Skip to main content

Transcriptomics of Heat Stress in Plants

  • Chapter
  • First Online:

Abstract

High-temperature stress is a major abiotic stress that affects various biological processes of plants such as biochemical and physiological response, growth, development, and yield. High-temperature stress has critical effects at cellular and molecular levels also. The increased concentration of regulatory proteins such as heat shock transcription factors (Hsfs) is a major molecular response that occurs during heat stress. These regulatory proteins in turn regulate the expression of heat shock protein (HSP) genes that act as critical players during stress to maintain cell homeostasis. Besides HSPs, the other metabolic and regulatory genes, signaling compounds, compatible osmolytes, and antioxidants too play an important role during heat stress in plants. Apart from the protein-coding genes, recent studies have shown that noncoding microRNAs (miRNAs) also play a key role during heat stress by modulating the gene expression at the transcription and post-transcriptional level. The transcriptome approaches are important to understand the molecular and cellular changes occurring in response to heat stress. The approaches rely mostly by adopting the traditional methods like Northern blot/RNA blot and reverse transcription PCR (RT-PCR), where the expression of the genes can be studied in different tissues and cells, whereas the extent of their expression can be achieved by quantitative PCR or real time PCR. Further, the genome-wide expression profiling tools such as microarray analysis, next-generation sequencing, and RNA sequencing offer a great potential in this direction. This chapter primarily provides the current understanding on the role of regulatory genes (transcription factors), HSP genes, metabolic genes, signaling compounds, osmolytes, reactive oxygen species, and miRNAs as well as other small RNAs of plants under high temperature. In addition, it gives a brief account of various transcriptome approaches to study the expression profiling of genes during heat stress.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao H, Merril CR, Wu A, Olde B, Moreno RF, Kerlavage AR, McCombie WR, Venter JC (1991) Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252:159–164

    Google Scholar 

  • Adams SR, Cockshull KE, Cave CRJ (2001) Effect of temperature on the growth and development of tomato fruits. Ann Bot 88:869–877

    Google Scholar 

  • Agarwal M, Sahi C, Katiyar-Agarwal S, Agarwal S, Young T, Gallie DR, Sharma VM, Ganesan K, Grover A (2003) Molecular characterization of rice hsp101: complementation of yeast hsp104 mutation by disaggregation of protein granules and differential expression in indica and japonica rice types. Plant Mol Biol 51(4):543–553

    CAS  PubMed  Google Scholar 

  • Aharoni A, Vorst O (2001) DNA microarrays for functional plant genomics. Plant Mol Biol 48:99–118

    Google Scholar 

  • Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P (2008) Heat stress: an overview of molecular responses in photosynthesis. Photosyn Res 98(1–3):541–550

    CAS  PubMed  Google Scholar 

  • Allen Z, Xie AM, Gustafson JC, Carrington JC (2005) MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221

    CAS  PubMed  Google Scholar 

  • Anisimov SV (2008) Serial analysis of gene expression (SAGE): 13 years of application in research. Curr Pharm Biotechnol 9:338–350

    CAS  PubMed  Google Scholar 

  • Aono A, Kubo A, Saji H, Tanaka K, Kondo N (1993) Enhanced tolerance to photooxidative stress of transgenic Nicotiana tabacum with high chloroplastic glutathione reductase activity. Plant Cell Physiol 34:129–135

    CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    CAS  PubMed  Google Scholar 

  • Apuya NR, Yadegari R, Fischer RL, Harada JJ, Zimmerman JL, Goldberg RB (2001) The Arabidopsis embryo mutant schlepperless has a defect in the chaperonin-60α Gene. Plant Physiol 126(2):717–730

    CAS  PubMed Central  PubMed  Google Scholar 

  • Asada K (2000) The water-water cycle as alternative photon and electron sinks. Phil Trans R Soc Lond B Biol Sci 355:1419–1431

    CAS  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    CAS  Google Scholar 

  • Ashraf M, Saeed MM, Qureshi MJ (1994) Tolerance to high temperature in cotton (Gossypium hirsutum L.) at initial growth stages. Environ Exp Bot 34:275–283

    Google Scholar 

  • Azpilicueta CE, Benavides MP, Tomaro ML, Gallego SM (2007) Mechanism of CATA3 induction by cadmium in sunflower leaves. Plant Physiol Biochem 45:589–595

    CAS  PubMed  Google Scholar 

  • Baker NR, Rosenqvist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55(403):1607–1621

    CAS  PubMed  Google Scholar 

  • Balasubramanian S, Sureshkumar S, Lempe J, Weigel D (2006) Potent induction of Arabidopsis thaliana flowering by elevated growth temperature. Plos Genet 2:106

    Google Scholar 

  • Banon S, Fernandez JA, Franco JA, Torrecillas A, Alarcon JJS, Anchez-Blanco MJ (2004) Effects of water stress and night temperature preconditioning on water relations and morphological and anatomical changes of Lotus creticus plants. Sci Hortic 101:333–342

    Google Scholar 

  • Barrera-Figueroa BE, Gao L, Wu ZG, Zhou XF, Zhu JH, Jin HL, Liu RY, Zhu JK (2012) High throughput sequencing reveals novel and abiotic stress-regulated microRNAs in the inflorescences of rice. BMC Plant Biol 12:132

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barry G (2001) The use of the Monsanto draft rice genome sequence in research. Plant Physiol 125:1164–1165

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism and function. Cell 116:281–297

    CAS  PubMed  Google Scholar 

  • Bedell JA, Budiman MA, Nunberg A, Citek RW, Robbins D, Jones J, Flick E, Rholfing T, Fries J, Bradford K, McMenamy J, Smith M, Holeman H, Roe BA, Wiley G, Korf IF, Rabinowicz PD, Lakey N, McCombie WR, Jeddeloh JA (2005) Sorghum genome sequencing by methylation filtration. Plos Biol 3:103–115

    Google Scholar 

  • Bennetzen JL (2002) Mechanisms and rates of genome expansion and contraction in flowering plants. Genetica 115:29–36

    CAS  PubMed  Google Scholar 

  • Bita CE, Zenoni S, Vriezen WH, Mariani C, Pezzotti M, Gerats T (2011) Temperature stress differentially modulates transcription in meiotic anthers of heat-tolerant and heat-sensitive tomato plants. Bio Med Cen 12:384

    CAS  Google Scholar 

  • Blum A (1988) Plant breeding for stress environments. CRC Press, Boca Raton, p 223

    Google Scholar 

  • Blum A, Klueva N, Nguyen HT (2001) Wheat cellular thermotolerance is related to yield under heat stress. Euphytica 117:117–123

    Google Scholar 

  • Bohnert HJ, Gong Q, Li P, Ma S (2006) Unraveling abiotic stress tolerance mechanisms getting genomics going. Curr Opin Plant Biol 9:180–188

    CAS  PubMed  Google Scholar 

  • Bonos SA, Murphy JA (1999) Growth responses and performance of Kentucky bluegrass under summer stress. Crop Sci 39(3):770–774

    Google Scholar 

  • Boston RS, Viitanen PV, Vierling E (1996) Molecular chaperones and protein folding in plants. Plant Mol Bio 32:191–222

    CAS  Google Scholar 

  • Bowen J, Michael LY, Plummer KIM, Ferguson IAN (2002) The heat shock response is involved in thermotolerance in suspension-cultured apple fruit cells. J Plant Physiol 159:599–606

    CAS  Google Scholar 

  • Burke JJ (2001) Identification of genetic diversity and mutations in higher plant acquired thermotolerance. Physiol Plant 112:167–170

    CAS  Google Scholar 

  • Busch W, Wunderlich M, Schoffl F (2005) Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana. Plant J 41:1–14

    CAS  PubMed  Google Scholar 

  • Camejo D, Rodrıguez P, Morales MA, Dellamico JM, Torrecillas A, Alarcon JJ (2005) High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J Plant Physiol 162:281–289

    CAS  PubMed  Google Scholar 

  • Chaitanya KV, Sundar D, Reddy AR (2001) Mulberry leaf metabolism under high temperature stress. Biol Plant 44:379–384

    CAS  Google Scholar 

  • Chapman EJ, Carrington JC (2007) Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet 8:884–896

    CAS  PubMed  Google Scholar 

  • Charng YY, Liu HC, Liu NY, Chi WT, Wang CN, Chang SH, Wang TT (2007) A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol 143(1):251–262

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chauhan H, Khurana N, Agarwal P, Khurana P (2011a) Heat shock factors in rice (Oryza sativa L.) genome-wide expression analysis during reproductive development and abiotic stress. Mol Genet Gen 286:171–187

    Google Scholar 

  • Chauhan H, Khurana N, Tyagi AK, Khurana JP, Khurana P (2011b) Identification and characterization of high temperature stress responsive genes in bread wheat (Triticum aestivum L.) and their regulation at various stages of development. Plant Mol Biol 75:35–51

    CAS  Google Scholar 

  • Chen L, Ren Y, Zhang Y, Xu J, Sun F, Zhang Z, Wang Y (2012) Genome-wide identification and expression analysis of heat-responsive and novel microRNAs in Populus tomentosa. Gene 504:160–165

    CAS  PubMed  Google Scholar 

  • Collins A (2001) Carotenoids and genomic stability. Mutat Res 475:1–28

    Google Scholar 

  • De Ronde JAD, Cress WA, Kruger GHJ, Strasser RJ, Staden JV (2004) Photosynthetic response of transgenic soybean plants containing an Arabidopsis P5CR gene, during heat and drought stress. J Plant Physiol 61:1211–1244

    Google Scholar 

  • Del Rio LA, Palma JM, Sandalio LM, Corpas FJ, Pastori GM, Bueno P, Lopez-Huertas E (1996) Peroxisomes as a source of superoxide and hydrogen peroxide in stressed plants. Biochem Soc Trans 24:434–438

    CAS  PubMed  Google Scholar 

  • DeRidder BP, Shybut ME, Dyle MC, Kremling KAG, Shapiro MB (2012) Changes at the 3′-untranslated region stabilize rubisco activase transcript levels during heat stress in Arabidopsis. Planta 236:463–476

    Google Scholar 

  • Ding D, Zhang L, Wang H, Liu Z, Zhang Z, Zheng Y (2009a) Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot 103(1):29–38

    CAS  Google Scholar 

  • Ding S, Lu Q, Zhang Y, Yang Z, Wen X, Zhang L, Lu C (2009b) Enhanced sensitivity to oxidative stress in transgenic tobacco plants with decreased glutathione reductase activity leads to a decrease in ascorbate pool and ascorbate redox state. Plant Mol Biol 69:577–592

    CAS  Google Scholar 

  • Dong Q, Kroiss L, Oakley FD, Wang BB, Brendel V (2005) Comparative EST analyses in plant systems. Methods Enzymol 395:400–418

    CAS  PubMed  Google Scholar 

  • Ebrahim MK, Zingsheim O, El-Shourbagy, MN, Moore PH, Komor E (1998) Growth and sugar storage in sugarcane grown at temperature below and above optimum. J Plant Physiol 153:593–602

    CAS  Google Scholar 

  • Eldem V, Çelikkol Akçay U, Ozhuner E, Bakır Y, Uranbey S, Unver T (2012) Genome-wide identification of miRNAs responsive to drought in peach (Prunus persica) by high-throughput deep sequencing. PLos One 7(12):e50298. doi:10.1371journal.pone.0050298 (Epub)

    Google Scholar 

  • Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Morishima I, Shibahara T, Inanaga S, Tanaka K (2006) Enhanced tolerance to ozone and drought stresses in transgenic tobacco overexpressing dehydroascorbate reductase in cytosol. Physiol Plant 127:57–65

    CAS  Google Scholar 

  • Eveland AL, Satoh-Nagasawa N, Goldshmidt A, Meyer S, Beatty M, Sakai H, Ware D, Jackson D (2010) Digital gene expression signatures for maize development. Plant Physiol 154:1024–1039

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feller U, Crafts-Brandner SJ, Salvucci ME (1998) Moderately high temperatures inhibit ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) activase-mediated activation of rubisco. Plant Physiol 116(2):539–546

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ferris R, Ellis RH, Wheeeler TR, Hadley P (1998) Effect of high temperature stress at anthesis on grain yield and biomass of field grown crops of wheat. Plant Cell Environ 34:67–78

    Google Scholar 

  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25

    CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    CAS  PubMed Central  PubMed  Google Scholar 

  • Foyer CH, Souriau N, Perret S, Lelandais M, Kunert KJ, Pruvost C, Jouanin L (1995) Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol 109:1047–1057

    CAS  PubMed Central  PubMed  Google Scholar 

  • Frank G, Pressman E, Ophir R, Althan L, Shaked R, Freedman M, Shen S, Firon N (2009) Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microsporesreveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response. J Exp Bot 60:3891–3908

    CAS  PubMed Central  PubMed  Google Scholar 

  • Frugoli JA, Zhong HH, Nuccio ML, McCourt P, McPeek MA, Thomas TL, McClung CR (1996) Catalase is encoded by a multigene family in Arabidopsis thaliana (L.). Plant Physiol 112:327–336

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garber M, Grabherr MG, Guttman M, Trapnell C (2011) Computational methods for transcriptome annotation and quantification using RNA-Seq. Nat Methods 8:469–477

    Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants, India. J Plant Physiol Bioch 48:909–930

    CAS  Google Scholar 

  • Gong M, Chen SN, SongYQ, Li ZG (1997) Effect of calcium and calmodulin on intrinsic heat tolerance in relation to antioxidant systems in maize seedlings. Aust J Plant Physiol 24:371–379

    CAS  Google Scholar 

  • Gorantla M, Babu PR, Lachagari VB, Reddy AM, Wusirika R, Bennetzen JL, Reddy AR (2007) Identification of stress-responsive genes in an indica rice (Oryza sativa L.) using ESTs generated from drought-stressed seedlings. J Exp Bot 58(2):253–265

    CAS  PubMed  Google Scholar 

  • Goswami A, Banerjee R, Raha S (2010) Mechanism of plant adaptation/memory in rice seedling under arsenic and heat stress: expression of heats-shock protein gene HSP70. AoB Plants. doi:10.1093/aobpl/plq023

    Google Scholar 

  • Guilioni L, Wery J, Tardieu F (1997) Heat stress-induced abortion of buds and flowers in pea: is sensitivity linked to organ age or to relations between reproductive organs? Ann Bot 80:159–168

    Google Scholar 

  • Gulledge AA, Roberts AD, Vora H, Patel K, Loraine AE (2012) Mining Arabidopsis thaliana RNA-seq data with integrated genome browser reveals stress-induced alternative splicing of the putative splicing regulator SR45a. Am J Bot 99:219–231

    CAS  PubMed  Google Scholar 

  • Gupta SC, Sharma A, Mishra M, Mishra R, Chowdhuri DK (2010) Heat shock proteins in toxicology: how close and how far? Life Sci 86:377–384

    CAS  PubMed  Google Scholar 

  • Hall AE (2001) Crop responses to environment. CRC Press LLC, Boca Raton

    Google Scholar 

  • Hamilton EW, Heckathorn SA, Downs CA, Schwarz TE, Coleman JS, Hallberg RL (1996) Heat shock proteins are produced by field-grown naturally occurring plants in the summer in the temperate northeast. US Bulletin of the Ecologic Soc Am.77, Suppl. Part 2:180 (Abstr.)

    Google Scholar 

  • Hart FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–580

    Google Scholar 

  • Hare PD, Cress WA, Staden JV (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535–553

    CAS  Google Scholar 

  • Hasthanasombut S, Paisarnwipatpong N, Triwitayakorn K, Kirdmanee C, Supaibulwatana K (2011) Expression of OsBADH1 gene in indica rice (Oryza sativa L.) in correlation with salt, plasmolysis, temperature and light stresses. Plant Omics 4(7):75–81

    Google Scholar 

  • He G, Zhu X, Elling AA, Chen L, Wang X, Guo L, Liang M, He H, Zhang H, Chen F, Qi Y, Chen R, Deng XW (2011) Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell 22:17–33

    Google Scholar 

  • Hong SW, Vierling E (2000) Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proc Natl Acad Sci U S A 97(8):4392–4397

    CAS  PubMed Central  PubMed  Google Scholar 

  • Howarth CJ (2005) Genetic improvements of tolerance to high temperature. In: Ashraf M, Harris PJC (eds) Abiotic stresses: plant resistance through breeding and molecular approaches. Howarth Press, New York, pp 277–300

    Google Scholar 

  • Hsieh MH, Chen JT, Jinn TL, Chen YM, Lin CY (1992) A class of soybean low molecular weight heat shock proteins, immunological study and quantification. Plant Physiol 99:1279–1284

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hsu YT, Kao CH (2007) Heat shock-mediated H2O2 accumulation and protection against Cd toxicity in rice seedlings. Plant Soil 300:137–147

    CAS  Google Scholar 

  • Hu WH, Hu GC, Han B (2009) Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice. Plant Sci 176:583–590

    CAS  Google Scholar 

  • Iba K (2002) Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annu Rev Plant Biol 53:225–245

    CAS  PubMed  Google Scholar 

  • Igamberdiev AU, Serege´lyes C, Manac’h N, Hill RD (2004) NADH-dependent metabolism of nitric oxide in alfalfa root cultures expressing barley haemoglobin. Planta 219:95–102

    CAS  PubMed  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map based sequence of the rice genome. Nature 436:793–800

    Google Scholar 

  • Jagadish SVK, Craufurd PQ, Wheeler TR (2008) Phenotyping parents of mapping populations of rice (Oryza sativa L.) for heat tolerance during anthesis. Crop Sci 48:1140–1146

    Google Scholar 

  • Jain M (2012) Nextgeneration sequencing technologies for gene expression profiling in plants. Brief Funct Genom 11:63–70

    Google Scholar 

  • Jamalkandi SA, Masoudi-Nejad A (2009) Reconstruction of Arabidopsis thaliana fully integrated small RNA pathway. Funct Integr Genomic 9:419–432

    CAS  Google Scholar 

  • Jeong DH, Park S, Zhai J, Gurazada SG, De Paoli ED, Meyers BC, Green PJ (2011) Massive analysis of rice small RNAs: mechanistic implications of regulated microRNAs and variants for differential target RNA cleavage. Plant Cell 23:4185–4207

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jian X, Zhang L, Li G, Zhang L, Wang X, Cao X, Fang X, Chen F (2010) Identification of novel stress-regulated microRNAs from Oryza sativa L. Genomics 95(1):47–55.

    CAS  PubMed  Google Scholar 

  • Jimenez A, Hernandez JA, Pastori G, Del Rio LA, Sevilla F (1998) Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiol 118:1327–1335

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jung KH, An G (2012) Application of MapMan and Rice Net drives systematic analyses of the early heat stress transcriptome in rice seedlings. J Plant Biol 55:436–449

    Google Scholar 

  • Jung KH, Ko HJ, Nguyen MX, Kim SR, Ronald P, An G (2013) Genome-wide identification and analysis of early heat stress responsive genes in rice. J Plant Biol 55:458–468. doi:10.1007/s12374-012-0271-z

    Google Scholar 

  • Karim MA, Fracheboud Y, Stamp P (1997) Heat tolerance of maize with reference of some physiological characteristics. Ann Bangladesh Agric 7:27–33

    Google Scholar 

  • Karim MA, Fracheboud Y, Stamp P (1999) Photosynthetic activity of developing leaves of Zea mays is less affected by heat stress than that of developed leaves. Physiol Plant 105:685–693

    CAS  Google Scholar 

  • Karuppanapandian T, Moon JC, Kim C, Manoharan K, Kim W (2011) Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Aus J Crop Sci 5(6):709–725

    CAS  Google Scholar 

  • Kaul S, Koo HL, Jenkins J, Rizzo M, Rooney T, Tallon LJ, Feldblyum T, Nierman W, Benito MI, Lin XY, Town CD, Venter JC, Fraser CM, Tabata S, Nakamura Y, Kaneko T, Sato S, Asamizu E, Kato T, Kotani H, Sasamoto S, Ecker JR, Theologis A, Federspiel NA, Palm CJ, Osborne BI, Shinn P, Conway AB, Vysotskaia VS, Dewar K, Conn L, Lenz CA, Kim CJ, Hansen NF, Liu SX, Buehler E, Altafi H, Sakano H, Dunn P, Lam B, Pham PK, Chao QM, Nguyen M, Yu GX, Chen HM, Southwick A, Lee JM, Miranda M, Toriumi MJ, Davis RW, Wambutt R, Murphy G, Dusterhoft A, Stiekema W, Pohl T, Entian KD, Terryn N, Volckaert G, Choisne N, Rieger M, Ansorge W, Unseld M, Fartmann B, Valle G, Artiguenave F, Weissenbach J, Quetier F, Wilson RK, de la Bastide M, Sekhon M, Huang E, Spiegel L, Gnoj L, Pepin K, Murray J, Johnson D, Habermann K, Dedhia N, Parnell L, Preston R, Hillier L, Chen E, Marra M, Martienssen R, McCombie WR, Mayer K, White O, Bevan M, Lemcke K, Creasy TH, Bielke C, Haas B, Haase D, Maiti R, Rudd S, Peterson J, Schoof H, Frishman D, Morgenstern B, Zaccaria P, Ermolaeva M, Pertea M, Quackenbush J, Volfovsky N, Wu DY, Lowe TM, Salzberg SL, Mewes HW, Rounsley S, Bush D, Subramaniam S, Levin I, Norris S, Schmidt R, Acarkan A, Bancroft I, Quetier F, Brennicke A, Eisen JA, Bureau T, Legault BA, Le QH, Agrawal N, Yu Z, Martienssen R, Copenhaver GP, Luo S, Pikaard CS, Preuss D, Paulsen IT, Sussman M, Britt AB, Eisen JA, Selinger DA, Pandey R, Mount DW, Chandler VL, Jorgensen RA, Pikaard C, Juergens G, Meyerowitz EM, Ecker JR, Theologis A, Dangl J, Jones JDG, Chen M, Chory J, Somerville C (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    CAS  Google Scholar 

  • Kaur N, Gupta AK (2005) Signal transduction pathways under abiotic stresses in plants. Curr Sci 88:1771–1780

    CAS  Google Scholar 

  • Kavi Kishore PB, Sangam S, Amrutha RN, Laxmi PS, Naidu, KR, Rao KRSS, Rao S, Reddy KJ, Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438

    Google Scholar 

  • Keeler SJ, Boettger CM, Haynes JG, Kuches KA, Johnson MM, Thureen DL, Keeler CL Jr, Kitto SL (2000) Acquired thermotolerance and expression of the HSP100/ClpB genes of lima bean. Plant Physiol 123:1121–1132

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khurana P, Chauhan H, Khurana N (2011) Characterization and expression of high temperature stress responsive genes in bread wheat. J Genet Plant Breed 47:S94–S97

    Google Scholar 

  • Kliebenstein DJ, Dietrich RA, Martin AC, Last RL, Dangl JL (1999) Regulates salicylic acid induction of copper zinc superoxide dismutase in Arabidopsis thaliana. Mol Plant Microbe Interact 12:1022–1026

    CAS  PubMed  Google Scholar 

  • Koskull-Doring PV, Scharf KD, Nover L (2007) The diversity of plant heat stress transcription factors. Trends Plant Sci 12:452–457

    Google Scholar 

  • Kotak S, Port M, Ganguli A, Bicker F, von Koskull-Döring P (2004) Characterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsf) and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localization. Plant J 39:98–112

    CAS  PubMed  Google Scholar 

  • Kotak S, Vierling E, Baumlein H, von Koskull-Doring P (2007) A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis. Plant Cell 19:182–195

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koussevitzky S, Suzuki N, Huntington S, Armijo L, Sha W, Cortes D, Shulaev V, Mittler R (2008) Ascorbate peroxidase 1 plays a key role in the response of Arabidopsis thaliana to stress combination. J Biol Chem 283:34197–34203

    CAS  PubMed Central  PubMed  Google Scholar 

  • Larkindale J, Knight MR (2002) Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene and salicylic acid. Plant Physiol 128:682–695

    CAS  PubMed Central  PubMed  Google Scholar 

  • Larkindale J, Huang B (2004) Thermotolerance and antioxidant systems in Agrostis stolonifera: involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. J Plant Physiol 161:405–413

    CAS  PubMed  Google Scholar 

  • Larkindale J, Vierling E (2008) Core genome responses involved in acclimation to high temperature. Plant Physiol 146:748–761

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    CAS  PubMed  Google Scholar 

  • Lee YJ, Nagao RT, Key JL (1994) A soyabean 101-kD heat stress protein complements yeast HSP104 deletion mutant in acquiring thermotolerance. Plant Cell 6:1889–1897

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee JM, Williams ME, Tingey SV, Rafalski JA (2002) DNA array profiling of gene expression changes during maize embryo development. Funct Integr Genomics 2:13–27

    CAS  PubMed  Google Scholar 

  • Lehman G, Engelke MC (1993) Heat resistance and rooting potential of Kentucky bluegrass cultivars. Int Turfgrass Soc Res J 7:775–779

    Google Scholar 

  • Li C, Chen Q, Gao X, Qi B, Chen N, Xu S, Chen J, Wang X (2005) AtHsfA2 modulates expression of stress responsive genes and enhances tolerance to heat and oxidative stress in Arabidopsis. Sci China C Life Sci 48:540–550

    CAS  PubMed  Google Scholar 

  • Li SJ, Fu QT, Huang WD, Yu DQ (2009) Functional analysis of an Arabidopsis transcription factor WRKY25 in heat stress. Plant Cell Rep 28:683–693

    CAS  PubMed  Google Scholar 

  • Li YF, Zheng Y, Addo-Quaye C, Zhang L, Saini A, Jagadeeswaran G, Michael J, Zhang WA, Sunkar R (2010) Transcriptome-wide identification of microrna targets in rice. Plant J 62:742–759

    Google Scholar 

  • Li Z, Zhang L, Wang A, Xu X, Li J (2013) Ectopic overexpression of slhsfa3, a heat stress transcription factor from tomato, confers increased thermotolerance and salt hypersensitivity in germination in transgenic Arabidopsis. PLos One 8(1):e54880. doi:10.1371/journal.pone.0054880

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liao JL, Zhang HY, Liu JB, Zhong PA, Huang YJ (2012) Identification of candidate genes related to rice grain weight under high-temperature stress. Plant Sci 196:32–43

    CAS  PubMed  Google Scholar 

  • Lim CJ, Yang KA, Hong JK, Choi JS, Yun DJ, Hong JC, Chung WS, Lee SY, Cho MJ, Lim CO (2006) Gene expression profiles during heat acclimation in Arabidopsis thaliana suspension-culture cells. J Plant Res 119:373–383

    CAS  PubMed  Google Scholar 

  • Lin YX, Jiang HY, Chu ZX, Tang XL, Zhu SW, Cheng BJ (2011) Genome-wide identification, classification and analysis of heat shock transcription factor family in maize. BMC Genomics 12:76. doi:10.1186/1471-2164-12-7

    Google Scholar 

  • Linebarger CRL, Boehlein SK, Sewell AK, Shaw J, Hannah LC (2005) Heat stability of maize endosperm ADPglucose pyrophosphorylase is enhanced by insertion of a cysteine in the N terminus of the small subunit. Plant Physiol 139:1625–1634

    CAS  PubMed  Google Scholar 

  • Liu JG, Yao QH, Zhang Z, Peng RH, Xiong AS, Xu F, Zhu H (2005) Isolation and characterization of a cDNA encoding two novel heat-shock factor OsHSF6 and OsHSF12 in Oryza sativa L. J Biochem Mol Biol 38(5):602–608

    CAS  PubMed  Google Scholar 

  • Liu HH, Tian X, Li YJ, Wu CA, Zheng CC (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14(5):836–843

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu JG, Qin QL, Zhang Z, Peng RH, Xiong AS, Chen JM, Yao QH (2009) OsHSF7 gene in rice, Oryza sativa L, encodes a transcription factor that functions as a high temperature receptive and responsive factor. BMB Rep 42(1):16–21

    PubMed  Google Scholar 

  • Liu AL, Zou J, Zhang XW, Zhou XY, Wang WF, Chen L, Xiong X, Chen X (2010) Expression profiles of class a rice heat shock transcription factor genes under abiotic stresses. J Plant Biol 53:142–149

    Google Scholar 

  • Llave C, Kasschau KD, Rector MA, Carrington JC (2002) Endogenous and silencing-associated small RNAs in plants. Plant Cell 14:1605–1619

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lockhart DJ, Winzeler EA (2000) Genomics, gene expression and DNA arrays. Nature 405:827–836

    CAS  PubMed  Google Scholar 

  • Lohmann C, Eggers-Schumacher G, Wunderlich M, Schoffl F (2004) Two different heat shock transcription factors regulate immediate early expression of stress genes in Arabidopsis. Mol Genet Genomics 271:11–21

    CAS  PubMed  Google Scholar 

  • Lu S, Sun YH, Chiang VL (2008) Stress-responsive microRNAs in Populus. Plant J 55(1):131–151

    CAS  PubMed  Google Scholar 

  • Lu T, Lu G, Fan D, Zhu C, Li W, Zhao Q, Feng Q, Zhao Y, Guo Y, Li W, Huang X, Han B (2010) Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq. Genome Res 20:1238–1249

    Google Scholar 

  • Lubben TH, Donaldson GK, Viitanen PV, Gatenby AA (1989) Severa1 proteins imported into chloroplasts form stable complexes with the GroEL-related chloroplast molecular chaperone. Plant Cell 1:1223–1230

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lund AA, Blum PH, Bhattramakki D, Elthon TE (1998) Heat-stress response of maize mitochondria. Plant Physiol 116:1097–1110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lv DK, Bai X, Li Y, Ding XD, Ge Y, Cai H, Ji W, Wu N, Zhu YM (2010) Profiling of cold-stress-responsive miRNAs in rice by microarrays. Gene 459(1–2):39–47

    CAS  PubMed  Google Scholar 

  • Mallory AC, Vaucheret H, (2006) Functions of microRNAs and related small RNAs in plants. Nat Genet 38:S31–S36

    Google Scholar 

  • Mangelsen E, Kilian J, Harter K, Jansson C, Wanke D, Sundberg E (2011) Transcriptome analysis of high-temperature stress in developing barley caryopses: early stress responses and effects on storage compound biosynthesis. Mol Plant 4:97–115

    CAS  PubMed  Google Scholar 

  • Marcum KB (1998) Cell membrane thermostability and whole plant heat tolerance of Kentucky bluegrass. Crop Sci 38:1214–1218

    Google Scholar 

  • Markandeya G, Babu PR, Lachagari VBR, Feltus FA, Paterson AH, Reddy AR (2005) Functional genomics of drought-stress response in rice: transcript mapping of annotated unigenes of an indica rice (Oryza sativa L. cv. Nagina 22). Curr Sci 89:496–514

    Google Scholar 

  • Martineau JR, Specht JE, Williams JH, Sullivan CY (1979) Temperature tolerance in soybeans I. Evaluation of technique for assessing cellular membrane thermostability. Crop Sci 19:75–78

    Google Scholar 

  • Massa SI, Pearson GA, Aires T, Kube M, Olsen JL, Reinhardt R, Serrão EA, Arnaud-Haond S (2011) Expressed sequence tags from heat-shocked seagrass Zostera noltii (Hornemann) from its southern distribution range. Mar Genomics 4(3):181–188

    PubMed  Google Scholar 

  • Mathur S, Jajoo A, Mehta P, Bharti S (2011) Analysis of elevated temperatureinduced inhibition of photosystem II using chlorophyll a fluorescence induction kinetics in wheat leaves (Triticum aestivum). Plnt. Plant Biol 13(1):1–6

    CAS  PubMed  Google Scholar 

  • Matsumura T, Tabayashi N, Kamagata Y, Souma C, Saruyama H (2002) Wheat catalase expressed in transgenic rice can improve tolerance against low temperature stress. Physiol Plant 116:317–327

    CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51(345):659–668

    CAS  PubMed  Google Scholar 

  • May P, Liao W, Wu Y, Shuai B, McCombie WR, Zhang MQ, Liu QA (2013) The effects of carbon dioxide and temperature on microRNA expression in Arabidopsis development. Nat Commun 4:2145. doi:10.1038/ncomms3145

    PubMed  Google Scholar 

  • McDonald AE, Vanlerberghe GC (2005) Alternative oxidase and plastoquinol terminal oxidase in marine prokaryotes of the Sargasso Sea. Gene 349:15–24

    CAS  PubMed  Google Scholar 

  • McDowell JM, An YQ, Huang S, McKinney EC, Meagher RB (1996) The Arabidopsis ACT7 actin gene is expressed in rapidly developing tissues and responds to several external stimuli. Plant Physiol 111:699–711

    CAS  PubMed Central  PubMed  Google Scholar 

  • Melchiorre M, Robert G, Trippi V, Racca R, Lascano HR (2009) Superoxide dismutase and glutathione reductase overexpression in wheat protoplast: photooxidative stress tolerance and changes in cellular redox state. Plant Grow Regul 57:57–68

    CAS  Google Scholar 

  • Miller G, Mittler R (2006) Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Ann Bot (Lond) 98(2):279–288

    CAS  Google Scholar 

  • Mishra SK, Tripp J, Winkelhaus S, Tschiersch B, Theres K, Nover L, Scharf KD (2002) In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev 16(12):1555–1567

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mishra NS, Kumar V, Sopory SK, Mukherjee SK (2009) Cloning and validation of novel miRNA from basmati rice indicates cross talk between abiotic and biotic stresses. Mol Genet Genomics 282:463–474

    Google Scholar 

  • Mittal D, Chakrabarti S, Sarkar A, Singh A, Grover A (2009) Heat shock factor gene family in rice: genomic organization and transcript expression profiling in response to high temperature, low temperature and oxidative stresses. Plant Physiol Biochem 47:785–795

    CAS  PubMed  Google Scholar 

  • Mittal D, Madhyastha DA, Grover A (2012) Genome-wide transcriptional profiles during temperature and oxidative stress reveal coordinated expression patterns and overlapping regulons in rice. PLos One 7(7):e40899. doi:10.1371/journal.pone.0040899

    Google Scholar 

  • Mittler R, Zilinskas BA (1992) Molecular cloning and characterization of a gene encoding pea cytosolic ascorbate peroxidase. J Biol Chem 267:21802–21807

    CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    CAS  PubMed  Google Scholar 

  • Moffatt JM, Sears RG, Paulsen GM (1990) Wheat high-temperature tolerance during reproductive growth 1. Evaluation by chlorophyll fluorescence. Crop Sci 30:881–885

    CAS  Google Scholar 

  • Mohammed AR, Tarpley L (2009) Impact of high nighttime temperature on respiration, membrane stability, antioxidant capacity, and yield of rice plants. Crop Sci 49:313–322

    Google Scholar 

  • Moldovan D, Spriggs A, Yang J, Pogson BJ, Dennis ES, Wilson IW (2009) Hypoxia responsive microRNAs and trans-acting small interfering RNAs in Arabidopsis. Exp Bot 61:165–177

    Google Scholar 

  • Musatenko I, Vedenicheva NP, Vasyuk VA, Generalova VN, Martyn GI, Sytnik KM (2003) Phytohormones in seedlings of maize hybrids differing in their tolerance to high temperature. Russ J Plant Physiol 50(4):444–448

    Google Scholar 

  • Nagamiya K, Motohashi T, Nakao K, Prodhan SH, Hattori E, Hirose S, Ozawa K, Ohkawa Y, Takabe T, Takabe T, Komamine A (2007) Salt tolerance in transgenic rice expressing an Escherichia coli catalase gene, katE. Plant Biotechnol Rep 1:49–55

    Google Scholar 

  • Nagaraj SH, Gasser RB, Ranganathan S (2007) A hitchhiker’s guide to expressed sequence tag (EST) analysis. Brief Bioinform 8:6–21

    CAS  PubMed  Google Scholar 

  • Nanjo T, Futamura N, Nishiguchi M, Igasaki T, Shinozaki K, Shinohara K (2004) Characterization of full-length enriched expressed sequence tags of stress-treated poplar leaves. Plant Cell Physiol 45(12):1738–1748

    PubMed  Google Scholar 

  • Neumann DM, Emmermann M, Thierfelder JM, Zur Nieden U, Clericus M, Braun HP, Nover L, Schmitz UK (1993) HSP68-a DNAK-like heat-stress protein of plant mitochondria. Planta 190:32–43

    CAS  PubMed  Google Scholar 

  • Nieto-Sotelo J, Martinez LM, Ponce G, Cassab GI, Alagon A, Meeley RB, Ribaut JM, Yang R (2002) Maize HSP101 plays important rolesin both induced and basal thermotolerance and primary root growth. Plant Cell 14:1621–1633

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nishizawa A, Yabuta Y, Yoshida E, Maruta T, Yoshimura K, Shigeoka S (2007) Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J 48:535–547

    Google Scholar 

  • Noctor CH, Foyer A (1998) Re-evaluation of the ATP: NADPH budget during C3 photosynthesis. A contribution from nitrate assimilation and its associated respiratory activity? J Exp Bot 49:1895–1908

    CAS  Google Scholar 

  • Nover L, Bharti K, Doring P, Mishra SK, Ganguli A, Scharf KD (2001) Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress Chaperones 6(3):177–189

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ogawa D, Yamaguchi K, Nishiuchi T (2007) High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased themotolerance but also salt/osmotic stress tolerance and enhanced callus growth. J Exp Bot 58(12):3373–3383

    CAS  PubMed  Google Scholar 

  • Ogren E (1988) Photoinhibition of photosynthesis in willow leaves under field conditions. Planta 175(2):229–236

    CAS  PubMed  Google Scholar 

  • Oh-e I, Saitoh K, Kuroda T (2007) Effects of high temperature on growth, yield and dry-matter production of rice grown in the paddy field. Plant Prod Sci 10:412–422

    Google Scholar 

  • Omar SA, Fu QT, Chen MS, Wang GJ, Song SQ, Elsheery NI, Xu ZF (2011) Identification and expression analysis of two small heat shock protein cDNAs from developing seeds of biodiesel feedstock plant Jatropha curcas. Plant Sci 181(6):632–637

    CAS  PubMed  Google Scholar 

  • Oshino T, Miura S, Kikuchi S, Hamada K, Yano K, Watanabe M, Higashitani A (2011) Auxin depletion in barley plants under high-temperature conditions represses DNA proliferation in organelles and nuclei via transcriptional alterations. Plant Cell Environ 34:284–290

    CAS  PubMed  Google Scholar 

  • Pareek A, Singla SL, Grover A (1995) Immunological evidence for accumulation of two high-molecular-weight (104 and 90 kDa) HSPs in response to different stresses in rice and in response to high temperature stress in diverse plant genera. Plant Mol Biol 29:293–301

    CAS  PubMed  Google Scholar 

  • Park W, Li J, Song R, Messing J, Chen X (2002) CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in micro-RNA metabolism in Arabidopsis thaliana. Curr Biol 12:1484–1495

    CAS  PubMed  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob-ur-Rahman, Ware D, Westhoff P, Mayer KF, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    CAS  PubMed  Google Scholar 

  • Pietrini F, Iannelli MA, Pasqualini S, Massacci A (2003) Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis (Cav.) Trin. ex Steudel. Plant Physiol 133:829–837

    CAS  PubMed Central  PubMed  Google Scholar 

  • Prasad PVV, Boote KJ, Allen LH, Sheehy JE, Thomas JMG (2006) Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Res 95:398–411

    Google Scholar 

  • Pratt WB, Toft DO (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med 228:111–133

    CAS  Google Scholar 

  • Pratt WB, Galigniana MD, Harrell JM, Deranco DB (2004) Role of hsp90 and the hsp90-binding immunophilins in signaling protein movement. Cell Signal 16:857–872

    CAS  PubMed  Google Scholar 

  • Qin D, Wu H, Peng H, Yao Y, Ni Z, Li Z, Zhou C, Sun Q (2008) Heat stress-responsive transcriptome analysis in heat susceptible and tolerant wheat (Triticum aestivum L.) by using Wheat Genome Array. BMC Genomics 9:432

    PubMed Central  PubMed  Google Scholar 

  • Quan R, Shang M, Zhang H, Zhao Y, Zhang J (2004) Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotechnol J 2:477–486

    CAS  PubMed  Google Scholar 

  • Rainey K, Griffiths P (2005) Evaluation of Phaseolus acutifolius A. Gray plant introductions under high temperatures in a controlled environment. Genet Resour Crop Evol 52:117–120

    Google Scholar 

  • Ranson NA, White HE, Saibil HR (1998) Chaperonins. Biochem J 333:233–242

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rao ASVC, Reddy AR (2008) Glutathione reductase: a putative redox regulatory system in plant cells. In: Khan NA, Singh S, Umar S (eds) Sulfur assimilation and abiotic stresses in plants. Springer, The Netherlands, pp 111–147

    Google Scholar 

  • Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21- nucleotide let-7 RNA regulates developmental timing in Caenorhabditiselegans. Nature 403:901–906

    CAS  PubMed  Google Scholar 

  • Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reynolds MP, Balota M, Delgado MIB, Amani I, Fisher RA (1994) Physiological and morphological traits associated with spring wheat yield under hot irrigated conditions. Aust J Plant Physiol 21:717–730

    Google Scholar 

  • Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNAs targets. Cell 110:513–520

    CAS  PubMed  Google Scholar 

  • Rouch JM, Bingham SE, Sommerfeld MR (2004) Protein expression during heat stress in thermo-intolerance and thermotolerance diatoms. J Exp Mar Biol Ecol 306:231–243

    Google Scholar 

  • Rudd S (2003) Expressed sequence tags: alternative or complement to whole genome sequences? Trends Plant Sci 8:321–329

    CAS  PubMed  Google Scholar 

  • Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–421

    CAS  Google Scholar 

  • Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 25:163–171

    CAS  PubMed  Google Scholar 

  • Sangwan V, Dhindsa RS (2002) In vivo and in vitro activation of temperatureresponsive plant map kinases. FEBS Lett 531:561–564

    CAS  PubMed  Google Scholar 

  • Sarkar NK, Kim YK, Grover A (2009) Rice sHsp genes: genomic organization and expression profiling under stress and development. BMC Genomics 10:393

    PubMed Central  PubMed  Google Scholar 

  • Sarowar S, Kim EN, Kim YJ, Ok SH, Kim KD, Hwang BK, Shin JS (2005) Overexpression of a pepper ascorbate peroxidase-like 1 gene in tobacco plants enhances tolerance to oxidative stress and pathogens. Plant Sci 169:55–63

    CAS  Google Scholar 

  • Savchenko GE, Klyuchareva EA, Abrabchik LM, Serdyuchenko EV (2002) Effect of periodic heat shock on the membrane system of etioplasts. Russ J Plant Physiol 49:349–359

    CAS  Google Scholar 

  • Sayed OH (1996) Adaptational responses of Zygophyllum qatarense Hadidi to stress conditions in a desert environment. J Arid Environ 32:445–452

    Google Scholar 

  • Scandalias JG (1990) Response of plant antioxidant defense genes to environmental stress. Adv Genet 28:1–41

    Google Scholar 

  • Scharf KD, Siddique M, Vierling E (2001) The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing alpha-crystalline domains (Acd proteins). Cell Stress Chaperon 6:225–237

    CAS  Google Scholar 

  • Schirmer EC, Lindquist S, Vierling E (1994) An Arabidopsis heat stress protein complements a thermotolerance defect in yeast. Plant Cell 6:1899–1909

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schoffl F, Prandl R, Reindl A (1999) Molecular responses to heat stress. In: Shinozaki K, Yamaguchi-Shinozaki K (eds) Molecular responses to cold, drought, heat and salt stress in higher plants. Landes, Austin, pp 81–98

    Google Scholar 

  • Schramm F, Ganguli A, Kiehlmann E, Englich G, Walch D, Von Koskull-Do ring P (2006) The heat stress transcription factor HsfA2 serves as a regulatory amplifier of a subset of genes in the heat stress response in Arabidopsis. Plant Mol Biol 60:759–772

    CAS  PubMed  Google Scholar 

  • Schramm F, Larkindale J, Kiehlmann E, Ganguli A, Englich G, Vierling E, von Koskull-Doring P (2008) A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. Plant J 53:264–274

    CAS  PubMed  Google Scholar 

  • Schroda M, Vallon V, Wollman F, Beck CF (1999) A chloroplast-targeted heat shock protein 70 (HSP70) contributes to the photoprotection and repair of photosystem II during and after photoinhibition. Plant Cell 11:11165–11178

    Google Scholar 

  • Severin AJ, Woody JL, Bolon YT, Joseph B, Diers BW, Farmer AD, Muehlbauer GJ, Nelson RT, Grant D, Specht JE, Graham MA, Cannon SB, May GD, Vance CP, Shoemaker RC (2010) RNA-Seq atlas of Glycine max: a guide to the soybean transcriptome. BMC Plant Biol 10:160

    PubMed Central  PubMed  Google Scholar 

  • Shah K, Nahakpam S (2012) Heat exposure alters the expression of SOD, POD, APX and CAT isozymes and mitigates low cadmium toxicity in seedlings of sensitive and tolerant rice cultivars. Plant Physiol Biochem 57:106–113

    Google Scholar 

  • Sharkova VE (2001) The effect of heat shock on the capacity of wheat plants to restore their photosynthetic electron transport after photoinhibition or repeated heating. Russ J Plant Physiol 48:793–797

    CAS  Google Scholar 

  • Sharma P, Dubey RS (2005) Modulation of nitrate reductase activity in rice seedlings under aluminium toxicity and water stress: role of osmolytes as enzyme protectan. J Plant Physiol 162:854–864

    CAS  PubMed  Google Scholar 

  • Shuai P, Liang D, Zhang Z, Yin W, Xia X (2013) Identification of drought-responsive and novel; Populus trichocarpa; microRNAs by high-throughput sequencing and their targets using degradome analysis. BMC Genomics 14:233. doi:10.1186/1471-2164-14-233

    Google Scholar 

  • Siddique M, Port M, Tripp J, Weber C, Zielinski D, Calligaris R, Winkelhaus S, Scharf KD (2003) Tomato heat stress protein Hsp16.1-CIII represents a member of a new class of nucleocytoplasmic small heat stress proteins in plants. Cell Stress Chaperon 8:381–394

    CAS  Google Scholar 

  • Siddique M, GernhardS, Von Koskull-Doring P, Vierling E, Scharf KD (2008) The plant sHSP superfamily: five new members in Arabidopsis thaliana with unexpected properties. Cell Stress Chaperon 13:183–197

    CAS  Google Scholar 

  • Singh A, Singh U, Mittal D, Grover A (2010) Genome-wide analysis of rice ClpB/HSP100, ClpC and ClpD genes. BMC Genomics 11:95

    PubMed Central  PubMed  Google Scholar 

  • Singla SL, Grover A (1993) Antibodies raised against yeast HSP104 cross-react with a heat- and abscisic acid-regulated polypeptide in rice. Plant Mol Biol 22:1177–1180

    CAS  PubMed  Google Scholar 

  • Singletary G, Roshie B, Keeling P (1994) Heat stress during grain filling in maize: effects on carbohydrate storage and metabolism. Aust J Plant Physiol 21:829–841

    CAS  Google Scholar 

  • Smertenko A, Draber P, Viklicky V, Opatrny Z (1997) Heat stress affects the organization of microtubules and cell division in Nicotiana tabacum cells. Plant Cell Environ 20:1534–1542

    Google Scholar 

  • Stevens R, Page D, Gouble B, Garchery C, Zamir D, Causse M (2008) Tomato fruit ascorbic acid content is linked with monodehydroascorbate reductase activity and tolerance to chilling stress. Plant Cell Environ 31:1086–1096

    CAS  PubMed  Google Scholar 

  • Su J, Wu R (2004) Stress inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than with constitutive synthesis. Plant Sci 166:941–948

    CAS  Google Scholar 

  • Su PH, Li HM (2008) Arabidopsis stromal 70-kD heat shock proteins are essential for plant development and important for thermotolerance of germinating seeds. Plant Physiol 146:1231–1241

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sullivan CY, Ross WM (1979) Selecting for drought and heat resistance in grain sorghum. In: Mussell H, Staple R (eds) Stress physiology in crop plants. Wiley, New York, pp 263–281

    Google Scholar 

  • Sun W, Motangu MV, Verbruggen N (2002) Small heat shock proteins and stress tolerance in plants. Biochim Biophys Acta 1577:1–9

    CAS  PubMed  Google Scholar 

  • Sung DY, Vierling E, Guy CL (2001) Comprehensive expression profile analysis of the Arabidopsis hsp70 gene family. Plan Physiol 126(2):789–800

    CAS  Google Scholar 

  • Sung DY, Kaplan F, Lee KJ, Guy CL (2003) Acquired tolerance to temperature extremes. Trends Plant Sci 8:179–187

    CAS  PubMed  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sunkar R, Girke T, Jain PK, Zhu JK (2005) Cloning and characterization of microRNAs from rice plant. Cell 17(5):1397–1411

    CAS  Google Scholar 

  • Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065

    CAS  PubMed Central  PubMed  Google Scholar 

  • Swindell WR, Huebner M, Weber AP (2007) Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics 8:125

    PubMed Central  PubMed  Google Scholar 

  • Tang G, Tang X, Mendu V, Jia X, Chen QJ, He L (2008) The art of microRNA: various strategies leading to gene silencing via an ancient pathway. Biochim Biophys Acta 1779:655–662

    CAS  PubMed  Google Scholar 

  • Tateishi Y, Nakagawa T, Esaka M (2005) Osmotolerance and growth stimulation of transgenic tobacco cells accumulating free proline by silencing proline dehydrogenase expression with double-stranded RNA interference technique. Physiol Plant 125:224–234

    CAS  Google Scholar 

  • Toth SZ, Schansker G, Kissimon J, Kovacs L, Garab G, Strasser RJ (2005) Biophysical studies of photosystem II-related recovery processes after a heat pulse in barley seedlings (Hordeum vulgare L.). J Plant Physiol 162:181–194

    CAS  PubMed  Google Scholar 

  • Trindade I, Capitão C, Dalmay T, Fevereiro MP, Santos DM (2010) miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula. Planta 231(3):705–716.

    CAS  PubMed  Google Scholar 

  • Tripp J, Mishra SK, Scharf KD (2009) Functional dissection of the cytosolic chaperone network in tomato mesophyll protoplasts. Plant Cell Environ 32:123–133

    CAS  PubMed  Google Scholar 

  • Trovato M, Mattioli R, Costantino P (2008) Multiple roles of proline in plant stress tolerance and development. Rendiconti Lincei 19:325–346

    Google Scholar 

  • Ushimaru T, Ogawa K, Ishida N, Shibasaka M, Kanematsu S, Asada K, Tsuji H (1995) Changes in organelle superoxide dismutase isoenzymes during air adaption of submerged rice seedlings: differential behaviour of isoenzymes in plastids and mitochondria. Planta 196:606–613

    CAS  Google Scholar 

  • Ushimaru T, Nakagawa T, Fujioka Y, Daicho K, Naito M, Yamauchi Y, Nonaka H, Amako K, Yamawaki K, Murata N (2006) Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress. J Plant Physiol 163:1179–1184

    CAS  PubMed  Google Scholar 

  • Vara Prasad PV, Craufurd PQ, Summerfield RJ (1999) Fruit number in relation to pollen production and viability in groundnut exposed to short episodes of heat stress. Ann Bot 84:381–386

    Google Scholar 

  • Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27 (9):522–530

    CAS  PubMed  Google Scholar 

  • Vellosillo T, Vicente J, Kulasekaran S, Ha mbergM, Castresana C (2010) Emerging complexity in reactive oxygen species production and signaling during the response of plants to pathogens. Plant Physiol 154:444–448

    CAS  PubMed Central  PubMed  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759

    CAS  PubMed  Google Scholar 

  • Veselov P, Lobov VP, Olyunina LN (1998) Phytohormones during heat shock and recovery. Russ J Plant Physiol 45(5):611–616

    Google Scholar 

  • Vierling E (1991) The role of heat shock proteins in plants. Annu Rev Plant Phys 42:579–620

    CAS  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    CAS  PubMed  Google Scholar 

  • Vu JCV, Gesch RW, Pennanen AH, Allen LHJ, Boote KJ, Bowes G (2001) Soybean photosynthesis, rubisco and carbohydrate enzymes function at supra-optimal temperatures in elevated CO2. J Plant Physiol 158:295–307

    CAS  Google Scholar 

  • Wahid A, Shabbir A (2005) Induction of heat stress tolerance in barley seedlings by pre-sowing seed treatment with glycinebetaine. Plant Growth Regul 46:133–141

    CAS  Google Scholar 

  • Wahid A, Ghazanfar A (2006) Possible involvement of some secondary metabolites in salt tolerance of sugarcane. J Plant Physiol 163:723–730

    CAS  PubMed  Google Scholar 

  • Wahid A, Close TJ (2007) Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biol Plant 51:104–109

    CAS  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exper Bot 61 (3):199–223

    Google Scholar 

  • Wang SM, Khandekar JD, Kaul KL, Winchester DJ, Morimoto RI (1999) A method for the quantitative analysis of human heat shock gene expression using multiplex RT-PCR assay. Cell Stress Chaperones 4:153–161

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    CAS  PubMed  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang F, Dong Q, Jiang H, Zhu S, Chen B, Xiang Y (2011) Genome-wide analysis of the heat shock transcription factors in Populus trichocarpa and Medicago truncatula. Mol Biol Rep 39(2):1877–1886. doi:10.1007/s11033-011-0933-9

    PubMed  Google Scholar 

  • Waters E, Lee G, Vierling E (1996) Evolution, structure and function of the small heat shock proteins in plants. J Exp Bot 47:325–338

    CAS  Google Scholar 

  • Webb AAR, Mcainsh MR, Taylor JE, Hetherington AM (1996) Calcium ions as intercellular second messengers in higher plants. Adv Bot Res 22:45–96

    CAS  Google Scholar 

  • Wilhelm EP, Mullen RE, Keeling PL, Singletary GW (1999) Heat stress during grain filling in maize: effects of kernel growth and metabolism. Crop Sci 39:1733–1741

    CAS  Google Scholar 

  • Wise RR, Olson AJ, Schrader SM, Sharkey TD (2004) Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature. Plant Cell Environ 27:717–724

    CAS  Google Scholar 

  • Xiang BL, Werner EM, Christensen DJ, Oliver DJ (2001) The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol 126:564–574

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xiang D, Venglat P, Tibiche C, Yang H, Risseeuw E, Cao Y, Babic V, Cloutier M, Keller W, Wang E, Selvaraj G, Datla R (2011) Genome-wide analysis reveals gene expression and metabolic network dynamics during embryo development in Arabidopsis. Plant Physiol 156:346–356

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xin M, Wang Y, Yao Y, Xie C, Peng H, Ni1 Z, Sun Q (2010) Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC Plant Biol 10:123

    PubMed Central  PubMed  Google Scholar 

  • Xu Y, Huang B (2009) Effects of foliar-applied ethylene inhibitor and synthetic cytokinin on creeping bentgrass to enhance heat tolerance. Crop Sci 49(5)1876–1884

    Google Scholar 

  • Yamada K, Fukao Y, Hayashi M, Fukazawa M, Suzuki I, Nishimura M (2007) Cytosolic HSP90 regulates the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana. J Biol Chem 282:37794–37804

    Google Scholar 

  • Yamakawa H, Hirose T, Kuroda M, Yamaguchi T (2007) Comprehensive expression profiling of rice grain filling related genes under high temperature using DNA microarray. Plant Physiol 144:258–277

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamanouchi U, Yano M, Lin H, Ashikari M, Yamada K (2002) A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proc Natl Acad Sci U S A 99:7530–7535

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yancey PH, Clark ME, Hand SC, Bowlis RD, Somero GN (1982) Living with water stress: evolution of osmolyte system. Science 217:1214–1222

    CAS  PubMed  Google Scholar 

  • Yang J, Sears RG, Gill BS, Paulsen GM (2002) Growth and senescence characteristics associated with tolerance of wheat-alien amphiploids to high temperature under controlled conditions. Euphytica 126(2):185–193

    CAS  Google Scholar 

  • Yao Y, Ni Z, Peng H, Sun F, Xin M, Sunkar R, Zhu JK, Sun Q (2010) Non-coding small RNAs responsive to abiotic stress in wheat (Triticum aestivum L.). Funct Integr Genomics 10:187–190

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Huang X, Li W, Li J, Liu Z, Li L, Liu J, Qi Q, Liu J, Li L, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Zhang J, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Ren X, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Wang J, Zhao W, Li P, Chen W, Wang X, Zhang Y, Hu J, Wang J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Li G, Liu S, Tao M, Wang J, Zhu L, Yuan L, Yang H (2002) A draft sequence of the rice genome (Oryza sativa L.ssp. indica). Science 296:79–92

    CAS  PubMed  Google Scholar 

  • Yu X, Wang H, Lu Y, Ruiter M, Cariaso M, Prins M, Tunenn AV, He Y (2011) Identification of conserved and novel microRNAs that are responsive to heat stress in Brassica rapa. J Exp Bot. 63(2):1025–1038

    PubMed Central  PubMed  Google Scholar 

  • Zhang JH, Huang WD, Liu YP, Pan QH (2005) Effects of temperature acclimation pretreatment on the ultrastructure of mesophyll cells in young grape plants (Vitis vinifera L. cv. Jingxiu) under cross-temperature stresses. J Integr Plant Biol 47:959–970

    Google Scholar 

  • Zhang JH, Wang LJ, Pan QH, Wang YZ, Zhan JC, Huang WD (2008a) Accumulation and subcellular localization of heat shock proteins in young grape leaves during cross-adaptation to temperature stresses. Sci Horti 117:231–240

    CAS  Google Scholar 

  • Zhang X, Liu A, Zou J, Zhou X, Wang W, Chen L, Xiong X, Chen X (2008b) Expression profile of young rice panicle under heat stress using DNA microarray. Chin Sci Tech Papers online. A200812–3129

    Google Scholar 

  • Zhang J, Xu Y, Huan Q, Chong K (2009) Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response. BMC Genomics 10:449

    PubMed Central  PubMed  Google Scholar 

  • Zhang G, Guo G, Hu X, Zhang Y, Li Q, Li R, Zhuang R, Lu Z, He Z, Fang X, Chen L, Tian W, Tao Y, Kristiansen K, Zhang X, Li S, Yang H, Wang J, Wang J (2010) Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome. Genome Res 20:646–654

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang X, Li J, Liu A, Zou J, Zhou X, Xiang J, Rerksiri W, Peng Y, Xiong X, Chen X (2012) Expression profile in rice panicle: insights into heat response mechanism at reproductive stage. PLos One 7(11):e49652. doi:10.1371/journal.pone.0049652

    Google Scholar 

  • Zhao B, Ge L, Liang R, Li W, Ruan K, Lin H, Jin Y (2009) Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor. BMC Mol Biol 10:29

    PubMed Central  PubMed  Google Scholar 

  • Zhou X, Wang G, Sutoh K, Zhu JK, Zhang W (2008). Identification of cold inducible microRNAs in plants by transcriptome analysis. Biochem Biophys Acta 1779(11):780–788

    Google Scholar 

  • Zhou L, Liu Y, Liu Z, Kong D, Duan M, Luo L (2010) Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J Exp Bot 61(15):4157–4168

    CAS  PubMed  Google Scholar 

  • Zhu B, Ye C, Lü H, Chen X, Chai G, Chen J, Wang C (2006) Identification and characterization of a novel heat shock transcription factor gene, GmHsfA1, in soybeans (Glycine max). J Plant Res 119:247–256

    CAS  PubMed  Google Scholar 

  • Zou J, Liu A, Chen X, Zhou X, Gao G, Wang W, Zhang X (2009) Expression analysis of nine rice heat shock protein genes under abiotic stresses and ABA treatment. J plant Physiol 166(8):851–861

    Google Scholar 

Download references

Acknowledgments

The authors are highly thankful to the project director (Directorate of Rice Research) for his kind support. Financial support received from NICRA (National Initiative of Climate and Resilient Agriculture) project is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satendra K. Mangrauthia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sailaja, B., Mangrauthia, S., Sarla, N., Voleti, S. (2014). Transcriptomics of Heat Stress in Plants. In: Ahmad, P., Wani, M., Azooz, M., Phan Tran, LS. (eds) Improvement of Crops in the Era of Climatic Changes. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8824-8_3

Download citation

Publish with us

Policies and ethics