still need to be overcome regarding the toxicity of iron oxide nanoparticles, in order to propose their safe use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abad JM, Mertens SFL, Pita M et al (2005) Functionalization of thioctic acid-capped gold nanoparticles for specific immobilization of histidine-tagged proteins. J Am Chem Soc 127:5689–5694

    Article  PubMed  CAS  Google Scholar 

  • Andjelkovic M, Van Camp J, de Meulenaer B et al (2006) Iron-chelation properties of phenolic acids bearing catechol and galloyl groups. Food Chem 98:23–31

    Article  CAS  Google Scholar 

  • Asuhan S, Wan HL, Zhao S et al (2012) Water-soluble, mesoporous Fe3O4: synthesis, characterization, and properties. Ceram Int 38:6579–6584

    Article  Google Scholar 

  • Auffan M, Decome L, Rose J et al (2006) In vitro interactions between DMSA-coated maghemite nanoparticles and human fibroblasts: a physicochemical and cyto-genotoxical study. Environ Sci Technol 40:4367–4373

    Article  PubMed  CAS  Google Scholar 

  • Batlle X, Labarta A (2002) Finite-size effects in fine particles: magnetic and transport properties. J Phys D Appl Phys 35:R15–R42

    Article  CAS  Google Scholar 

  • Becuwe M, Rouge P, Gervais C et al (2012) A new sensitive organic/inorganic hybrid material based on titanium oxide for the potentiometric detection of iron(III). J Colloid Interface Sci 88:130–136

    Article  Google Scholar 

  • Bharde A, Rautaray D, Bansal V et al (2006) Extracellular biosynthesis of magnetite using fungi. Small 2:135–141

    Article  PubMed  CAS  Google Scholar 

  • Bryne JM, Telling ND, Coker VS et al (2011) Control of nanoparticle size, reactivity and magnetic properties during the bioproduction of magnetite by Geobacter sulfurreducens. Nanotechnology 22(45):455709. doi:10.1088/0957-4484/22/45/455709

    Article  Google Scholar 

  • Chakka VM, Altuncevahir B, Jin ZQ et al (2006) Magnetic nanoparticles produced by surfactant-assisted ball milling. J Appl Phys 99:08E912–08E915

    Article  Google Scholar 

  • Chen D, Xu R (1998) Hydrothermal synthesis and characterization of nanocrystalline Fe3O4 powders. Mater Res Bull 33:1015–1021

    Article  CAS  Google Scholar 

  • Chien CL (1991) Granular magnetic solids. J Appl Phys 69:5267–5272

    Article  CAS  Google Scholar 

  • Doak SH, Griffiths SM, Manshian B (2009) Confounding experimental considerations in nanogenotoxicology. Mutagenesis 24:285–293

    Article  PubMed  CAS  Google Scholar 

  • Durán N, Seabra AB (2012) Metallic oxide nanoparticles: state of the art in biogenic syntheses and their mechanisms. Appl Microbiol Biotechnol 95:275–288

    Article  PubMed  Google Scholar 

  • Gudadhe J, Bonde SR, Gaikwad SC et al (2011) Phoma glomerata: a novel agent for fabrication of iron oxide nanoparticles. J Bionanosci 5:138–142

    Article  CAS  Google Scholar 

  • Guichard Y, Schmit J, Darne C (2012) Cytotoxicity and genotoxicity of nanosized and microsized titanium dioxide and iron oxide particles in Syrian hamster embryo cells. Ann Occup Hyg 56:631–644

    PubMed  CAS  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  PubMed  CAS  Google Scholar 

  • Haddad PS, Seabra AB (2012) Biomedical applications of magnetic nanoparticles. In: Martinez AI (ed) Iron oxides: structure, properties and applications. Nova, Nova York, pp 165–188

    Google Scholar 

  • Haddad PS, Duarte EL, Baptista MS et al (2004) Synthesis and characterization of silica-coated magnetic nanoparticles. Prog Colloid Polym Sci 128:232–238

    CAS  Google Scholar 

  • Haddad PS, Rocha TR, Souza EA et al (2009) Interplay between crystallization and particle growth during the isothermal annealing of colloidal iron oxide nanoparticles. J Colloid Interface Sci 339:344–350

    Article  PubMed  CAS  Google Scholar 

  • Herrera-Becerra R, Rius JL, Zorrilla C (2010) Tannin biosynthesis of iron oxide nanoparticles. Appl Phys A 100:453–459

    Article  CAS  Google Scholar 

  • Hong SC, Lee JH, Lee J et al (2011) Subtle cytotoxicity and genotoxicity differences in superparamagnetic iron oxide nanoparticles coated with various functional groups. Int J Nanomedicine 6:3219–3231

    PubMed  CAS  Google Scholar 

  • Hoskins C, Cuschieri A, Wang L (2012) Hybrid gold-iron oxide nanoparticles as a multifunctional platform for biomedical application. J Nanobiotechnology 10:15. http://www.jnanobiotechnology.com/content/10/1/15

    Google Scholar 

  • Jain TK, Reddy MK, Morales MA (2008) Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol Pharm 5:316–327

    Article  PubMed  CAS  Google Scholar 

  • Jiang WQ, Yang HC, Yang SY et al (2004) Preparation and properties of superparamagnetic nanoparticles with narrow size distribution and biocompatible. J Magn Magn Mater 283:210–214

    Article  CAS  Google Scholar 

  • Jun WK, Willens RH, Duwez P (1960) Non-crystalline structure in solidified gold–silicon alloys. Nature 187:869–870

    Google Scholar 

  • Jung H, Kim JW, Choi H et al (2008) Synthesis of nanosized biogenic magnetite and comparison of its catalytic activity in ozonation. Appl Catal B: Environ 83:208–213

    Article  CAS  Google Scholar 

  • Khollam YB, Dhage SR, Potdar HS et al (2002) Microwave hydrothermal preparation of submicron-sized spherical magnetite (Fe3O4) powders. Mater Lett 56:571–577

    Article  CAS  Google Scholar 

  • Konczol M, Ebeing S, Goldenberg E et al (2011) Cytotoxicity and genotoxicity of size-fractionated iron oxide (magnetite) in A549 human lung epithelial cells: role of ROS, JNK, and NF-kappa B. Chem Res Toxicol 24:1460–1475

    Article  PubMed  CAS  Google Scholar 

  • Krumov N, Perner-Nochta I, Oder S et al (2009) Production of inorganic nanoparticles by microorganisms. Chem Eng Technol 32:1026–1035

    Article  CAS  Google Scholar 

  • Kucheryavy P, He J, John VT et al (2013) Superparamagnetic iron oxide nanoparticles with variable size and an iron oxidation state as prospective imaging agents. Langmuir 29:710–716

    Article  PubMed  CAS  Google Scholar 

  • Kwon JT, Hwang SK, Jin H et al (2008) Body distribution of inhaled fluorescent magnetic nanoparticles in the mice. J Occup Health 50:1–6

    Article  PubMed  Google Scholar 

  • LaMer VK, Dinegar RH (1950) Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc 72:4847–4854

    Article  CAS  Google Scholar 

  • Laurent S, Forge D, Port M et al (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    Article  PubMed  CAS  Google Scholar 

  • Li Y-F, Chen C (2011) Fate and toxicity of metallic and metal-containing nanoparticles for biomedical applications. Small 7:2965–2980

    Article  PubMed  CAS  Google Scholar 

  • Li X, Xu H, Chen ZS et al (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater Art. ID 270974. doi:10.1155/2011/270974

    Google Scholar 

  • Lien Y-H, Wu T-M, Wu J-H et al (2011) Cytotoxicity and drug release behavior of PNIPAM grafted on silica-coated drug release behavior grafted on silica-coated iron oxide nanoparticles. J Nanopart Res 13:5065–5075

    Article  CAS  Google Scholar 

  • Lima JE, de Biasi E, Vasquez MM et al (2010) Surface effects in the magnetic properties of crystalline 3 nm ferrite nanoparticles chemically synthesized. J Appl Phys 108:103919–103929

    Article  Google Scholar 

  • Lin SY, Chen NT, Sum SP et al (2008) Ligand exchanged photoluminescent gold quantum dots functionalized with leading peptides for nuclear targeting and intracellular imaging. Chem Commun 39:4762–4764

    Article  Google Scholar 

  • Lübbe AS, Bergemann C, Riess H et al (1996a) Preclinical experiences with magnetic drug targeting: tolerance and efficacy. Cancer Res 56:4694–4701

    PubMed  Google Scholar 

  • Lübbe AS, Bergemann C, Riess H et al (1996b) Clinical experiences with magnetic drug targeting: a phase I study with 4′-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res 56:4686–4693

    PubMed  Google Scholar 

  • Ma H-L, Qi X-R, Ding W-X (2008) Magnetic targeting after femoral artery administration and biocompatibility assessment of superparamagnetic iron oxide nanoparticles. J Biomed Mater Res 84A:598–606

    Article  CAS  Google Scholar 

  • Mahmoudi M, Hofmann H, Rothen-Rutishauser B et al (2012) Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chem Rev 112:2323–2338

    Article  PubMed  CAS  Google Scholar 

  • Maleki H, Simchi A, Imani M et al (2012) Size-controlled synthesis of superparamagnetic iron oxide nanoparticles and their surface coating by gold for biomedical applications. J Magn Magn Mater 324:3997–4005

    Article  CAS  Google Scholar 

  • Marchiol L (2012) Synthesis of metal nanoparticles in living. Italian J Agron 7:274–282

    Google Scholar 

  • Molina MM, Seabra AB, de Oliveira MG et al (2013) Nitric oxide donor superparamagnetic iron oxide nanoparticles. Mat Sci Eng C 33:746–751

    Article  CAS  Google Scholar 

  • Munnier E, Cohen-Jonathan S, Herve K et al (2011) Doxorubicin delivered to MCF-7 cancer cells by superparamagnetic iron oxide nanoparticles: effects on subcellular distribution and cytotoxicity. J Nanopart Res 13:959–971

    Article  CAS  Google Scholar 

  • Nguyen DP, Trinh XS, Hoang TC et al (2012) Amorphous iron-chromium oxide nanoparticles prepared by sonochemistry. J Non-Cryst Solids 358:537–543

    Article  CAS  Google Scholar 

  • Park S, Lee H, Goo S et al (2011) Composition behavior of carbon nanotube reinforced thermotropic liquid crystalline polymers. J Appl Polym Sci 122:2060–2070

    Article  CAS  Google Scholar 

  • Rai M, Durán N (eds) (2011) Metal nanoparticles in microbiology, 1st edn. Springer, Germany

    Google Scholar 

  • Ranade VV, Hollinger MA (eds) (2004) Drug delivery systems. Pharmacology and toxicology: basic and clinical aspects, 2nd edn. New York, CRC Press

    Google Scholar 

  • Rutledge RD, Warner CL, Pittman JW et al (2010) Thiol-ene induced diphosphonic acid functionalization of superparamagnetic iron oxide nanoparticles. Langmuir 26:12285–12292

    Article  PubMed  CAS  Google Scholar 

  • Schweiger C, Pietzonka C, Heverhagen J (2011) Novel magnetic iron oxide nanoparticles coated with poly(ethylene imine)-g-poly(ethylene glycol) for potential biomedical application: synthesis, stability, cytotoxicity and MR imaging. Int J Pharm 408:130–137

    Article  PubMed  CAS  Google Scholar 

  • Shopska M, Cherkezova-Zheleva ZP, Paneva DG et al (2013) Biogenic iron compounds: XRD, Mossbauer and FTIR study. Cent Eur J Chem 11:215–227

    Article  CAS  Google Scholar 

  • Singh SP, Chakradhar RPS, Rao JL et al (2010) EPR, FTIR, optical absorption and photoluminescence studies of Fe2O3 and CeO2 doped ZnO-Bi2O3-B2O3 glasses. J Alloys Compd 493:56–262

    Google Scholar 

  • Singh AP, Mettenborger A, Golus P et al (2012) Photoelectrochemical properties of hematite films grown by plasma enhanced chemical vapor deposition. Int J Hydrogen Energ 37:13983–13988

    Article  CAS  Google Scholar 

  • Souza EA, Winnischofer H, Haddad P et al (2009) Effects of particles size and synthesis temperature on the structural properties of the Ni nanoparticles: insights about the formation of the fcc-Ni structure. AIP Conf Proc 1092:135–137

    Article  Google Scholar 

  • Tsai ZT, Tsai FY, Yang WC et al (2012) Preparation and characterization of ferrofluid stabilized with biocompatible chitosan and dextran sulfate hybrid biopolymer as a potential magnetic resonance imaging (MRI) T2 contrast agent. Mar Drugs 10:2403–2414

    Article  PubMed  CAS  Google Scholar 

  • Wahajuddin AS (2012) Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomedicine 7:3445–3471

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Li X, Gao M et al (2012) One-step preparation of amorphous iron nanoparticles by laser ablation. Powder Technol 215:147–150

    Article  Google Scholar 

  • Weissleder R, Stark DD, Engelstad BL et al (1989) Superparamagnetic iron oxide: pharmacokinetics and toxicity. Am J Roentgenol 152:167–173

    Article  CAS  Google Scholar 

  • Willard MA, Kurihara LK, Carpenter EE et al (2004) Chemically prepared magnetic nanoparticles. Int Mat Rev 49:125–170

    Article  CAS  Google Scholar 

  • Ying E, Hwang H-M (2010) In vitro evaluation of the cytotoxicity of iron oxide nanoparticles with different coatings and different sizes in A3 human T lymphocytes. Sci Total Environ 408:4475–4481

    Article  PubMed  CAS  Google Scholar 

  • Zhou Z, Huang D, Bao J et al (2012) A synergistically enhanced T1–T2 dual-modal contrast agent. Adv Mater 24:6223–6228

    Article  PubMed  CAS  Google Scholar 

  • Zhu M-T, Feng W-Y, Wang B et al (2008) Comparative study of pulmonary responses to nano- and submicron-sized ferric oxide in rats. Toxicology 247:102–111

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Wei S, Gu H et al (2012) One-pot synthesis of magnetic graphene nanocomposites decorated with core@double-shell nanoparticles for fast chromium removal. Environ Sci Technol 46:977–985

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

FAPESP, CNPq, CAPES, INOMAT (MCT/CNPq), and Brazilian Network in Nanotoxicology (MCT-CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amedea B. Seabra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Seabra, A.B., Haddad, P.S. (2014). Cytotoxicity and Genotoxicity of Iron Oxides Nanoparticles. In: Durán, N., Guterres, S., Alves, O. (eds) Nanotoxicology. Nanomedicine and Nanotoxicology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8993-1_12

Download citation

Publish with us

Policies and ethics