Skip to main content

Brassicas: Responses and Tolerance to Heavy Metal Stress

  • Chapter
  • First Online:

Abstract

Brassica is considered as an important crop all over the world owing to its economically important products. B.juncea and B.napus are cultivated as oilseed crops globally. Heavy metal (HM) stress is one of the abiotic stresses that limit plant growth and development. Root and shoot lengths and fresh and dry weights have been observed to act as accumulators as well as indicators of metal toxicity in crops. Brassica has a potential to combat the metal-induced stress, thereby reducing the damage by undergoing various types of adaptations. However, cost-effective techniques are available in order to minimize the toxicity and to protect the surroundings from HM stress. Decrease in chlorophyll content confers to weak uptake of mineral ions due to the interference of HMs in plants. Nevertheless, low concentrations of some HMs demonstrate an efficient yield in some species. HMs disturb the composition of fatty acids and as a result lead to tremendous changes in lipid membrane that may ultimately cause lipid peroxidation. Proline accumulation enhances the tolerance level under osmotic stress and is known to regulate the water balance in crop plants. Increased glutathione (GSH) in B. napus and B. juncea, on exposure to HMs, has shown its active involvement in detoxification of free radicals either directly or through certain enzymes. Phytochelations are one of the important methods to reduce the phytotoxicity by binding complexes with high-affinity ligands in the vacuole, thereby keeping the released toxins away from the metal-sensitive metabolic centers in the cytoplasm. Ascorbate–GSH cycle plays an efficient role in reactive oxygen species (ROS) detoxification released through abiotic stress. Besides, ROS shows release of new isozymes of peroxidases. Genetic engineering has been established to enhance the plant’s ability to endure and mitigate the environmental stress. This involves the insertion of foreign DNA into nuclear genome and genomic chloroplast. However, gene expression can be regulated by various promoters. Several transgenic approaches have been carried out successfully with enhanced accumulation of HMs in B. juncea cultivars. There is lot of scope to understand the mechanism of HM uptake as well as the capacity of plants to withstand the environmental stresses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmad K, Ejaz A, Azam M, Khan MI, Ashraf M, Al-Qurainy F, Fardous A, Gondal S, Bayat R, Valeem EE (2011) Lead, cadmium and chromium contents of canola irrigated with sewage water. Pak J Bot 43(2):1403–1410

    CAS  Google Scholar 

  • Ahmad P (2014) Oxidative damage to plants, antioxidant networks and signaling. Academic, Er USA

    Google Scholar 

  • Ahmad P, Umar S (2011) Antioxidants: oxidative stress management in plants. Studium Press Pvt. Ltd., New Delhi

    Google Scholar 

  • Ahmad P, Jhon R, Sarwat M, Umar S (2008) Responses of proline, lipid peroxidation and antioxidative enzymes in two varieties of Pisum sativum L. under salt stress. Int J Plant Produc 2(4):353–366

    Google Scholar 

  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010a) Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30(3):161–175

    Google Scholar 

  • Ahmad P, Umar S, Sharma S (2010b) Mechanism of free radical scavenging and role of phytohormones during abiotic stress in plants. In: Ashraf M, Ozturk M, Ahmad MSA (eds) Plant adaptation and phytoremediation. Springer, Dordrecht, pp 99–108

    Google Scholar 

  • Ahmad P, Jaleel CA, Sharma S (2010c) Antioxidative defence system, lipid peroxidation, proline metabolizing enzymes and Biochemical activity in two genotypes of Morus alba L. subjected to NaCl stress. Russ J Plant Physiol 57(4):509–517

    Google Scholar 

  • Ahmad P, Nabi G, Ashraf M (2011a) Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern. & Coss.] plants can be alleviated by salicylic acid. South Afr J Bot 77:36–44

    Google Scholar 

  • Ahmad P, Nabi G, Jeleel CA, Umar S (2011b) Free radical production, oxidative damage and antioxidant defense mechanisms in plants under abiotic stress. In: Ahmad P, Umar S (eds) Oxidative stress: role of antioxidants in plants. Studium Press Pvt. Ltd., New Delhi, pp 19–53

    Google Scholar 

  • Ahmad P, Ozturk M, Gucel S (2012) Oxidative damage and antioxidants induced by heavy metal stress in two cultivars of mustard (L) plants. Fres Environ Bull 21(10):2953–2961

    Google Scholar 

  • Ahmad P, Ashraf M, Azooz MM, Rasool S, Akram NA (2014a) Potassium starvationinduced oxidative stress and antioxidant defense responses in Brassica juncea. J Plant Inter 9(1):1–9

    Google Scholar 

  • Ahmad P, Ozturk M, Sharma S, Gucel S (2014b) Effect of sodium carbonate-induced salinity-alkalinity on some key osmoprotectants, protein profile, antioxidant enzymes, and lipid peroxidation in two mulberry (Morus alba l.) cultivars. J Plant Inter 9(1):460–467

    Google Scholar 

  • Aidid SB, Okamoto H (1992) Effects of lead, cadmium, zinc on the electrical membrane potential at the xylem/symplast interface and cell elongation of Impatiens balsamina. Environ Exp Bot 32:439–448

    CAS  Google Scholar 

  • Aidid SB, Okamoto H (1993) Responses of elongation rate, turgor pressure and cell wall extensibility of stem cells of Impatiens balsamina to lead, cadmium, zinc. Bio Metals 6:245–249

    CAS  Google Scholar 

  • Alia K, Saradhi PP (1991) Proline accumulation under heavy metal stress. J Plant Physiol 138:554–558

    CAS  Google Scholar 

  • Alia K, Prasad VSK, Saradhi PP (1995) Effect of Zn on free radicals and proline in Brassica and Cajanus. Phytochemistry 39(1):45–47

    CAS  Google Scholar 

  • Allakhverdiev SI, Nishiyama Y, Suzuki I, Tasaka Y, Murata N (1999) Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of synechacystis to salt stress. Proc Natl Acad Sci U S A 96:5862–5867

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alvarez-Ayuso E (2008) Cadmium in soil-plant systems: an overview. Intl J Environ Pollut 33(2–3):275–291

    CAS  Google Scholar 

  • Anjum NA, Umar S, Ahmad A, Iqbal M, Khan NA (2008) Ontogenic variation in response of Brassica campestris L. to cadmium toxicity. J Plant Interact 3(3):189–198

    CAS  Google Scholar 

  • Arduini I, Godbild DL, Onnis A (1996) Cadmium and copper uptake and distribution in Mediterranean tree seedlings. Physiol Plant 97:111–117

    CAS  Google Scholar 

  • Arshi A, Abdin MZ, Iqbal M (2002) Growth and metabolism of senna as affected by salt stress. Biol Plant 45:595–298

    Google Scholar 

  • Artetxe U, Gorae-Plazola JI, Hernandez A, Becerril JM (2002) Low light grown duckweed plants are more protected against the toxicity induced by Zn and Cd. Plant Physiol Biochem 40(10):859–863

    CAS  Google Scholar 

  • Asada K (1994) Chloroplast: formation of active oxygen and its scavenging. Methods Enzymol 105:422–442

    Google Scholar 

  • Asada K, Takahashi M (1987) Production and scavenging of active oxygen in photosynthesis. In: Kyle DJ, Osmond CJ, Arntzen CJ (eds) Photoinhibition: topics in photosynthesis. Elsevier, Amsterdam, pp 227–287

    Google Scholar 

  • Ashraf MY, Azhar N, Ashraf M, Hussain M (2011) Influence of lead on growth and nutrient accumulation in canola (Brassica napus L.) cultivars. J Environ Biol 32:659–666

    CAS  PubMed  Google Scholar 

  • Aspinall D, Paleg LG (1981) Proline accumulation: physiological aspects. In: Paleg LG, Aspinall D (eds) Physiology and biochemistry of drought resistance in plants. Academic, New York, pp 206–241

    Google Scholar 

  • Azevedo RA, Alas RM, Smith RJ, Lea PJ (1998) Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild-type and a catalase-deficient mutant of barley. Physiol Plant 104:280–292

    Google Scholar 

  • Baker AJM, Walker PL (1989) Physiological responses of plant to heavy metals and the quantification of tolerance and toxicity. Chem Speciation Bioavail 1:7–17

    CAS  Google Scholar 

  • Banuelos G, Terry Leduc D, Pilon-Smits EH, Mackey B (2005) Field trial of transgenic Indian mustard plants shows enhanced phytoremediation of selenium-contaminated sediment. Environ Sci Technol 39:1771–1777

    CAS  PubMed  Google Scholar 

  • Banuelos G, LeDuc DL, Pilon-Smits EAH, Tagmount A, Terry N (2007) Transgenic Indian mustard overexpressing selenocysteine lyase, selenocysteine methyltransferase, or methionine methyltransferase exhibit enhanced potential for selenium phytoremediation under field conditions. Environ Sci Technol 41:599–605

    CAS  PubMed  Google Scholar 

  • Barber J, Neild J, Morris EP, Zhelera C, Hankamer B (1997) The structure, function and dynamics of PSII. Physiol Plant 100:817–827

    CAS  Google Scholar 

  • Bartley GE, Scolnik PA (1994) Molecular biology of carotenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 45:287–301

    CAS  Google Scholar 

  • Bassi R, Sharma S (1993) Proline accumulation in wheat seedling exposed to zinc and copper. Phytochemistry 33 (6):1339–1342

    CAS  Google Scholar 

  • Bazai ZA, Achakzai KK (2006) Effect of wastewater from Quetta city on germination and seedling growth of lettuce (Lactuca sativa L.). App Sci J 6(2):380–382

    Google Scholar 

  • Beyer W, Imlay J, Fridovich I (1991) Superoxide dismutases. PNAS 40:221–253

    CAS  Google Scholar 

  • Bhattacharya M, Chaudhuri MA (1994) Effect of lead and cadmium on the biochemical changes in the leaves of terrestrial (Vigna) and aquatic (Hydrilla) plants under solution culture. Indian J Plant Physi 37:99–103

    Google Scholar 

  • Bhattacharjee S (1998) Membrane lipid peroxidation, free radical scavengers and ethylene evolution in Amaranthus as affected by lead and cadmium. Biol Plant 40:131–135

    Google Scholar 

  • Boddi B, Evertson I, Ryberg M, Sundquist C (1996) Protochlorophyllide transformation and chlorophyll accumulation in epicotyl of pea (Pisum sativum). Physiol Plant 96:706–713

    CAS  Google Scholar 

  • Bogs J, Bourboulaux A, Cagnac O, Wachter A, Rausch T, Delrot S (2003) Functional characterization and expression analysis of a glutathione transporter BjGT1 from Brassica juncea: evidence for regulation by heavy metal exposure. Plant cell Environ 26(10):1703–1711

    CAS  Google Scholar 

  • Boussama N, Ouariti O, Suzuki A, Ghorbal MH (1999) Cadmium stress on nitrogen assimilation. J Plant Physiol 155(3):310–317

    CAS  Google Scholar 

  • Bowler C, Van Camp W, Van Montagu M, Inze D (1994) Superoxide dismutase in plants. Crit Rev Plant Sci 13:199–218

    CAS  Google Scholar 

  • Breckle SW (1991) Growth under stress: heavy metals. In: Waiser Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker, New York, pp 351–373

    Google Scholar 

  • Brunet J, Varrault G, Zuily-Fodil Y, Repellin A (2009) Accumulation of lead in the roots of grass pea (Lathyrus sativus L.) plants triggers systemic variation in gene expression in the shoots. Chemosphere 77(8):113–1120

    Google Scholar 

  • Buchanan-Wollaston V (1997) The molecular biology of leaf senescence. J Exp Bot 48(307):181–199

    Google Scholar 

  • Buddh K, Singh RP (2012) Cadmium tolerance and its phytoremediation by two oil yielding plants Ricinus communis (L.) and Brassica juncea (L.) from the contaminated soil. Int J Phytorem 14(8):772–785

    Google Scholar 

  • Buettner GR, Jurkiewiez BA (1996) Chemistry and biochemistry of ascorbic acid. In: Cadenas E, Packer L (eds) Handbook of antioxidants. Marcel Dekker, New York, pp 91–115

    Google Scholar 

  • Carlson RW, Bazzaz FA (1977) Growth reduction in American sycamore (Plantanus occidantalis) caused by Pb-Cd interaction. Environ Pollut 12:243–253

    CAS  Google Scholar 

  • Cenkci S, Cigerci IH, Yildiz M, Özay C, Bozdag A, Terzi H (2010) Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L. Environ Exp Bot 67(3):467–473

    CAS  Google Scholar 

  • Chaoui A, Mazhaudi S, Ghorbal MH, Ferjoni EE (1997) Effect of cadmium and zinc interaction on hydroponically grown bean (Phaseolus vulgaris). Plant Sci 126:21–28

    CAS  Google Scholar 

  • Chatterjee J, Chatterjee C (2000) Phototoxicity of cobalt chromium and copper in cauliflower. Environ Pollut 109:69–74

    CAS  PubMed  Google Scholar 

  • Clijsters H, Van-Assche F (1985) Inhibition of photosynthesis by heavy metals. Photosynth Res 7:31–40

    CAS  PubMed  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cobbett CS, May MJ, Howden R, Rolls B (1998) The glutathione-deficient, cadmium sensitive mutant, cad 2-1 of Arabidopsis thaliana is deficient in γ-glutamyl cysteine synthetase. Plant J 16:73–78

    CAS  PubMed  Google Scholar 

  • Collins RA (2001) Carotenoids and genomic stability. Mutat Res 2081:21–28

    Google Scholar 

  • Corpas JF, Gomez M, Hernendez JA, del Rio LA (1993) Metabolism of activated oxygen in peroxisomes from Pisum sativum cultivars with different sensitivity to sodium chloride. Plant Physiol 144:160–165

    Google Scholar 

  • Costa G, Morel JL (1994) Water relations, gas exchange and amino acid content in cadmium treated lettuce. Plant Physiol Biochem 32 (4):561–570

    CAS  Google Scholar 

  • Dahlin C, Aronsson H, Almkvist J, Sundquist C (2000) Protochlorophyllide-independent import of two NADPH: pchlide oxidoreductase proteins (PORA and PORB) from barley into isolated plastids. Physiol Plant 109:298–303

    CAS  Google Scholar 

  • Dalurzo HC, Sandalio LM, Gomez M, del Rio LA (1997) Cadmium infiltration of detached pea leaves: effect on its activated oxygen metabolism. Phyton- Annalea Rei Botanicae 37:59–64

    CAS  Google Scholar 

  • Demmig-Adams B, Adams W III (1992) Photoprotection and other response of plants to high light stress. Ann Rev Plant Physiol Plant Mol Biol 43:599–626

    CAS  Google Scholar 

  • Doganlar ZB, Cakmak S, Yanik T (2012) Metal uptake and physiological changes in Lemna gibba exposed to manganese and nickel. Int J Biol 4(3):148–157

    Google Scholar 

  • Dudka S, Piotrowska M, Terlak H (1996) Transfer of cadmium, lead, and zinc from industrially contaminated soil to crop plant: a field study. Environ Pollut 94:181–188

    CAS  PubMed  Google Scholar 

  • Elenkov I, Stefanv K, Dimitrova Konaklieve S, Popov S (1996) Effect of salinity on lipid composition of Cladophora vagabunda. Phytochemistry 42(1):39–44

    CAS  Google Scholar 

  • Erdei S, Hegadus A, Hauptmann G, Szalai J, Horvath G (2002) Heavy metal induced physiological changes in the antioxidant response system. Proceedings of the 7th Hungarian Congress on Plant Physiol, pp 89–90

    Google Scholar 

  • Erdei L, Mezôsi G, Mécs I, Vass I, Fôglein F, Bulik L (2005) Phytoremediation as a program for decontamination of heavy-metal polluted environment. Acta Biol Szeged 49(1–2):75–76

    Google Scholar 

  • Fariduddin Q, Yusuf M, Hayat S, Ahmad A (2009) Effect of 28-homobrassinolide on antioxidant capacity and photosynthesis in Brassica juncea plants exposed to different levels of copper. Environ Exp Bot 66:418–424

    Google Scholar 

  • Farid S (2006) Status of cadmium concentration in soil and vegetable irrigated with city effluents. China J App Env Biol 12(3):414–419

    CAS  Google Scholar 

  • Farwell AJ, Vasely S, Nero V, Rodriguez H, Shah S, Dixon DG, Glick BR (2006) The use of transgenic canola (Brassica napus) and plant growth-promoting bacteria to enhance plant biomass at a nickel-contaminated field site. Plant Soil 288:309–318

    CAS  Google Scholar 

  • Fodor E, Szabo-Nagy A, Erdei L (1995) The effect of cadmium on the fluidity and H + ATPase activity of plasma membrane from sunflower and wheat roots. J Plant Physiol 147(1):87–92

    CAS  Google Scholar 

  • Fodor F, Sarvari E, Lang F, Sizigeti Z (1998) Effect of Pb and Cd on cucumber depending on the Fe-complex in the culture solution. J Plant Physiol 148:434–439

    Google Scholar 

  • Forlani G, Mangiagalli A, Pinter C, Nielson E (2000) Expression of δ pyrroline 5′carboxylate dehydrogenase and proline/arginine homeostasis in solanum tuberosum. Physiol Plant 110:22–27

    CAS  Google Scholar 

  • Forti G, Elli G (1995) The function of ascorbic acid in photosynthetic phosphorylation. Plant Physiol 109:1207–1211

    CAS  PubMed Central  PubMed  Google Scholar 

  • Foyer CH, Harbinson J (1994) Oxygen metabolism and the regulation of photosynthetic electron transport. In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stress and amelioration of defense systems in plants. CRC Press, London, pp 2–42

    Google Scholar 

  • Foyer CH, Rowell J, Walker D (1983) Measurements of ascorbate content of spinach leaf protoplasts and chloroplasts during illumination. Planta 157:239–244

    CAS  PubMed  Google Scholar 

  • Foyer CH, Lopez Delgado H, Dat JF, Scott IM (1997) Hydrogen peroxide and glutathione associated mechanism of acclamatory stress tolerance and signaling. Physiol Plant 100:241–254

    CAS  Google Scholar 

  • Frostegard A, Tunlid A, Baath E (1993) Phospholipid fatty acid composition, biomass and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl Environ Microbiol 59(11):3605–3617

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gallego SM, Benavides MP, Tomaro ML (1996) Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress. Plant Sci 121:151–159

    CAS  Google Scholar 

  • Gallego SM, Benavides MP, Tomaro ML (1999) Effect of cadmium ions on antioxidant defense system in sunflower cotyledons. Biol Plant 42:49–55

    Google Scholar 

  • García Miragaya J, Page A (1978) Sorption of trace quantities of cadmium by soils with different chemical and mineralogical composition. Water Air Soil Pollu 9:289–299

    Google Scholar 

  • Geiken B, Masojid EJ, Rizzuto M, Pompili ML, Giardi MT (1998) Incorporation of [S35] methionene in higher plants reveals that stimulation of the D1 reaction center protein turnover accompanied tolerance to heavy stress. Plant Cell Environ 21:1265–1273

    CAS  Google Scholar 

  • Gille G, Singler K (1995) Oxidative stress in living cells. Folia Microbiol 2:131–152

    Google Scholar 

  • Gisbert C, Ros R, Deharo A, Walker DJ, Pilarbernal M, Serrano R, Navarro-Avino J (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Res Commun 303:440–445

    CAS  PubMed  Google Scholar 

  • Godbold DL, Huttermann A (1985) Effect of zinc, cadmium and mercury on root elongation of P. abies (Karst) seedlings and the significance to forest dieback. Environ Pollut 38:375–381

    CAS  Google Scholar 

  • Gopal R, Rizvi AH (2008) Excess lead alters growth, metabolism and translocation of certain nutrients in radish. Chemosphere 70:1539–1544

    CAS  PubMed  Google Scholar 

  • Greger M, Lindberg S (1987) Effects of cadmium and EDTA on young sugarbeat (Beta vulgaris) II Net uptake and distribution of Mg2+, Ca2+ and Fe2+/ Fe3+. Physiol Plant 69:81–86

    Google Scholar 

  • Greger M, Ogrer E (1991) Direct and indirect effects of cadmium on photosynthesis in sugerbeet (Beta vulgaris). Physiol Plant 83:129–135

    Google Scholar 

  • Grover P, Rekhadevi P, Danadevi K, Vuyyuri S, Mahboob M, Rahman M (2010) Genotoxicity evaluation in workers occupationally exposed to lead. Int J Hyg Environ Health 213(2):99–106

    CAS  PubMed  Google Scholar 

  • Gupta D, Nicoloso F, Schetinger M, Rossato L, Pereira L, Castro G, Srivastava S, Tripathi R (2009) Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. J Hazard Mater 172(1):479–484

    CAS  PubMed  Google Scholar 

  • Gupta D, Huang H, Yang X, Razafindrabe B, Inouhe M (2010) The detoxification of lead in Sedum alfredii H. is not related to phytochelatins but the glutathione. J Hazard Mater 177(1–3):437–444

    CAS  PubMed  Google Scholar 

  • Ha SB, Smith AP, Howden R, Dieetrich WH, Bugg S, O’Conell MJ, Goldsbrough PB (1999) Phytochelatin synthase genes from Arabidopsis and the yeast (Schizosaccharomyces pombe). Plant Cell 11:1153–1164

    Google Scholar 

  • Hagemeyer J, Breckle S (2002) Trace element stress in roots. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half, 3rd ed. Marcel Dekker, Inc., New York, pp 763–785

    Google Scholar 

  • Hall DO, Rao KK (1999) Photosynthesis, 6th Edition. Cambridge University Press, UK

    Google Scholar 

  • Hameed A, Qadri TN, Mahmooduzzafar Siddiqi TO (2012) Plant tolerance and fatty acid Profile in responses to heavy metals. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer, New York, pp 369–386

    Google Scholar 

  • Hasan S, Aiman Q, Fariduddin B, Hayat S, Ahmad A (2009) A cadmium toxicity and tolerance in plants. J Environ Biol 30:165–174

    CAS  PubMed  Google Scholar 

  • Hasanuzzaman M (2008) Siliqua and seed development in rapeseed (Brassica campestris L.) as affected by different irrigation levels and row spacings. Agric Conspectus Scientificus 73(4):221–226

    Google Scholar 

  • Hasanuzzaman M, Fujita M (2012) Heavy metals in the environment: current status, toxic effects on plants and possible phytoremediation. In: Anjum NA, Pereira MA, Ahmad I, Duarte AC, Umar S, Khan NA (eds) Phytotechnologies: remediation of environmental contaminants. Taylor and Francis/CRC Press, Boca Raton, pp 7–73

    Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M (2013) Adverse effects of cadmium on plants and possible mitigation of Cd-induced damages. In: Hasanuzzaman M, Fujita M (eds) Cadmium: characteristics, sources of exposure, health and environmental effects. Nova Science, New York, pp 1–48

    Google Scholar 

  • Hasegawa I, Terada E, Sunairi M, Wakita H, Shinmachi F, Noguchi A, Nakajima M, Yazaki J (1997) Genetic improvement of heavy metal tolerance in plants by transfer of the yeast metallothionein gene (CUP1). Plant Soil 196:277–281

    CAS  Google Scholar 

  • Hasset JJ, Miller JE, Koeppe DDE (1976) Interaction of Pb and Cd on maize root growth and uptake of Pb and Cd by roots. Environ Pollut 11:297–302

    Google Scholar 

  • Haribabu TE, Sudha PN (2011) Effect of heavy metals copper and cadmium exposure on the antioxidant properties of the plant Brassica juncea. Int J Chem Res 1(5):22–33

    Google Scholar 

  • Hattori J, Labba H, Miki BL (1994) Construction and expression of a metallothionein β glucoronidase gene fusion. Genome 37:508–512

    CAS  PubMed  Google Scholar 

  • Haung CY, Bazzaz FA, Vanderhoef LN (1974) The inhibition of soybean metabolism by cadmium and lead. Plant Physiol 54:122–124

    Google Scholar 

  • Haug A, Caldwell CR (1985) Aluminium toxicity in plants: the role of the root plasma membrane and calmodulin. In: John JB, Berlin E, Jackson PC (eds) Frontiers of membrane research in agriculture. Totowa, pp 359–381

    Google Scholar 

  • Hegedus A, Erdei S, Horvath G (2001) Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedlings under cadmium stress. Plant Sci 160:1085–1093

    CAS  PubMed  Google Scholar 

  • Heiss S, Schäfer HJ, Kerwer AH, Rausch T (1999) Cloning S-assimilation genes of Brassica juncea L.: cadmium differentially affects the expression of a putative low affinity sulphate transporter and isoforms of ATP sulphurylase and APS reductase. Plant Mol Biol 39:847–857

    CAS  PubMed  Google Scholar 

  • Heiss S, Wachter A, Bogs J, Cobbett C, Rausch T (2003) Phytochelatin synthase (PCS) protein is induced in Brassica juncea leaves after prolonged Cd exposure. J Exp Bot 54(389):1833–1839

    CAS  PubMed  Google Scholar 

  • Hendry GAF, Baker AJM, Ewart CF (1992) Cadmium tolerance and toxicity: oxygen radical processes and molecular damage in cadmium tolerant and cadmium sensitive clones of Holcus lanatus. Acta Bot Neerl 41:271–281

    CAS  Google Scholar 

  • Hernandez JA, Olmas E, Copras FJ, Sevilla F, del Rio LA (1995) Salt induced oxidative stress in chloroplast of pea plants. Plant Sci 105:151–167

    CAS  Google Scholar 

  • Hirt H, Casari G, Barta A (1989) Cadmium enhanced gene expression in suspension culture cells of tobacco. Planta 179:414–420

    CAS  PubMed  Google Scholar 

  • Holtman WL, Heistek JC, Mattem KA, Bakhuisen R, Douma AC (1994) β-Oxidation of fatty acids is linked to the glyoxylate cycle in the aleurone but not in the embryo of germinating barley. Plant Sci 99:43–53

    Google Scholar 

  • Horvath G, Droppa M, Oraveez A, Raskin VI, Marder JB (1996) Formation of the photosynthetic apparatus during greening and cadmium-poisoning barley leaves. Planta 199:238–243

    CAS  Google Scholar 

  • Howe G, Merchant S (1992) Heavy metal activated synthesis of peptides in Chlamydomonas reinhartii. Plant Physiol 98:127–136

    CAS  PubMed Central  PubMed  Google Scholar 

  • Howlett NG, Avery SV (1997) Relationship between cadmium sensitivity and degree of plasma membrane fatty acid unsaturation in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 48(4):539–546

    CAS  PubMed  Google Scholar 

  • Islam E, Yang X, Li T, Liu D, Jin X, Meng F (2007) Effect of Pb toxicity on root morphology, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. J Hazard Mater 147(3):806–816

    CAS  PubMed  Google Scholar 

  • Islam E, Liu D, Li T, Yang X, Jin X, Mahmood Q, Tian S, Li J (2008) Effect of Pb toxicity on leaf growth, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. J Hazard Mater 154(1-3):914–926

    CAS  PubMed  Google Scholar 

  • Jiang W, Liu D (2010) Pb-induced cellular defense system in the root meristematic cells of Allium sativum L. BMC Plant Biol 10:40

    PubMed Central  PubMed  Google Scholar 

  • John R, Ahmad P, Gadgil K, Sharma S (2009) Heavy metal toxicity: effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L. Int J Plant Prod 3(3):65–76

    CAS  Google Scholar 

  • Jozefizak M, Remans T, Vangronsveld J, Cuypers A (2012) Glutathione is a key player in metal induced oxidative stress defenses. Int J Mol Sci 13:3145–3175

    Google Scholar 

  • Kagi JHR (1991) Overview of metallothioneins. Method Enzymol 205:613–626

    CAS  Google Scholar 

  • Kahle H (1993) Response of roots of trees to heavy metals. Environ Expt Bot 33:99–119

    Google Scholar 

  • Kakar SUR, Wahid A, Tareen RB, Kakar SA, Tariq M, Kayani SA (2010) Impact of municipal wastewater of Quetta city on biomass, physiology and yield of canola (B. napus L.). Pak J Bot 42(1):317–328

    Google Scholar 

  • Kang W, Shamsi IH, Zhang GP (2007) Synergistic interaction of NaCl and Cd on growth and photosynthetic parameters in soybean genotypes differing in salinity tolerance. J Zhejiang Univ Sci B8 (4):266–271

    Google Scholar 

  • Kang MS, Kim SM, Park SW, Lee JJ, Yoo KH (2007) Assessment of reclaimed wastewater irrigation impact on water quality, soil and rice cultivation in paddy fields. J Environ Sci Health 42(4):439–445

    CAS  Google Scholar 

  • Karami A, Zulkifili HJS (2010) Phytoremediation of heavy metals with several efficiency enhancer methods. Afr J Biotechnol 9(25):3689–3698

    CAS  Google Scholar 

  • Kärenlampi S, Schat H, Vangronsveld J, Verkleij JAC, Lelia D, Mergeay M, Tervahauta AI (2000) Genetic engineering in the improvement of plants for phytoremediation of metals from polluted soils. Environ Pollut 107:225–231

    PubMed  Google Scholar 

  • Katare DP, Nabi G, Azooz MM, Aeri V, Ahmad P (2012) Biochemical modifications and enhancement of psoralen content in salt-stressed seedlings of Psoralea corylifolia Linn. J Funct Environ Bot 2(1):65–74

    Google Scholar 

  • Kavi Kishor PB, Sangam S, Amrutha RN, Sri Laxmi P, Naidu KR, Rao KRSS, Rao S, Reddy KJ, Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438

    Google Scholar 

  • Kawashima I, Inokuchi Y, China M, Kimure M, Shimizu N (1991) Isolation of a gene for a metallothionein like protein from soybean. Plant Cell Physiol 32(6):913–916

    CAS  Google Scholar 

  • Kawashima I, Kennedy TO, China M, Lane BG (1992) Wheat Ec metallothionein genes: like mammalian Zn2+ are conspicuously experessed during embryogenesis. Eur J Biochem 209:971–976

    CAS  PubMed  Google Scholar 

  • Khan S, Khan NN (1983) Influence of lead and cadmium on growth and nutrition concentration of tomato (Lycopersicon esculentum) and egg plant (Solanum melongena). Plant Soil 74:387–394

    CAS  Google Scholar 

  • Khan MA, Shaukat SS, Khan MA (2009) Growth, yield and nutrient content of sunflower (Helianthus annus L.) using treated wastewater from waste stabilization ponds. Pak J Bot 41(3):1391–1399

    CAS  Google Scholar 

  • Kishor PBK, Hong Z, Miao GH, Hu CAA, Verma DPS, Hong ZL, Miao GH (1995) Overexpression of DELTA-1 pyroline 5ʹ-carboxylate synthetase increases proline production and confers osmo-tolerance to transgenic plant. Plant Physiol 108:1387–1394

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klein BP, Grossman S, King D, Cohen BS, Pinsky A (1984) Pigment bleaching, carbonyl production and antioxidant effects during anaerobic lipoxygenase reaction. Biochem Biophy Acta 793:72–79

    CAS  Google Scholar 

  • Krupa Z, Baszynski T (1989) Acyl lipid composition of thylakoid membranes of cadmium treated tomato plants. Acta Physiol Plant 11(2):111–116

    CAS  Google Scholar 

  • Krupa Z, Seidlecka A, Maksymiec W, Baszynski T (1993a) In vivo response of photosynthetic apparatus of Phaseolus vulgaris to nickle toxicity. J Plant Physiol 142:664–668

    CAS  Google Scholar 

  • Krzesłowska M, Lenartowska M, Samardakiewicz S, Bilski H, Wo´zny A (2010) Lead deposited in the cell wall of Funaria hygrometrica protonemata is not stable-A remobilization can occur. Environ Pollut 158(1):325–338

    Google Scholar 

  • Kubo A, Saji H, Tannaka K, Kondo N (1995) Expression of Arabidopsis cytosolic ascorbic peroxidase gene in response to ozone or SO2. Plant Mol Biol 29:479–486

    CAS  PubMed  Google Scholar 

  • Kumar D, Yusuf MA, Singh P, Sardar M, Sarin NB (2013) Modulation of antioxidant machinery in α-tocopherol-enriched transgenic Brassica juncea plants tolerant to abiotic stress conditions. Protoplasma 250(5):1079–1089

    CAS  PubMed  Google Scholar 

  • Lane B, Kajoika R, Kennedy T (1987) The wheat germ Ec protein is a zinc containing metallothioneine. Biochem Cell Biol 65:1001–1005

    CAS  Google Scholar 

  • Larsson EH, Bornman JF, Aspo H (1998) Influence of UV-B radiation and Cd2+ on chlorophyll fluorescence, growth and nutrient content in Brassica napus. J Exp Bot 49:1031–1039

    CAS  Google Scholar 

  • Lee S, Leustek T (1998) APS kinase from Arabidopsis thaliana: genomic organisation, expression and kinetic analysis of the recombinant enzyme. Biochem Biophys Res Commun 247:171–175

    CAS  PubMed  Google Scholar 

  • Lefebvre DD, Miki BL, Laliberk JF (1987) Mammalian metallothionein functions in plants. Biotechnology 5:1053–1058

    CAS  Google Scholar 

  • Leustek T, Satio K (1999) Sulphate transport and assimilation in plants. Plant Physiol 120:637–643

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leustek T, Martin MN, Bick JA, Davies JP (2000) Pathways and regulations of sulphur metabolism revealed through molecular and genetic studies. Annu Rev Plant Physiol Plant Mol Biol 51:141–165

    CAS  PubMed  Google Scholar 

  • Li H, Luo H (2012) Antioxidant enzyme activity and gene expression in response to lead stress in perennial ryegrass. J Amer Soc Hort Sci 137(2):80–85

    CAS  Google Scholar 

  • Liu D, Jiang W, Gao X (2004) Effects of cadmium on root growth, cell division and nucleoli in root tips of garlic. Physiol Plant 47:79–83

    Google Scholar 

  • Liu D, Li T, Jin X, Yang X, Islam E, Mahmood Q (2008) Lead induced changes in the growth and antioxidant metabolism of the lead accumulating and non-accumulating ecotypes of Sedum alfredii. J Integr Plant Biol 50(2):129–140

    CAS  PubMed  Google Scholar 

  • Lozano Rodriguez E, Hernandez LE, Boney P, Carpena Ruiz RO (1997) Distribution of cadmium in shoot and root tissues of maize and pea plants: physiological disturbances. J Exp Bot 48 (306):123–128

    CAS  Google Scholar 

  • Luna CM, Gonzalez CA, Trippi VS (1994) Oxidative damage caused by an excess of Cu in oat leaves. Plant Cell Physiol 35:11–15

    CAS  Google Scholar 

  • Maiti IB, Wagner GJ, Yeargan R, Hunt AG (1989) Inheritance and expression of the mouse metallothionein gene in tobacco. Plant Physiol 91:1020–1024

    CAS  PubMed Central  PubMed  Google Scholar 

  • Malan Hl FJM (1998) Effect of the metal pollutants cadmium and nickel on soybean seed development. Seed Sci Res 8:445–453

    Google Scholar 

  • Malan C, Greyling MM, Gressel J (1990) Correlation between Cu-Zn, SOD and glutathione reductase and environmental and xenobiotic stress tolerance in maize inbreds. Plant Sci 69:157–166

    CAS  Google Scholar 

  • Masuda T, Ohta H, Shioi Y, Takamiya KI (1996) Light regulation of 5ʹALA synthesis system in Cucumis sativus. Light stimulates activity of glutamyl tRNA reductase during greening. Plant Physiol Biochem 34:11–16

    CAS  Google Scholar 

  • McCord JM, Fridovich I (1969) Superoxide dismutase an enzyme function for erythrocuprein (Hemocuprein). J Biol Chem 244:6049–6055

    CAS  PubMed  Google Scholar 

  • McEven B, Seyyedi M, Younis S, Sundquist C (1996) Formation of short wavelength chlorophyll (ide) after brief irradiation is corrected with the occurrence of protochlorophyll (ide) in dark grown epi-and hypocotyls of bean (Phaseolus vulgaris). Physiol Plant 96:51–58

    Google Scholar 

  • Mehta SK, Gaur JP (1999) Heavy metal induced proline accumulation and its role in ameliorating metal toxicity in Chlorella vulgaris. New Phytol 143:253–259

    CAS  Google Scholar 

  • Mejare M, Bulow L (2001) Metal binding properties and peptides in bioremediation and phytoremediation of heavy metals. Trend Biotechnol 19(2):67–73

    CAS  Google Scholar 

  • Mendoza-Cózatl DG, Butko E, Springer F, Torpey JW, Komives EA, Kehr J, Schroeder JI (2008) Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation. Plant Cell 54(2):249–259

    Google Scholar 

  • Mishra S, Srivastava S, Tripathi R, Kumar R, Seth C, Gupta D (2006) Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere 65(6):1027–1039

    CAS  PubMed  Google Scholar 

  • Misra S, Gedamu L (1989) Heavy metal tolerant transgenic Brassica napus L. and Nicotiania tobaccum L. plants. Theor Appl Genet 78:161–168

    CAS  PubMed  Google Scholar 

  • Mobin M, Khan NA (2007) Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J Plant Physiol 5(3):601–610

    Google Scholar 

  • Mohan BS, Hosetti BB (1997) Potential phytotoxicity of lead and cadmium to Lemna minor L. growth in sewage stabilization ponds. Environ Pollut 98:233–236

    Google Scholar 

  • Mohamed AA, Castagna A, Ranieri A, Sanità di Toppi L (2012) Cadmium tolerance in Brassica juncea roots and shoots is affected by antioxidant status and phytochelatin biosynthesis. Plant Physiol Biochem 57:15–22

    CAS  PubMed  Google Scholar 

  • Morsy AA, Hamid K, Salama A, Kamal HA, Mansour MMF (2012) Effect of heavy metal on plasma membrane lipids and antioxidant enzymes of Zygophyllum species. Eurasia J Biosci 6:1–10

    Google Scholar 

  • Munné-Bosch S, Alegre L (2002) The function of tocopherols and tocotrienols in plants. Crit Rev Plant Sci 21:31–57

    Google Scholar 

  • Muneer S, Qadri TN, Mahmooduzaffar, Siddiqi TO (2011) Cytogenetic and biochemical investigations to study the response of Vigna radiata to cadmium stress. Afr J Plant Sci 5 (3): 183–192

    CAS  Google Scholar 

  • Murphy A, Zho JM, Goldsbrough PB, Taiz L (1997) Purification and immunological identification of metallothioneins 1 and 2 from A.thailiana. Plant Physiol 113:1293–1301

    Google Scholar 

  • Murphy DJ (1994) Designer oil crops-breeding, processing and biotechnology. Verlagsgesells Chaft mbH, Weinheim

    Google Scholar 

  • Nagajyoti PC, Dinakar N, Prasad TN, Suresh C, Damodharam T (2008) Heavy metal toxicity: Industrial effluent effect on groundnut (Arachis hypogea L.) seedlings. J Appl Sci Res 4(1):110–121

    CAS  Google Scholar 

  • Nanba O, Satoh K (1987) Isolation of a photosystem II reaction centre consisting of D1 and D2 polypeptide and cytochrome b 559. Proc Natl Acad Sci U S A 84:109–112

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nandakumar PBA, Shivanna KR, Prakash S (1988) Wide hybridization in Brassica: crossability barriers and studies on the hybrid and synthetic amphidiploid of B. fruticulosa × B. campestris. Sex Plant Reprod 1:234–239

    Google Scholar 

  • Nandi DL, Shemim D (1968) δ Aminolevulinic acid dehydratase of Rhodopsedomonas phaeroides. J Biol Chem 243:1236–1242

    CAS  PubMed  Google Scholar 

  • Nicholson FA, Smith SR, Alloway BJ, Carlton-Smith C, Chambers BJ (2003) An inventory of heavy metals inputs to agricultural soils in England and Wales. Sci Total Environ 311:205–219

    CAS  PubMed  Google Scholar 

  • Nijs D, Kelley PM (1991) Vitamins C and E donate single hydrogen atoms in vivo. FEBS Lett 284:147–151

    Google Scholar 

  • Nikolopoulos D, Manetas Y (1991) Compatible solutes and in vitro stability of sabola sada enzymes: proline incompatibility. Phytochemistry 30:411–413

    CAS  Google Scholar 

  • Nishio JN (2000) Why are higher plants green? Evolution of the higher plant photosynthetic pigment complement. Plant Cell Environ 23:539–548

    CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–79

    Google Scholar 

  • Okamoto OK, Pinto E, Latorie LR, Becharie EJH, Colepicola P (2001) Antioxidant modulation in response to metal induced oxidative stress in algal chloroplasts. Arch Environ Contam Toxicol 40:18–24

    CAS  PubMed  Google Scholar 

  • Oquist G, Hunner NPA (1993) The temperature dependence of the redox-state of QA and the susceptibility of photosynthesis to photoinhibition. Plant Physiol Biochem 31:683–691

    Google Scholar 

  • Ouarti O, Bussama N, Zarrouk M, Cherif A, Ghorbal MH (1997) Cadmium and copper induced changes in tomato membrane lipids. Phytochemistry 45:1343–1350

    Google Scholar 

  • Ouzounidou G, Moustakai M, Eleftheriou EP (1997) Physiological and ultra structural effect of cadmium on wheat (Triticum aestivum L.) leaves. Arch Environ Contam Toxicol 32:154–160

    CAS  PubMed  Google Scholar 

  • Ouzounidou G, Ilias I, Transpoulou H, Karataglis S (1998) Amelioration of copper toxicity by iron on spinach physiology. J Plant Nutr 21:209–221

    Google Scholar 

  • Padh H (1990) Cellular functions of ascorbic acid. Biochem Cell Biol 68:1166–1173

    CAS  PubMed  Google Scholar 

  • Pal R, Rai JP (2010) Phytochelatins: peptides involved in heavy metal detoxification. Appl Biochem Biotech 160(3):945–963

    CAS  Google Scholar 

  • Paleg LG, Douglas TJ, Van Daal A, Keech DB (1981) Proline, betaine and other organic solutes protect enzymes against heat inactivation. Aust J Plant Physiol 8:107–114

    CAS  Google Scholar 

  • Paleg LG, Stewart GR, Bradbeer JW (1984) Proline and glycine betaine influence solvation. Plant Physiol 75:975–978

    Google Scholar 

  • Panda SK, Choudhary S (2005) Chromium stress in plants. Braz J Plant Physiol 17:19–102

    Google Scholar 

  • Parmar P, Dave B, Sudhir A, Panchal K, Subramanian RB (2013) Physiological, biochemical and molecular response of plants against heavy metal stress. Int J Curr Res 5(1):80–89

    CAS  Google Scholar 

  • Patra J, Panda MM (1998) A comparison of biochemical responses to oxidative and metal stress in seedlings of barley Hordeum vulgare L. Environ Pollut 196:99–105

    Google Scholar 

  • Pehlivan E, Özkan AM, Dinç S, Parlayici S (2009) Adsorption of Cu2+ and Pb2+ ion on dolomite powder. J Hazard Mater 167(1-3):1044–1049

    CAS  PubMed  Google Scholar 

  • Peralta JR, Gardea Torresdey JL, Tiemann KJ, Gomes E, Asteaga S, Rascon E, Parsonns JG (2000) Proceedings of the 2000 conference on Hazardous Waste Research, pp 135–140

    Google Scholar 

  • Peško M, Kráľová1 K, Masarovičová E (2011) Phytotoxic effect of some metal ions on selected rapeseed cultivars registered in Slovakia. Proceedings of ECOpole 5(1)

    Google Scholar 

  • Pilon-Smits EAH, Hwang S, Lytle CM, Zhu Y, Tai JC, Bravo RC, Chen Y, Leustek T, Terry N (1999) Overexpression of ATP sulfurylase in Indian mustard leads to increased selenate uptake, reduction and tolerance. Plant Physiol 119:123–132

    Google Scholar 

  • Pilon-Smits EAH, Zhu Y, Sears T, Terry N (2000) Overexpression of glutathione reductase in Brassica juncea: Effects on cadmium accumulation and tolerance. Physiol Plant 110:455–460.

    Google Scholar 

  • Pilon-Smits EAH, Le Duc DL (2009) Phytoremediation of selenium using transgenic plants. Curr Opin Biotechnol 20:207–212

    CAS  PubMed  Google Scholar 

  • Pilon-Smits EAH, Valdez Barillas JR, Van Hoewyk D, Lin ZQ (2010) Phytoremediation of Selenium. In: Plaza G (ed) Trends in bioremediation and phytoremediation. Research Signpost, Kerala, pp 355–372

    Google Scholar 

  • Piotrowska A, Bajguz A, Godlewska-Zylkiewicz B, Czerpak R, Kaminska M (2009) Jasmonic acid as modulator of lead toxicity in aquatic plant Wolffia arrhiza (Lemnaceae). Environ Exp Bot 66(3):507–513

    CAS  Google Scholar 

  • Piqueras A, Olmas E, Martinez -SolanoJR, Hellin E (1999) Cadmium induced oxidative burst in tobacco BY cells, time course, subcellular location and antioxidant response. Free Radic Res 31(Suppl):33–38

    Google Scholar 

  • Pleines S, Marquard R, Friedt W (1987) Recurent selection for modified polyenoic fatty acid composition in rapeseed (Brassica napus L). 7th Rapessed Congress Poznan (Poland), pp 140–145

    Google Scholar 

  • Possingharri JV (1956) The effect of mineral nutrition on the content of free amino acid and amides in tomato plants-A comparison of the effect of deficiencies of copper, zinc, mangnese, iron, and molybdenum. Aust J Biol Sci 9:539–551

    Google Scholar 

  • Pourrut B, Perchet G, Silvestre J, Cecchi M, Guiresse M, Pinelli E (2008) Potential role of NADPH-oxidase in early steps of lead-induced oxidative burst in Vicia faba roots. J Plant Physiol 165(6):571–579

    CAS  PubMed  Google Scholar 

  • Prasad MNV (1995) Cd toxicity and tolerance in vascular plants. Environ Exp Bot 35 (4):525–545

    CAS  Google Scholar 

  • Prasad DDK, Prasad ARK (1987a) Altered δ-aminolevulinic acid (ALA) metabolism by lead and mercury in germinating seedlings of bajra (Pennisetum typhoideum) seedlings. J Plant Physiol 127:241–249

    CAS  Google Scholar 

  • Prasad DDK, Prasad ARK (1987b) Effect of lead and mercury on chlorophyll synthesis in mungbean seedlings. Phytochem 26:881–883

    CAS  Google Scholar 

  • Prasad KVSK, Saradhi PP, Sharmila P (1999) Concerted action of antioxidant enzymes and curtailed growth under zinc toxicity in Brassica juncea. Environ Exp Bot 42:1–10

    CAS  Google Scholar 

  • Prins CN, Hantzis LJ, Quinn CF, Pilon-Smits EAH (2011) Effects of selenium accumulation on reproductive functions in Brassica juncea and Stanleya pinnata. J Exp Bot 62:5233–5239

    Google Scholar 

  • Qadir S (2003) Biochemical response of Brassica juncea (Czern and Coss) genotypes to cadmium stress. PhD Thesis, Jamia Hamdard, New Delhi, India

    Google Scholar 

  • Qadir S, Qureshi MI, Javed S, Abdin MZ (2004) Genotypic variation in phytoremediation potential of Brassica juncea cultivars exposed to Cd stress. Plant Sci 167:1171–1181

    CAS  Google Scholar 

  • Qufei LA, Fashui H (2009) Effects of Pb2+ on the structure and function of photosystem II of Spirodela polyrrhiza. Biol Trace Elem Res 129(1):251–260

    PubMed  Google Scholar 

  • Qureshi M, Abdin MZ, Qadir S, Iqbal M (2007) Lead-induced oxidative stress and metabolic alterations in Cassia angustifolia Vahl. Biol Plant 51(1):121–128

    CAS  Google Scholar 

  • Ralph PJ, Burchertt MD (1998) Photosynthetic response of Halophila ovalis to heavy metal stress. Environ Pollut 103:91–101

    CAS  Google Scholar 

  • Rascio N, Dalla Vecchia D, Ferretti M, Merlo L, Ghisi R (1993) Some effects of cadmium on maize plants. Arch Environ Contam Toxicol 25:244–249

    CAS  Google Scholar 

  • Rasool R, Hameed A, Azooz MM, Rehman M, Siddiqi TO, Ahmad P (2013) Salt stress: causes, types and responses of plants. Ecophysiology and responses of plants under salt stress. Springer, New York, pp 1–24

    Google Scholar 

  • Rauser WE (1990) Phytochelatins. Annu Rev Biochem 59:61–86

    CAS  PubMed  Google Scholar 

  • Rauser WE, Meuwly P (1995) Retention of cadmium in roots of maize seedlings: role of complexation by phytochelatins and related thiol peptides. Plant Physiol 109:195–202

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raziuddin, Farhatullah, Hassan G, Akmal M, Shah SS, Mohammad F, Shafi M, Bakht J, Zhou W (2011) Effects of cadmium and salinity on growth and photosynthesis parameters of Brassica species. Pak J Bot 43(1):333–340

    Google Scholar 

  • Reddy AM, Kumar SG, Jyothsnakumari G, Thimmanaik S, Sudhakar C (2005) Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengal gram (Cicer arietinum L.). Chemosphere 60(1):97–104

    CAS  PubMed  Google Scholar 

  • Rivai IF, Koyama H, Suzuki S (1990) Cadmium content in rice and rice field soils in China, Indonesia and Japan with special reference to soil type and daily intake from rice. Jap J Health Human Ecol 56:168–177

    Google Scholar 

  • Robinson NT, Tommey AM, Luske C, Jackson PJ (1993) Plant metallothioneins. Biochem J 295:1–10

    CAS  PubMed Central  PubMed  Google Scholar 

  • Root RA, Miller RJ, Koeppe DE (1975) Uptake of cadmium-its toxicity and effect on the iron to zinc ratio in hydroponically growth corn. J Plant Quality 4:473–476

    CAS  Google Scholar 

  • Rose RC, Bode AM (1993) Biology of free radical scavengers: an evaluation of ascorbate. FASEB J 7:1135–1142

    CAS  PubMed  Google Scholar 

  • Ruegsegger A, Brunold C (1992) Effect of cadmium on g EC synthesis in maize seedlings. Plant Physiol 99:428–433

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ruegsegger A, Schmutz D, Brunold C (1990) Regulation of glutathione synthesis by cadmium in Pisum sativum L. Plant Physiol 93:1579–1584

    CAS  PubMed Central  PubMed  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    Google Scholar 

  • Sandalio LM, Dalura HC, Gomez M, Romero-Puertas MC, del Rio LA (2001) Cadmium induced changes in the growth and oxidative metabolism of pea plant. J Exp Bot 52 (364):2114–2126

    Google Scholar 

  • Saradhi A, Saradhi PP (1991) Proline accumulation under heavy metal stress. J Plant Physiol 138:554–558

    Google Scholar 

  • Saradhi PP, Alia, Vani B (1993) Inhibition of mitochondrial electron transport is the prime cause behind proline accumulation during mineral deficiency in Oryza sativa. Plant Soil 155/156:465–468

    Google Scholar 

  • Sasa T, Sugahara K (1976) Photoconversion of protochlorophyll to chlorophylla in a mutant of Chlorella regularis. Plant Cell Physiol 17:273–279

    CAS  Google Scholar 

  • Scandalias JG (1993) Oxygen stress and superoxide dismutase. Plant Physiol 101:7–12

    Google Scholar 

  • Schäfer HJ, Haag Kerwer A, Rausch T (1998) cDNA cloning and expression analysis of genes encoding GSH synthesis in roots of heavy metal accumulator Brassica juncea L: evidence or Cd induction of a putative mitochondrial γ GCS isoform. Plant Mol Biol 37:87–97

    PubMed  Google Scholar 

  • Schat H, Sharma SS, Vooijs R (1997) Heavy metal induced accumulation of free proline in metal tolerant and non-tolerant ecotypes of Siline vulgaris. Physiol Plant 101:477–482

    CAS  Google Scholar 

  • Schlegel H, Godbold DI, Hutlerman A (1987) Whole plant aspects of heavy metal induced changes in CO2 uptake and water relations of spruce (Picea abies) seedlings. Physiol Plant 69:265–270

    CAS  Google Scholar 

  • Schutzendubel A, Schwanz P, Teiichmamm T, Gross K, Langerfeld-Heyser R, Goldbold DL, Polle A (2001) Cadmium induced changes in antioxidative systems H2O2 content and differentiation in scots pine roots. Plant Physiol 127:887–898

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sekara A, Poniedzia M, Ciura J, Jêdrszczy E (2005) Cadmium and lead accumulation and distribution in the organs of nine crops: implications for phytoremediation. Polish J Environ Stud 14:509–516

    CAS  Google Scholar 

  • Sengar RS, Gautam M, Sengar RS, Sengar RS, Garg SK, Sengar K, Chaudhary R (2009) Lead stress effects on physiobiochemical activities of higher plants. Rev Environ Contam Toxicol 196:1–21

    Google Scholar 

  • Sepehr FM, Ghorbanli M (2006) Physiological responses of Zea mays seedlings to interactions between cadmium and salinity. J Integr Plant Biol 48(7):807–813

    CAS  Google Scholar 

  • Seth CS, Misra V, Chauhan HS (2012) Accumulation, detoxification and genotoxicity of heavy metals in Indian mustard (Brassica Juncea L.). Int J Phytorem 14(1):1–13

    Google Scholar 

  • Setia RC, Bala R, Setia N, Malik CP (1993) Photosynthetic characteristics of heavy metal treated wheat (T. aestivum L.) plants. J Pant Sci Res 9:47–49

    CAS  Google Scholar 

  • Seyyedi M, Timko MP, Sundguist C (1999) Protochlorophyllide, NADPH- Protochlorophyllide oxidoreductase and chlorophyll formation in the lip1 mutant of pea. Physiol Plant 106:344–354

    CAS  Google Scholar 

  • Sezgin N, Ozcan HK, Demir G, Nemlioglu S, Bayat C (2003) Determination of heavy metal concentrations in street dusts in Istanbul E-5 highway. Environ Int 29:979–985

    Google Scholar 

  • Shafi M, Bakht J, Hassan MJ, Raziuddin M, Zhang G (2009) Effect of cadmium and salinity stresses on growth and antioxidant enzyme activities of wheat (Triticum aestivum L.). Bull Environ Contam Toxicol 82(6):772–776

    CAS  PubMed  Google Scholar 

  • Shafi M, Zhang GP, Bakht J, Khan MA, Islam E, Dawood MK, Raziuddin (2010) Effect of cadmium and salinity stresses on root morphology of wheat. Pak J Bot 42(4):2747–2754

    CAS  Google Scholar 

  • Shafiq M, Iqbal MZ (2005) The toxicity effects of heavy metals on germination and seedling growth of Cassia siamea Lamark. J New Seeds 7:95–105

    Google Scholar 

  • Shah K, Kumar RG, Verma S, Dubey RS (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci 161:1135–1144

    Google Scholar 

  • Shahid M, Pinelli E, Pourrut B, Silvestre J, Dumat C (2011) Lead-induced genotoxicity to Vicia faba L. roots in relation with metal cell uptake and initial speciation. Ecotoxicol Environ Saf 74(1):78–84

    CAS  PubMed  Google Scholar 

  • Shanmugaraj BM, Chandra HM, Srinivasan B, Ramalingam S (2013) Cadmium induced physio-biochemical and molecular response in Brassica juncea. Int J Phytoremed 15(3):206–218

    CAS  Google Scholar 

  • Sharma P, Dubey RS (2005a) Lead toxicity in plants. Braz J Plant Physiol 17(1):35–52

    CAS  Google Scholar 

  • Sharma P, Dubey RS (2005b) Modulation of nitrate reductase activity in rice seedlings under aluminium toxicity and water stress: role of osmolytes as enzyme protectant. J Plant Physiol 162:854–864

    CAS  Google Scholar 

  • Sharma A, Sainger M, Dwivedi S, Srivastava S, Tripathi RD, Singh RP (2010) Genotypic variation in Brassica juncea (L.) Czern. cultivars in growth, nitrate assimilation, antioxidant responses and phytoremediation potential during cadmium stress. J Environ Biol 31(5):773–780

    CAS  Google Scholar 

  • Shaw BP (1995) Effects of mercury and cadmium on the activities of antioxidative enzymes in the seedlings of Phaseolus aureus. Biol Plant 3:587–596

    Google Scholar 

  • Shekhawat K, Rathore SS, Premi OP, Kandpal BK, Chauhan JS (2012) Advances in Agronomic Management of Indian Mustard (Brassica juncea (L.) Czernj. Cosson): An Overview. Int J Agron 2012, Article ID 408284

    Google Scholar 

  • Shiyab S, Chen J, Han FX, Monts DL, Matta FB, Gu M, Su Y (2009) Phytotoxicity of mercury in Indian mustard (Brassica juncea L.). Ecotoxicol Environ Saf 72(2):619–625

    CAS  PubMed  Google Scholar 

  • Singh RP, Dabas S, Chaudhary A, Maheshwari R (1998) Effect of lead on nitrate reductase activity and alleviation of lead toxicity by inorganic salts and 6-benzylaminopurine. Biol Plant 40:399–404

    Google Scholar 

  • Singh R, Tripathi RD, Dwivedi S, Kumar A, Trivedi PK, Chakrabarty D (2010) Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system. Bioresour Technol 101:3025–3032

    CAS  PubMed  Google Scholar 

  • Sinha P, Dube BK, Srivastava P, Chatterjee C (2006) Alteration in uptake and translocation of essential nutrients in cabbage by excess lead. Chemosphere 65:651–656

    CAS  PubMed  Google Scholar 

  • Sinha S, Sinam G, Mishra RK, Mallick S (2010) Metal accumulation, growth, antioxidants and oil yield of Brassica juncea L. exposed to different metals. Ecotoxicol Environ Saf 73(6):1352–1361

    CAS  PubMed  Google Scholar 

  • Skorzynska-Polit E, Baszynski T (1997) Differences in sensitivity in cadmium stressed runner bean plants in relation to their age. Plant Sci 128:11–21

    CAS  Google Scholar 

  • Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28:1057–1060

    CAS  Google Scholar 

  • Smith GC, Brenann E (1984) Response of silver maple seedlings to an acute dose of root applied cadmium. Forest Sci 30:582–586

    Google Scholar 

  • Somashekaraiah SV, Padmaja K, Prasad ARK (1992) Phytotoxicity of cadmium ions on germinating seedlings of mungbean (Phaseolus vulgaris): involvement of lipid peroxidation in chlorophyll degradation. Physiol Plant 85:85–89

    CAS  Google Scholar 

  • Stroinski A, Kozlowska M (1997) Cadmium induced oxidative stress in potato tuber. Acta Soc Bot Pol 66(2):189–195

    CAS  Google Scholar 

  • Suter M, Von Ballmoos P, Kupriva S, Opden Camp R, Schaller J, Kuhlemeier C, Schurmann P, Brunold C (2000) Adenosine 5’phosphosulphosulphate-sulphotransferase and adenosine 5’phosphosulphate reductase are identical enzymes. J Biol Chem 275:930–936

    CAS  PubMed  Google Scholar 

  • Suzuki N, Kasumi K, Sana H (2001) Screening of cadmium responsive genes in Arabidopsis thaliana. Plant Cell Environ 24:1177–1188

    CAS  Google Scholar 

  • Sylwia W, Anna R, Ewa B, Stephan C, Maria AD (2010) The role of subcellular distribution of cadmium and phytochelatins in the generation of distinct phenotypes of AtPCS1- and CePCS3-expressing tobacco. J Plant Physiol 167(12):981–988

    CAS  Google Scholar 

  • Szabados L, Savoure S (2010) Proline: a multifunctional amino acid. Trend Plant Sci 15(2):89–97.

    CAS  Google Scholar 

  • Szollosi R, Varga IS, Erdei L, Mihalik E (2009) Cadmium-induced oxidative stress and antioxidative mechanisms in germinating Indian mustard (Brassica juncea L.) seeds. Ecotoxicol Environ Saf 72(5):1337–1342

    CAS  PubMed  Google Scholar 

  • Tamoutsidis EI, Papadopoulos S, Zotis J, Mavropoulos T (2002) Wet sewage sludge effect on soil properties and element content of leaf and root vegetables. J Plant Nutr 25:1941–1955

    CAS  Google Scholar 

  • Tangahu BV, Abdullah SRS, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng. doi:org/10.1155/2011/939161

    Google Scholar 

  • Theriappan P, Gupta AK, Dasarathan P (2011) Accumulation of proline under salinity and heavy metal stress in cauliflower seedlings. J Appl Sci Environ Manage 15 (2):251–255

    CAS  Google Scholar 

  • Thomas JC, Bohnert HJ (1993) Salt stress perception and plant growth regulators in the halophyte, M. crystallinum. Plant Physiol 103:1299–1304

    CAS  PubMed Central  PubMed  Google Scholar 

  • Touiserkani T, Haddad R (2012) Cd-induced stress and antioxidant response in different B. napus cultivars. J Agri Sci Technol 14:929–937

    CAS  Google Scholar 

  • Tremolieres A, Dubacq JP, Drapier D (1982) Unsaturated fatty acids in maturing seeds of sunflower and rape: regulation by temperature and light intensity. Phytochem 21:41–45

    CAS  Google Scholar 

  • Tukendorf A, Baszynski T (1991) The in vivo effect of cadmium on photochemical activities in chloroplasts of runner bean plants. Acta Physiol Plant 13(1):51–57

    CAS  Google Scholar 

  • Tyler G, Pahlsson AM, Bengtsson G, Baath E, Tranvik L (1989) Heavy metal ecology and terrestrial plants, micro organisms and invertebrates: a review. Water Air Soil Pollut 47:189–215

    CAS  Google Scholar 

  • Tzivelka G, Kaldis A, Hegedus A, Kissimon J, Prombona A, Horvath J, Akoyounoglou A (1999) The effect of Cd on chlorophyll and light harvesting complex II biosynthesis in greening plants. Z Naturforsch 54c:740–745

    Google Scholar 

  • UN (1935) Genomic analysis in Brassica with special reference to the experimental formation of Brassica napus and peculiar mode of fertilization. Japan J Bot 7:389–452

    Google Scholar 

  • USDA (2010) The PLANTS database. National plant data center, Natural resources conservation service, United States department of agriculture. Baton Rouge, LA

    Google Scholar 

  • Vaglio A, Landriscina C (1999) Changes in liver enzyme activity in the teleost Sparus aurata in response to cadmium intoxication. Ecotoxicol Environ Safety 43(1):111–116

    Google Scholar 

  • Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13:195–206

    CAS  Google Scholar 

  • Vassilev V, Tsonev T, Yordanov I (1998) Physiological responses of barley plants (Hordeum vulgare) to cadmium contamination in soil during ontogenesis. Environ Pollut 103:287–293

    CAS  Google Scholar 

  • Vatehova Z, Kollarova K, Zelko I, Richterova-Kucerova D, Bujdos M, Liskova D (2012) Interaction of silicon and cadmium in Brassica juncea and Brassica napus. Biologia 67(3):498–504

    CAS  Google Scholar 

  • Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164:645–655

    CAS  Google Scholar 

  • Vitória AP, Lea PJ, Azevedo RA (2001) Antioxidant enzymes responses to cadmium in radish tissues. Phytochem 57:701–710

    Google Scholar 

  • Voetberg GS, Sharp RE (1991) Growth of the maize primary root at low water potential III. Role of increased proline deposition in osmotic adjustment. Plant Physiol 96:1125–1130

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vogeli-Lange R, Wagner GJ (1990) Subcellular localization of cadmium and cadmiumbinding peptides in tobacco leaves. Plant Physiol 92:1086–1093

    Google Scholar 

  • Warwick SI (1993) Guide to wild germplasm of Brassica and allied crops Part IV: wild species in the tribe Brassicaceae (cruciferae) as sources of agronomic trait. Technical Bulletin 17E-1993. Centre for Land and Biological Resources Research, Agriculture Canada, Ottawa, Ontaria

    Google Scholar 

  • Wensheng S, Chonytu L, Zhiquan Z (1997) Analysis of major constraints on plant colonization at Fankou Pb/Zn mine tailings. Chinese J Appl Ecol 8:314–318

    Google Scholar 

  • Wierzbicka M, Antosiewiez D (1993) How lead can easily enter the food chain. A study of plant roots. Sci Total Environ Suppl Pt (1):423–429

    Google Scholar 

  • Wingate VPM, Lawton MA, Lamb CJ (1988) Glutathione causes a massive and selective induction of plant defence genes. Plant Physiol 87:206–210

    CAS  PubMed Central  PubMed  Google Scholar 

  • Winglse G, Karpinski S (1996) Differential redox regulation by glutathione and glutathione reductase and Cu-Zn SOD gene expression in Pinus sylvestris L. needles. Planta 198:151–157

    Google Scholar 

  • Wuana RA, Okieimen FE (2010) Phytoremediation potential of maize (Zea mays L.): a review. Afr J Gen Agric 6(4):275–287

    Google Scholar 

  • Xiong Z, Zhao F, Li M (2006) Lead toxicity in Brassica pekinensis Rupr: effect on nitrate assimilation and growth. Environ Toxicol 21(2):147–153

    CAS  PubMed  Google Scholar 

  • Yadav S (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76(2):167–179

    CAS  Google Scholar 

  • Yilmaz K, Akinci IE, Akinci S (2009) Effect of lead accumulation on growth and mineral composition of egg plant seedlings (Solanum melongena). New Zealand J Crop Horticul Sci 37:189–199

    CAS  Google Scholar 

  • Young AJ, Britton G (1990) Carotenoids and antioxidative stress. Curr Res Photosyn 4:587–590

    CAS  Google Scholar 

  • Yousuf MA, Kumar D, Rajawanshi R, Strasser RJ, Michael MT, Govindgee, Sarin NB (2010) Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements. Biochim Biophy Acta (BBA)-Bioenergetica 1797(8):1428–1438

    Google Scholar 

  • Zengin FK, Munzuroglu O (2005) Effects of some heavy metals on content of chlorophyll, proline and some antioxidant chemicals in bean (Phaseolus vulgaris L.) seedlings. Acta Biol Cracov Ser Bot 47/2:157–164

    Google Scholar 

  • Zhang F, Li X, Wang C, Shen Z (2000) Effect of Cd on autoxidation of free proline in seedling of mung bean. J Plant Nutr 23 (3):357–368

    CAS  Google Scholar 

  • Zhu LY, Pilon-Smits EAH, Jouanin L, Terry N (1999) Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 119:73–79

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parvaiz Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Qadir, S. et al. (2014). Brassicas: Responses and Tolerance to Heavy Metal Stress. In: Ahmad, P., Wani, M., Azooz, M., Phan Tran, LS. (eds) Improvement of Crops in the Era of Climatic Changes. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8824-8_1

Download citation

Publish with us

Policies and ethics