Skip to main content

Management of Treatment Complications and Supportive Care

  • Chapter
  • First Online:
Multiple Myeloma

Abstract

Multiple myeloma patients usually present with complications related to the proliferation of clonal plasma cells or the toxic effect of monoclonal proteins [1]. Therapy is indicated when complications referred to as the CRAB criteria is present [2, 3]. These include hypercalcemia (C), renal insufficiency (R), anemia (A), and lytic bone lesions or osteoporosis (B), as defined by the myeloma working group [4]. In a study at the Mayo clinic, anemia was the presenting sign in 73% of the patients, lytic bone lesions 66 %, hypercalcemia 13 %, and renal insufficiency 19 % [5]. Although the definitive therapy for multiple myeloma is directed at the plasma cell malignancy, appropriate immediate intervention for these complications is essentially for the long-term outcome of these patients. The major cause of death in multiple myeloma patients is infection and renal failure and failure to reverse acute renal failure will significantly impact long-term survival [6]. Failure also to recognize and appropriately treat pathologic bone fractures and cord compression will have significant effect on quality of life, even with effective treatment of the multiple myeloma. The current armamentarium of drugs for the management of multiple myeloma is extensive and these have changed significantly over the last decade. The traditional agents such as alkylators, anthracyclines, and platinum [7–10] have given way to immunomodulatory drugs (Thalidomide, Lenalidomide, Pomalidomide) and the proteosome inhibitors Bortezomib and Carfilzomib [11–20]. In addition to the primary complications of multiple myeloma, all these drugs also do come with their own peculiar side effects which will have to be effectively monitored and managed during their use. Multiple myeloma patients are leaving longer and therefore their quality of life as they live with this disease should be optimized by effectively preventing, reducing, and managing complications associated with this disease [21]. This chapter will review complications associated with multiple myeloma and its management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kyle RA, et al. Clinical course and prognosis of smoldering (asymptomatic) multiple myeloma. N Engl J Med. 2007;356(25):2582–90.

    PubMed  CAS  Google Scholar 

  2. Blade J, Rosinol L. Complications of multiple myeloma. Hematol Oncol Clin North Am. 2007;21(6):1231–46.

    PubMed  Google Scholar 

  3. Conte LG, et al. Clinical features and survival of Chilean patients with multiple myeloma. Rev Med Chil. 2007;135(9):1111–7.

    Google Scholar 

  4. International Myeloma Working Group. Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: a report of the International Myeloma Working Group. Br J Haematol. 2003;121(5):749–57.

    Google Scholar 

  5. Kyle RA, et al. Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin Proc. 2003;78(1):21–33.

    PubMed  Google Scholar 

  6. Augustson BM, et al. Early mortality after diagnosis of multiple myeloma: analysis of patients entered onto the United kingdom Medical Research Council trials between 1980 and 2002—Medical Research Council Adult Leukaemia Working Party. J Clin Oncol. 2005;23(36):9219–26.

    PubMed  Google Scholar 

  7. Barlogie B, Smith L, Alexanian R. Effective treatment of advanced multiple myeloma refractory to alkylating agents. N Engl J Med. 1984;310(21):1353–6.

    PubMed  CAS  Google Scholar 

  8. Alexanian R, Barlogie B, Tucker S. VAD-based regimens as primary treatment for multiple myeloma. Am J Hematol. 1990;33(2):86–9.

    PubMed  CAS  Google Scholar 

  9. Dimopoulos MA, Kastritis E. Is there still place for VAD as primary treatment for patients with multiple myeloma who are candidates for high-dose therapy? Leuk Lymphoma. 2006;47(11):2271–2.

    PubMed  CAS  Google Scholar 

  10. Kyle RA, Rajkumar SV. Treatment of multiple myeloma: a comprehensive review. Clin Lymphoma Myeloma. 2009;9(4):278–88.

    PubMed  CAS  Google Scholar 

  11. Rajkumar SV, et al. Phase III clinical trial of thalidomide plus dexamethasone compared with dexamethasone alone in newly diagnosed multiple myeloma: a clinical trial coordinated by the Eastern Cooperative Oncology Group. J Clin Oncol. 2006;24(3):431–6.

    PubMed  CAS  Google Scholar 

  12. Rajkumar SV, et al. Lenalidomide plus high-dose dexamethasone versus lenalidomide plus low-dose dexamethasone as initial therapy for newly diagnosed multiple myeloma: an open-label randomised controlled trial. Lancet Oncol. 2010;11(1):29–37.

    PubMed  CAS  Google Scholar 

  13. Richardson PG, et al. Extended follow-up of a phase 3 trial in relapsed multiple myeloma: final time-to-event results of the APEX trial. Blood. 2007;110(10): 3557–60.

    PubMed  CAS  Google Scholar 

  14. Harousseau JL, et al. Bortezomib plus dexamethasone as induction treatment prior to autologous stem cell transplantation in patients with newly diagnosed multiple myeloma: results of an IFM phase II study. Haematologica. 2006;91(11):1498–505.

    PubMed  CAS  Google Scholar 

  15. Leleu X, et al. Pomalidomide plus low-dose dexamethasone is active and well tolerated in bortezomib and lenalidomide-refractory multiple myeloma: Intergroupe Francophone du Myelome 2009-02. Blood. 2013;121(11):1968–75.

    PubMed  CAS  Google Scholar 

  16. Lacy MQ, et al. Pomalidomide (CC4047) plus low-dose dexamethasone as therapy for relapsed multiple myeloma. J Clin Oncol. 2009;27(30):5008–14.

    PubMed  CAS  Google Scholar 

  17. Lacy MQ, et al. Pomalidomide (CC4047) plus low dose dexamethasone (Pom/dex) is active and well tolerated in lenalidomide refractory multiple myeloma (MM). Leukemia. 2010;24(11):1934–9.

    PubMed  CAS  Google Scholar 

  18. Lacy MQ, et al. Pomalidomide plus low-dose dexamethasone in myeloma refractory to both bortezomib and lenalidomide: comparison of 2 dosing strategies in dual-refractory disease. Blood. 2011; 118(11):2970–5.

    PubMed  CAS  Google Scholar 

  19. Siegel DS, et al. A phase 2 study of single-agent carfilzomib (PX-171-003-A1) in patients with relapsed and refractory multiple myeloma. Blood. 2012;120(14):2817–25.

    PubMed  CAS  Google Scholar 

  20. Vij R, et al. An open-label, single-arm, phase 2 (PX-171-004) study of single-agent carfilzomib in bortezomib-naive patients with relapsed and/or refractory multiple myeloma. Blood. 2012;119(24): 5661–70.

    PubMed  Google Scholar 

  21. Kumar SK, et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood. 2008;111(5):2516–20.

    PubMed  CAS  Google Scholar 

  22. Roodman GD. Mechanisms of bone metastasis. N Engl J Med. 2004;350(16):1655–64.

    PubMed  CAS  Google Scholar 

  23. Castellano D, et al. The role of RANK-ligand inhibition in cancer: the story of denosumab. Oncologist. 2011;16(2):136–45.

    PubMed  CAS  Google Scholar 

  24. Elliott GT, McKenzie MW. Treatment of hypercalcemia. Drug Intell Clin Pharm. 1983;17(1):12–22.

    PubMed  CAS  Google Scholar 

  25. Singer FR, et al. Treatment of hypercalcemia of malignancy with intravenous etidronate. A controlled, multicenter study. The Hypercalcemia Study Group. Arch Intern Med. 1991;151(3):471–6.

    PubMed  CAS  Google Scholar 

  26. Davenport A, Goel S, Mackenzie JC. Treatment of hypercalcaemia with pamidronate in patients with end stage renal failure. Scand J Urol Nephrol. 1993;27(4):447–51.

    PubMed  CAS  Google Scholar 

  27. Machado CE, Flombaum CD. Safety of pamidronate in patients with renal failure and hypercalcemia. Clin Nephrol. 1996;45(3):175–9.

    PubMed  CAS  Google Scholar 

  28. Gucalp R, et al. Treatment of cancer-associated hypercalcemia. Double-blind comparison of rapid and slow intravenous infusion regimens of pamidronate disodium and saline alone. Arch Intern Med. 1994;154(17):1935–44.

    PubMed  CAS  Google Scholar 

  29. Nussbaum SR, et al. Single-dose intravenous therapy with pamidronate for the treatment of hypercalcemia of malignancy: comparison of 30-, 60-, and 90-mg dosages. Am J Med. 1993;95(3):297–304.

    PubMed  CAS  Google Scholar 

  30. Major PP, Coleman RE. Zoledronic acid in the treatment of hypercalcemia of malignancy: results of the international clinical development program. Semin Oncol. 2001;28(2 Suppl 6):17–24.

    PubMed  CAS  Google Scholar 

  31. Sekine M, Takami H. Combination of calcitonin and pamidronate for emergency treatment of malignant hypercalcemia. Oncol Rep. 1998;5(1):197–9.

    PubMed  CAS  Google Scholar 

  32. Binstock ML, Mundy GR. Effect of calcitonin and glutocorticoids in combination on the hypercalcemia of malignancy. Ann Intern Med. 1980;93(2): 269–72.

    PubMed  CAS  Google Scholar 

  33. Wisneski LA, et al. Salmon calcitonin in hypercalcemia. Clin Pharmacol Ther. 1978;24(2):219–22.

    PubMed  CAS  Google Scholar 

  34. Boikos SA, Hammers HJ. Denosumab for the treatment of bisphosphonate-refractory hypercalcemia. J Clin Oncol. 2012;30(29):e299.

    PubMed  Google Scholar 

  35. Bech A, de Boer H. Denosumab for tumor-induced hypercalcemia complicated by renal failure. Ann Intern Med. 2012;156(12):906–7.

    PubMed  Google Scholar 

  36. Body JJ, et al. Effects of denosumab in patients with bone metastases with and without previous bisphosphonate exposure. J Bone Miner Res. 2010;25(3):440–6.

    PubMed  CAS  Google Scholar 

  37. Abildgaard N, et al. Biochemical markers of bone metabolism reflect osteoclastic and osteoblastic activity in multiple myeloma. Eur J Haematol. 2000;64(2):121–9.

    PubMed  CAS  Google Scholar 

  38. Carter A, et al. The role of interleukin-1 and tumour necrosis factor-alpha in human multiple myeloma. Br J Haematol. 1990;74(4):424–31.

    PubMed  CAS  Google Scholar 

  39. Merico F, et al. Cytokines involved in the progression of multiple myeloma. Clin Exp Immunol. 1993;92(1):27–31.

    PubMed  CAS  Google Scholar 

  40. Walker R, et al. Magnetic resonance imaging in multiple myeloma: diagnostic and clinical implications. J Clin Oncol. 2007;25(9):1121–8.

    PubMed  Google Scholar 

  41. Waheed S, et al. Standard and novel imaging methods for multiple myeloma: correlates with prognostic laboratory variables including gene expression profiling data. Haematologica. 2013;98(1):71–8.

    PubMed  CAS  Google Scholar 

  42. Bartel TB, et al. F18-fluorodeoxyglucose positron emission tomography in the context of other imaging techniques and prognostic factors in multiple myeloma. Blood. 2009;114(10):2068–76.

    PubMed  CAS  Google Scholar 

  43. Yaneva MP, Goranova-Marinova V, Goranov S. Palliative radiotherapy in patients with multiple myeloma. J BUON. 2006;11(1):43–8.

    PubMed  CAS  Google Scholar 

  44. Adamietz IA, et al. Palliative radiotherapy in plasma cell myeloma. Radiother Oncol. 1991;20(2):111–6.

    PubMed  CAS  Google Scholar 

  45. Leigh BR, et al. Radiation therapy for the palliation of multiple myeloma. Int J Radiat Oncol Biol Phys. 1993;25(5):801–4.

    PubMed  CAS  Google Scholar 

  46. Mill WB, Griffith R. The role of radiation therapy in the management of plasma cell tumors. Cancer. 1980;45(4):647–52.

    PubMed  CAS  Google Scholar 

  47. Saliou G, et al. Percutaneous vertebroplasty for pain management in malignant fractures of the spine with epidural involvement. Radiology. 2010;254(3):882–90.

    PubMed  Google Scholar 

  48. Lim BS, Chang UK, Youn SM. Clinical outcomes after percutaneous vertebroplasty for pathologic compression fractures in osteolytic metastatic spinal disease. J Korean Neurosurg Soc. 2009;45(6):369–74.

    PubMed  Google Scholar 

  49. Bartolozzi B, et al. Percutaneous vertebroplasty and kyphoplasty in patients with multiple myeloma. Eur J Haematol. 2006;76(2):180–1.

    PubMed  Google Scholar 

  50. Diamond TH, et al. Percutaneous vertebroplasty for acute vertebral body fracture and deformity in multiple myeloma: a short report. Br J Haematol. 2004;124(4):485–7.

    PubMed  Google Scholar 

  51. Voormolen MH, et al. Percutaneous vertebroplasty compared with optimal pain medication treatment: short-term clinical outcome of patients with subacute or chronic painful osteoporotic vertebral compression fractures. The VERTOS study. AJNR Am J Neuroradiol. 2007;28(3):555–60.

    PubMed  CAS  Google Scholar 

  52. Wardlaw D, et al. Efficacy and safety of balloon kyphoplasty compared with non-surgical care for vertebral compression fracture (FREE): a randomised controlled trial. Lancet. 2009;373(9668):1016–24.

    PubMed  Google Scholar 

  53. Buchbinder R, et al. A randomized trial of vertebroplasty for painful osteoporotic vertebral fractures. N Engl J Med. 2009;361(6):557–68.

    PubMed  CAS  Google Scholar 

  54. Gray LA, et al. INvestigational Vertebroplasty Efficacy and Safety Trial (INVEST): a randomized controlled trial of percutaneous vertebroplasty. BMC Musculoskelet Disord. 2007;8:126.

    PubMed  Google Scholar 

  55. Comstock BA, et al. Investigational Vertebroplasty Safety and Efficacy Trial (INVEST): patient-reported outcomes through 1 year. Radiology. 2013.

    Google Scholar 

  56. Berenson JR, et al. Efficacy of pamidronate in reducing skeletal events in patients with advanced multiple myeloma. Myeloma Aredia Study Group. N Engl J Med. 1996;334(8):488–93.

    PubMed  CAS  Google Scholar 

  57. Rosen LS, et al. Zoledronic acid versus pamidronate in the treatment of skeletal metastases in patients with breast cancer or osteolytic lesions of multiple myeloma: a phase III, double-blind, comparative trial. Cancer J. 2001;7(5):377–87.

    PubMed  CAS  Google Scholar 

  58. Kraj M, et al. Comparative evaluation of safety and efficacy of pamidronate and zoledronic acid in multiple myeloma patients (single center experience). Acta Pol Pharm. 2002;59(6):478–82.

    PubMed  CAS  Google Scholar 

  59. Ibrahim A, et al. Approval summary for zoledronic acid for treatment of multiple myeloma and cancer bone metastases. Clin Cancer Res. 2003;9(7):2394–9.

    PubMed  CAS  Google Scholar 

  60. Berenson JR, et al. Long-term pamidronate treatment of advanced multiple myeloma patients reduces skeletal events. Myeloma Aredia Study Group. J Clin Oncol. 1998;16(2):593–602.

    PubMed  CAS  Google Scholar 

  61. Morgan GJ, et al. First-line treatment with zoledronic acid as compared with clodronic acid in multiple myeloma (MRC Myeloma IX): a randomised controlled trial. Lancet. 2010;376(9757):1989–99.

    PubMed  CAS  Google Scholar 

  62. Odvina CV, et al. Unusual mid-shaft fractures during long term bisphosphonate therapy. Clin Endocrinol (Oxf). 2009;72(2):161–8.

    Google Scholar 

  63. Napoli N, Novack D, Armamento-Villareal R. Bisphosphonate-associated femoral fracture: implications for management in patients with malignancies. Osteoporos Int. 2010;21(4):705–8.

    PubMed  CAS  Google Scholar 

  64. Koh JS, et al. Femoral cortical stress lesions in long-term bisphosphonate therapy: a herald of impending fracture? J Orthop Trauma. 2010;24(2):75–81.

    PubMed  Google Scholar 

  65. Lacy MQ, et al. Mayo clinic consensus statement for the use of bisphosphonates in multiple myeloma. Mayo Clin Proc. 2006;81(8):1047–53.

    PubMed  CAS  Google Scholar 

  66. Ruggiero SL, et al. Osteonecrosis of the jaws associated with the use of bisphosphonates: a review of 63 cases. J Oral Maxillofac Surg. 2004;62(5):527–34.

    PubMed  Google Scholar 

  67. Durie BG, Katz M, Crowley J. Osteonecrosis of the jaw and bisphosphonates. N Engl J Med. 2005;353(1):99–102; discussion 99–102.

    PubMed  CAS  Google Scholar 

  68. Badros A, et al. Natural history of osteonecrosis of the jaw in patients with multiple myeloma. J Clin Oncol. 2008;26(36):5904–9.

    PubMed  Google Scholar 

  69. Pozzi S, et al. Bisphosphonates-associated osteonecrosis of the jaw: a long-term follow-up of a series of 35 cases observed by GISL and evaluation of its frequency over time. Am J Hematol. 2009;84(12): 850–2.

    PubMed  Google Scholar 

  70. Bagan J, et al. Recommendations for the prevention, diagnosis, and treatment of osteonecrosis of the jaw (ONJ) in cancer patients treated with bisphosphonates. Med Oral Patol Oral Cir Bucal. 2007;12(4):E336–40.

    PubMed  Google Scholar 

  71. Chu V. Management of patients on bisphosphonates and prevention of bisphosphonate-related osteonecrosis of the jaw. Hawaii Dent J. 2008;39(5):9–12; quiz 17.

    PubMed  Google Scholar 

  72. Landis BN, et al. Osteonecrosis of the jaw after treatment with bisphosphonates: is irreversible, so the focus must be on prevention. BMJ. 2006;333(7576): 982–3.

    PubMed  Google Scholar 

  73. Montefusco V, et al. Antibiotic prophylaxis before dental procedures may reduce the incidence of osteonecrosis of the jaw in patients with multiple myeloma treated with bisphosphonates. Leuk Lymphoma. 2008;49(11):2156–62.

    PubMed  CAS  Google Scholar 

  74. Lipton A, et al. Superiority of denosumab to zoledronic acid for prevention of skeletal-related events: a combined analysis of 3 pivotal, randomised, phase 3 trials. Eur J Cancer. 2012;48(16):3082–92.

    PubMed  CAS  Google Scholar 

  75. Henry DH, et al. Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J Clin Oncol. 2011;29(9):1125–32.

    PubMed  CAS  Google Scholar 

  76. Eleutherakis-Papaiakovou V, et al. Renal failure in multiple myeloma: incidence, correlations, and prognostic significance. Leuk Lymphoma. 2007; 48(2):337–41.

    PubMed  CAS  Google Scholar 

  77. Blade J, et al. Renal failure in multiple myeloma: presenting features and predictors of outcome in 94 patients from a single institution. Arch Intern Med. 1998;158(17):1889–93.

    PubMed  CAS  Google Scholar 

  78. Leung N, et al. Improvement of cast nephropathy with plasma exchange depends on the diagnosis and on reduction of serum free light chains. Kidney Int. 2008;73(11):1282–8.

    PubMed  CAS  Google Scholar 

  79. Bringhen S, et al. Age and organ damage correlate with poor survival in myeloma patients: meta-analysis of 1435 individual patient data from 4 randomized trials. Haematologica. 2013;98(6):980–7.

    PubMed  Google Scholar 

  80. Knudsen LM, Hjorth M, Hippe E. Renal failure in multiple myeloma: reversibility and impact on the prognosis. Nordic Myeloma Study Group. Eur J Haematol. 2000;65(3):175–81.

    PubMed  CAS  Google Scholar 

  81. Kastritis E, et al. Reversibility of renal failure in newly diagnosed multiple myeloma patients treated with high dose dexamethasone-containing regimens and the impact of novel agents. Haematologica. 2007;92(4):546–9.

    PubMed  CAS  Google Scholar 

  82. Nasr SH, et al. Clinicopathologic correlations in multiple myeloma: a case series of 190 patients with kidney biopsies. Am J Kidney Dis. 2012;59(6): 786–94.

    PubMed  Google Scholar 

  83. Clark WF, et al. Plasma exchange when myeloma presents as acute renal failure: a randomized, controlled trial. Ann Intern Med. 2005;143(11):777–84.

    PubMed  Google Scholar 

  84. Johnson WJ, et al. Treatment of renal failure associated with multiple myeloma. Plasmapheresis, hemodialysis, and chemotherapy. Arch Intern Med. 1990;150(4):863–9.

    PubMed  CAS  Google Scholar 

  85. Zucchelli P, et al. Controlled plasma exchange trial in acute renal failure due to multiple myeloma. Kidney Int. 1988;33(6):1175–80.

    PubMed  CAS  Google Scholar 

  86. Burnette BL, Leung N, Rajkumar SV. Renal improvement in myeloma with bortezomib plus plasma exchange. N Engl J Med. 2011;364(24):2365–6.

    PubMed  CAS  Google Scholar 

  87. Rajkumar SV, et al. Multicenter, randomized, double-blind, placebo-controlled study of thalidomide plus dexamethasone compared with dexamethasone as initial therapy for newly diagnosed multiple myeloma. J Clin Oncol. 2008;26(13):2171–7.

    PubMed  CAS  Google Scholar 

  88. Jagannath S, et al. Bortezomib therapy alone and in combination with dexamethasone for previously untreated symptomatic multiple myeloma. Br J Haematol. 2005;129(6):776–83.

    PubMed  CAS  Google Scholar 

  89. Jakubowiak AJ, et al. A phase 1/2 study of carfilzomib in combination with lenalidomide and low-dose dexamethasone as a frontline treatment for multiple myeloma. Blood. 2012;120(9):1801–9.

    PubMed  CAS  Google Scholar 

  90. Ludwig H, Zojer N. Renal recovery with lenalidomide in a patient with bortezomib-resistant multiple myeloma. Nat Rev Clin Oncol. 2010;7(5):289–94.

    PubMed  Google Scholar 

  91. Dimopoulos MA, et al. Lenalidomide and dexamethasone for the treatment of refractory/relapsed multiple myeloma: dosing of lenalidomide according to renal function and effect on renal impairment. Eur J Haematol. 2010;85(1):1–5.

    PubMed  CAS  Google Scholar 

  92. Tosi P, et al. Thalidomide alone or in combination with dexamethasone in patients with advanced, relapsed or refractory multiple myeloma and renal failure. Eur J Haematol. 2004;73(2):98–103.

    PubMed  CAS  Google Scholar 

  93. Roussou M, et al. Treatment of patients with multiple myeloma complicated by renal failure with bortezomib-based regimens. Leuk Lymphoma. 2008;49(5):890–5.

    PubMed  CAS  Google Scholar 

  94. Carlson K, Hjorth M, Knudsen LM. Toxicity in standard melphalan-prednisone therapy among myeloma patients with renal failure—a retrospective analysis and recommendations for dose adjustment. Br J Haematol. 2005;128(5):631–5.

    PubMed  CAS  Google Scholar 

  95. Badros AZ, et al. Carfilzomib in multiple myeloma patients with renal impairment: pharmacokinetics and safety. Leukemia. 2013.

    Google Scholar 

  96. Jagannath S, et al. Bortezomib in recurrent and/or refractory multiple myeloma. Initial clinical experience in patients with impared renal function. Cancer. 2005;103(6):1195–200.

    PubMed  CAS  Google Scholar 

  97. Ludwig H, et al. Reversal of acute renal failure by bortezomib-based chemotherapy in patients with multiple myeloma. Haematologica. 2007;92(10):1411–4.

    PubMed  CAS  Google Scholar 

  98. Chanan-Khan AA, et al. Activity and safety of bortezomib in multiple myeloma patients with advanced renal failure: a multicenter retrospective study. Blood. 2007;109(6):2604–6.

    PubMed  CAS  Google Scholar 

  99. Tauro S, et al. Recovery of renal function after autologous stem cell transplantation in myeloma patients with end-stage renal failure. Bone Marrow Transplant. 2002;30(7):471–3.

    PubMed  CAS  Google Scholar 

  100. Badros A, et al. Results of autologous stem cell transplant in multiple myeloma patients with renal failure. Br J Haematol. 2001;114(4):822–9.

    PubMed  CAS  Google Scholar 

  101. Lee CK, et al. Dialysis-dependent renal failure in patients with myeloma can be reversed by high-dose myeloablative therapy and autotransplant. Bone Marrow Transplant. 2004;33(8):823–8.

    PubMed  CAS  Google Scholar 

  102. Musto P, et al. Clinical results of recombinant erythropoietin in transfusion-dependent patients with refractory multiple myeloma: role of cytokines and monitoring of erythropoiesis. Eur J Haematol. 1997;58(5):314–9.

    PubMed  CAS  Google Scholar 

  103. Vaiopoulos G, et al. Multiple myeloma associated with autoimmune hemolytic anemia. Haematologica. 1994;79(3):262–4.

    PubMed  CAS  Google Scholar 

  104. Friedland M, Schaefer P. Myelomatosis and hemolytic anemia. Hemolytic anemia, a rare complication of multiple myeloma, is successfully managed by splenectomy. R I Med J. 1979;62(12):469–71.

    PubMed  CAS  Google Scholar 

  105. Wada H, et al. Multiple myeloma complicated by autoimmune hemolytic anemia. Intern Med. 2004;43(7):595–8.

    PubMed  Google Scholar 

  106. Kumar S, et al. Randomized, multicenter, phase 2 study (EVOLUTION) of combinations of bortezomib, dexamethasone, cyclophosphamide, and lenalidomide in previously untreated multiple myeloma. Blood. 2012;119(19):4375–82.

    PubMed  CAS  Google Scholar 

  107. Gay F, et al. Lenalidomide plus dexamethasone versus thalidomide plus dexamethasone in newly diagnosed multiple myeloma: a comparative analysis of 411 patients. Blood. 2010;115(7):1343–50.

    PubMed  CAS  Google Scholar 

  108. Vlasveld LT. Low cobalamin (vitamin B12) levels in multiple myeloma: a retrospective study. Neth J Med. 2003;61(8):249–52.

    PubMed  CAS  Google Scholar 

  109. Heyerdahl F, Kildahl-Andersen O. Myelomatosis and low level of vitamin B12. Tidsskr Nor Laegeforen. 1999;119(29):4321–2.

    PubMed  CAS  Google Scholar 

  110. Perillie PE. Myeloma and pernicious anemia. Am J Med Sci. 1978;275(1):93–8.

    PubMed  CAS  Google Scholar 

  111. Hansen OP, et al. Interrelationships between Vitamin B12 and folic acid in myelomatosis: cobalamin coenzyme and tetrahydrofolic acid function. Scand J Haematol. 1978;20(4):360–70.

    PubMed  CAS  Google Scholar 

  112. Ludwig H, et al. Erythropoietin treatment of anemia associated with multiple myeloma. N Engl J Med. 1990;322(24):1693–9.

    PubMed  CAS  Google Scholar 

  113. Osterborg A, et al. Randomized, double-blind, placebo-controlled trial of recombinant human erythropoietin, epoetin beta, in hematologic malignancies. J Clin Oncol. 2002;20(10):2486–94.

    PubMed  CAS  Google Scholar 

  114. Dammacco F, Castoldi G, Rodjer S. Efficacy of epoetin alfa in the treatment of anaemia of multiple myeloma. Br J Haematol. 2001;113(1):172–9.

    PubMed  CAS  Google Scholar 

  115. Garton JP, et al. Epoetin alfa for the treatment of the anemia of multiple myeloma. A prospective, randomized, placebo-controlled, double-blind trial. Arch Intern Med. 1995;155(19):2069–74.

    PubMed  CAS  Google Scholar 

  116. Cazzola M, et al. Recombinant human erythropoietin in the anemia associated with multiple myeloma or non-Hodgkin’s lymphoma: dose finding and identification of predictors of response. Blood. 1995; 86(12):4446–53.

    PubMed  CAS  Google Scholar 

  117. Rizzo JD, et al. Use of epoetin and darbepoetin in patients with cancer: 2007 American Society of Clinical Oncology/American Society of Hematology clinical practice guideline update. J Clin Oncol. 2008;26(1):132–49.

    PubMed  CAS  Google Scholar 

  118. Straus DJ, et al. Quality-of-life and health benefits of early treatment of mild anemia: a randomized trial of epoetin alfa in patients receiving chemotherapy for hematologic malignancies. Cancer. 2006;107(8):1909–17.

    PubMed  CAS  Google Scholar 

  119. Charu V, et al. A randomized, open-label, multicenter trial of immediate versus delayed intervention with darbepoetin alfa for chemotherapy-induced anemia. Oncologist. 2007;12(10):1253–63.

    PubMed  CAS  Google Scholar 

  120. Osterborg A, et al. Recombinant human erythropoietin in transfusion-dependent anemic patients with multiple myeloma and non-Hodgkin’s lymphoma—a randomized multicenter study. The European Study Group of Erythropoietin (Epoetin Beta) Treatment in Multiple Myeloma and Non-Hodgkin’s Lymphoma. Blood. 1996;87(7):2675–82.

    PubMed  CAS  Google Scholar 

  121. Bennett CL, et al. Venous thromboembolism and mortality associated with recombinant erythropoietin and darbepoetin administration for the treatment of cancer-associated anemia. JAMA. 2008;299(8): 914–24.

    PubMed  CAS  Google Scholar 

  122. Vanrenterghem Y, et al. Randomized trial of darbepoetin alfa for treatment of renal anemia at a reduced dose frequency compared with rHuEPO in dialysis patients. Kidney Int. 2002;62(6):2167–75.

    PubMed  CAS  Google Scholar 

  123. Steurer M, et al. Thromboembolic events in patients with myelodysplastic syndrome receiving thalidomide in combination with darbepoietin-alpha. Br J Haematol. 2003;121(1):101–3.

    PubMed  CAS  Google Scholar 

  124. Singh AK, et al. Correction of anemia with epoetin alfa in chronic kidney disease. N Engl J Med. 2006;355(20):2085–98.

    PubMed  CAS  Google Scholar 

  125. Catovsky D, et al. Thromboembolic complications in myelomatosis. Br Med J. 1970;3(5720):438–9.

    PubMed  CAS  Google Scholar 

  126. Galli M, et al. Recombinant human erythropoietin and the risk of thrombosis in patients receiving thalidomide for multiple myeloma. Haematologica. 2004;89(9):1141–2.

    PubMed  CAS  Google Scholar 

  127. Doughney KB, Williams DM, Penn RL. Multiple myeloma: infectious complications. South Med J. 1988;81(7):855–8.

    PubMed  CAS  Google Scholar 

  128. Paradisi F, Corti G, Cinelli R. Infections in multiple myeloma. Infect Dis Clin North Am. 2001;15(2):373–84; vii–viii.

    Google Scholar 

  129. Espersen F, et al. Current patterns of bacterial infection in myelomatosis. Scand J Infect Dis. 1984;16(2):169–73.

    PubMed  CAS  Google Scholar 

  130. Hopen G, et al. Granulocyte function in malignant monoclonal gammopathy. Scand J Haematol. 1983;31(2):133–43.

    PubMed  CAS  Google Scholar 

  131. Jacobson DR, Zolla-Pazner S. Immunosuppression and infection in multiple myeloma. Semin Oncol. 1986;13(3):282–90.

    PubMed  CAS  Google Scholar 

  132. Cesana C, et al. Risk factors for the development of bacterial infections in multiple myeloma treated with two different vincristine-adriamycin-dexamethasone schedules. Haematologica. 2003;88(9):1022–8.

    PubMed  Google Scholar 

  133. Cheson BD, Plass RR, Rothstein G. Defective opsonization in multiple myeloma. Blood. 1980;55(4): 602–6.

    PubMed  CAS  Google Scholar 

  134. Hargreaves RM, et al. Immunological factors and risk of infection in plateau phase myeloma. J Clin Pathol. 1995;48(3):260–6.

    PubMed  CAS  Google Scholar 

  135. Perri RT, Hebbel RP, Oken MM. Influence of treatment and response status on infection risk in multiple myeloma. Am J Med. 1981;71(6):935–40.

    PubMed  CAS  Google Scholar 

  136. Goranov S. Clinical problems of infectious complications in patients with multiple myeloma. Folia Med (Plovdiv). 1994;36(1):41–6.

    CAS  Google Scholar 

  137. Savage DG, Lindenbaum J, Garrett TJ. Biphasic pattern of bacterial infection in multiple myeloma. Ann Intern Med. 1982;96(1):47–50.

    PubMed  CAS  Google Scholar 

  138. Shaikh BS, et al. Changing patterns of infections in patients with multiple myeloma. Oncology. 1982;39(2):78–82.

    PubMed  CAS  Google Scholar 

  139. Weber D, et al. Thalidomide alone or with dexamethasone for previously untreated multiple myeloma. J Clin Oncol. 2003;21(1):16–9.

    PubMed  CAS  Google Scholar 

  140. Kim SJ, et al. Bortezomib and the increased incidence of herpes zoster in patients with multiple myeloma. Clin Lymphoma Myeloma. 2008;8(4): 237–40.

    PubMed  CAS  Google Scholar 

  141. Hasegawa Y, et al. Prophylaxis with acyclovir for herpes zoster infection during bortezomib-dexamethasone combination therapy. Rinsho Ketsueki. 2009;50(6):488–94.

    PubMed  Google Scholar 

  142. Basler M, et al. The proteasome inhibitor bortezomib enhances the susceptibility to viral infection. J Immunol. 2009;183(10):6145–50.

    PubMed  CAS  Google Scholar 

  143. Chanan-Khan A, et al. Analysis of herpes zoster events among bortezomib-treated patients in the phase III APEX study. J Clin Oncol. 2008;26(29): 4784–90.

    PubMed  CAS  Google Scholar 

  144. Jagannath S, et al. An open-label single-arm pilot phase II study (PX-171-003-A0) of low-dose, single-agent carfilzomib in patients with relapsed and refractory multiple myeloma. Clin Lymphoma Myeloma Leuk. 2012;12(5):310–8.

    PubMed  CAS  Google Scholar 

  145. Vij R, et al. An open-label, single-arm, phase 2 study of single-agent carfilzomib in patients with relapsed and/or refractory multiple myeloma who have been previously treated with bortezomib. Br J Haematol. 2012;158(6):739–48.

    PubMed  CAS  Google Scholar 

  146. Reuter S, et al. Impact of fluoroquinolone prophylaxis on reduced infection-related mortality among patients with neutropenia and hematologic malignancies. Clin Infect Dis. 2005;40(8):1087–93.

    PubMed  CAS  Google Scholar 

  147. Oken MM, et al. Prophylactic antibiotics for the prevention of early infection in multiple myeloma. Am J Med. 1996;100(6):624–8.

    PubMed  CAS  Google Scholar 

  148. Lee CK, et al. DTPACE: an effective, novel combination chemotherapy with thalidomide for previously treated patients with myeloma. J Clin Oncol. 2003;21(14):2732–9.

    PubMed  CAS  Google Scholar 

  149. Reeder CB, et al. Cyclophosphamide, bortezomib and dexamethasone induction for newly diagnosed multiple myeloma: high response rates in a phase II clinical trial. Leukemia. 2009;23(7):1337–41.

    PubMed  CAS  Google Scholar 

  150. van der Lelie J, et al. Pneumocystis carinii pneumonia in HIV-negative patients with haematologic disease. Infection. 1997;25(2):78–81.

    PubMed  Google Scholar 

  151. Worth LJ, et al. An analysis of the utilisation of chemoprophylaxis against Pneumocystis jirovecii pneumonia in patients with malignancy receiving corticosteroid therapy at a cancer hospital. Br J Cancer. 2005;92(5):867–72.

    PubMed  CAS  Google Scholar 

  152. Pagano L, et al. Pneumocystis carinii pneumonia in patients with malignant haematological diseases: 10 years’ experience of infection in GIMEMA centres. Br J Haematol. 2002;117(2):379–86.

    PubMed  Google Scholar 

  153. Peters SG, Prakash UB. Pneumocystis carinii pneumonia. Review of 53 cases. Am J Med. 1987;82(1):73–8.

    PubMed  CAS  Google Scholar 

  154. Roblot F, et al. Pneumocystis carinii pneumonia in patients with hematologic malignancies: a descriptive study. J Infect. 2003;47(1):19–27.

    PubMed  CAS  Google Scholar 

  155. Yale SH, Limper AH. Pneumocystis carinii pneumonia in patients without acquired immunodeficiency syndrome: associated illness and prior corticosteroid therapy. Mayo Clin Proc. 1996;71(1):5–13.

    PubMed  CAS  Google Scholar 

  156. Vickrey E, et al. Acyclovir to prevent reactivation of varicella zoster virus (herpes zoster) in multiple myeloma patients receiving bortezomib therapy. Cancer. 2009;115(1):229–32.

    PubMed  CAS  Google Scholar 

  157. Pour L, et al. Varicella-zoster virus prophylaxis with low-dose acyclovir in patients with multiple myeloma treated with bortezomib. Clin Lymphoma Myeloma. 2009;9(2):151–3.

    PubMed  CAS  Google Scholar 

  158. Robertson JD, et al. Immunogenicity of vaccination against influenza, Streptococcus pneumoniae and Haemophilus influenzae type B in patients with multiple myeloma. Br J Cancer. 2000;82(7):1261–5.

    PubMed  CAS  Google Scholar 

  159. Einarsdottir HM, et al. Nationwide study of recurrent invasive pneumococcal infections in a population with a low prevalence of human immunodeficiency virus infection. Clin Microbiol Infect. 2005;11(9): 744–9.

    PubMed  CAS  Google Scholar 

  160. Shildt RA, et al. Polyvalent pneumococcal immunization of patients with plasma cell dyscrasias. Cancer. 1981;48(6):1377–80.

    PubMed  CAS  Google Scholar 

  161. Landesman SH, Schiffman G. Assessment of the antibody response to pneumococcal vaccine in high-risk populations. Rev Infect Dis. 1981;3(Suppl): S184–97.

    PubMed  Google Scholar 

  162. Lazarus HM, et al. Pneumococcal vaccination: the response of patients with multiple myeloma. Am J Med. 1980;69(3):419–23.

    PubMed  CAS  Google Scholar 

  163. Gordon DS, et al. Phase I study of intravenous gamma globulin in multiple myeloma. Am J Med. 1984;76(3A):111–6.

    PubMed  CAS  Google Scholar 

  164. Musto P, Brugiatelli M, Carotenuto M. Prophylaxis against infections with intravenous immunoglobulins in multiple myeloma. Br J Haematol. 1995;89(4):945–6.

    PubMed  CAS  Google Scholar 

  165. Raanani P, et al. Immunoglobulin prophylaxis in chronic lymphocytic leukemia and multiple myeloma: systematic review and meta-analysis. Leuk Lymphoma. 2009;50(5):764–72.

    PubMed  CAS  Google Scholar 

  166. Chapel HM, et al. Randomised trial of intravenous immunoglobulin as prophylaxis against infection in plateau-phase multiple myeloma. The UK Group for Immunoglobulin Replacement Therapy in Multiple Myeloma. Lancet. 1994;343(8905):1059–63.

    PubMed  CAS  Google Scholar 

  167. Kelly Jr JJ, et al. The spectrum of peripheral neuropathy in myeloma. Neurology. 1981;31(1):24–31.

    PubMed  Google Scholar 

  168. Richardson PG, et al. Single-agent bortezomib in previously untreated multiple myeloma: efficacy, characterization of peripheral neuropathy, and molecular correlations with response and neuropathy. J Clin Oncol. 2009;27(21):3518–25.

    PubMed  CAS  Google Scholar 

  169. Kelly Jr JJ, et al. Osteosclerotic myeloma and peripheral neuropathy. Neurology. 1983;33(2):202–10.

    PubMed  Google Scholar 

  170. Dispenzieri A, et al. POEMS syndrome: definitions and long-term outcome. Blood. 2003;101(7): 2496–506.

    PubMed  CAS  Google Scholar 

  171. Wilson JR, Stittsworth Jr JD, Fisher MA. Electrodiagnostic patterns in MGUS neuropathy. Electromyogr Clin Neurophysiol. 2001;41(7): 409–18.

    PubMed  CAS  Google Scholar 

  172. Noring L, et al. Peripheral neuropathy in patients with benign monoclonal gammopathy—a pilot study. J Neurol. 1982;228(3):185–94.

    PubMed  CAS  Google Scholar 

  173. Nobile-Orazio E, et al. Peripheral neuropathy in monoclonal gammopathy of undetermined significance: prevalence and immunopathogenetic studies. Acta Neurol Scand. 1992;85(6):383–90.

    PubMed  CAS  Google Scholar 

  174. Besinger UA, et al. Myeloma neuropathy: passive transfer from man to mouse. Science. 1981; 213(4511):1027–30.

    PubMed  CAS  Google Scholar 

  175. Roelofs RI, et al. Peripheral sensory neuropathy and cisplatin chemotherapy. Neurology. 1984;34(7):934–8.

    PubMed  CAS  Google Scholar 

  176. van der Hoop RG, et al. Incidence of neuropathy in 395 patients with ovarian cancer treated with or without cisplatin. Cancer. 1990;66(8):1697–702.

    PubMed  Google Scholar 

  177. Windebank AJ, Grisold W. Chemotherapy-induced neuropathy. J Peripher Nerv Syst. 2008;13(1):27–46.

    PubMed  CAS  Google Scholar 

  178. Mileshkin L, et al. Development of neuropathy in patients with myeloma treated with thalidomide: patterns of occurrence and the role of electrophysiologic monitoring. J Clin Oncol. 2006;24(27):4507–14.

    PubMed  CAS  Google Scholar 

  179. Plasmati R, et al. Neuropathy in multiple myeloma treated with thalidomide: a prospective study. Neurology. 2007;69(6):573–81.

    PubMed  CAS  Google Scholar 

  180. Argyriou AA, Iconomou G, Kalofonos HP. Bortezomib-induced peripheral neuropathy in multiple myeloma: a comprehensive review of the literature. Blood. 2008;112(5):1593–9.

    PubMed  CAS  Google Scholar 

  181. Dahut WL, et al. Phase I study of oral lenalidomide in patients with refractory metastatic cancer. J Clin Pharmacol. 2009;49(6):650–60.

    PubMed  CAS  Google Scholar 

  182. Richardson PG, et al. A randomized phase 2 study of lenalidomide therapy for patients with relapsed or relapsed and refractory multiple myeloma. Blood. 2006;108(10):3458–64.

    PubMed  CAS  Google Scholar 

  183. Richardson PG, et al. Frequency, characteristics, and reversibility of peripheral neuropathy during treatment of advanced multiple myeloma with bortezomib. J Clin Oncol. 2006;24(19):3113–20.

    PubMed  CAS  Google Scholar 

  184. Richardson PG, et al. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med. 2005;352(24):2487–98.

    PubMed  CAS  Google Scholar 

  185. Richardson PG, et al. Reversibility of symptomatic peripheral neuropathy with bortezomib in the phase III APEX trial in relapsed multiple myeloma: impact of a dose-modification guideline. Br J Haematol. 2009;144(6):895–903.

    PubMed  CAS  Google Scholar 

  186. Moreau P, et al. Subcutaneous versus intravenous administration of bortezomib in patients with relapsed multiple myeloma: a randomised, phase 3, non-inferiority study. Lancet Oncol. 2011;12(5):431–40.

    PubMed  Google Scholar 

  187. El-Cheikh J, et al. Features and risk factors of peripheral neuropathy during treatment with bortezomib for advanced multiple myeloma. Clin Lymphoma Myeloma. 2008;8(3):146–52.

    PubMed  CAS  Google Scholar 

  188. Hainsworth JD, et al. Weekly treatment with bortezomib for patients with recurrent or refractory multiple myeloma: a phase 2 trial of the Minnie Pearl Cancer Research Network. Cancer. 2008;113(4):765–71.

    PubMed  CAS  Google Scholar 

  189. Suvannasankha A, et al. Weekly bortezomib/methylprednisolone is effective and well tolerated in relapsed multiple myeloma. Clin Lymphoma Myeloma. 2006;7(2):131–4.

    PubMed  CAS  Google Scholar 

  190. Rosenstock J, et al. Pregabalin for the treatment of painful diabetic peripheral neuropathy: a double-blind, placebo-controlled trial. Pain. 2004;110(3): 628–38.

    PubMed  CAS  Google Scholar 

  191. Tolle T, et al. Pregabalin for relief of neuropathic pain associated with diabetic neuropathy: a randomized, double-blind study. Eur J Pain. 2008;12(2):203–13.

    PubMed  Google Scholar 

  192. Vondracek P, et al. Efficacy of pregabalin in neuropathic pain in paediatric oncological patients. Eur J Paediatr Neurol. 2009;13(4):332–6.

    PubMed  Google Scholar 

  193. Sindrup SH, et al. Tramadol relieves pain and allodynia in polyneuropathy: a randomised, double-blind, controlled trial. Pain. 1999;83(1):85–90.

    PubMed  CAS  Google Scholar 

  194. Nordstrom M, et al. Deep venous thrombosis and occult malignancy: an epidemiological study. BMJ. 1994;308(6933):891–4.

    PubMed  CAS  Google Scholar 

  195. Falanga A, Donati MB. Pathogenesis of thrombosis in patients with malignancy. Int J Hematol. 2001;73(2):137–44.

    PubMed  CAS  Google Scholar 

  196. Hettiarachchi RJ, et al. Undiagnosed malignancy in patients with deep vein thrombosis: incidence, risk indicators, and diagnosis. Cancer. 1998;83(1):180–5.

    PubMed  CAS  Google Scholar 

  197. Kristinsson SY, et al. Deep vein thrombosis after monoclonal gammopathy of undetermined significance and multiple myeloma. Blood. 2008;112(9): 3582–6.

    PubMed  CAS  Google Scholar 

  198. Uaprasert N, et al. Venous thromboembolism in multiple myeloma: current perspectives in pathogenesis. Eur J Cancer. 2010;46(10):1790–9.

    PubMed  Google Scholar 

  199. Corso A, et al. Modification of thrombomodulin plasma levels in refractory myeloma patients during treatment with thalidomide and dexamethasone. Ann Hematol. 2004;83(9):588–91.

    PubMed  CAS  Google Scholar 

  200. Elice F, et al. Thrombosis associated with angiogenesis inhibitors. Best Pract Res Clin Haematol. 2009;22(1):115–28.

    PubMed  CAS  Google Scholar 

  201. Cavo M, et al. Deep-vein thrombosis in patients with multiple myeloma receiving first-line thalidomide-dexamethasone therapy. Blood. 2002;100(6): 2272–3.

    PubMed  CAS  Google Scholar 

  202. Camba L, et al. Thalidomide and thrombosis in patients with multiple myeloma. Haematologica. 2001;86(10):1108–9.

    PubMed  CAS  Google Scholar 

  203. Menon SP, et al. Thromboembolic events with lenalidomide-based therapy for multiple myeloma. Cancer. 2008;112(7):1522–8.

    PubMed  CAS  Google Scholar 

  204. Rus C, et al. Thalidomide in front line treatment in multiple myeloma: serious risk of venous thromboembolism and evidence for thromboprophylaxis. J Thromb Haemost. 2004;2(11):2063–5.

    PubMed  CAS  Google Scholar 

  205. Carrier M, et al. Rates of venous thromboembolism in multiple myeloma patients undergoing immunomodulatory therapy with thalidomide or lenalidomide: a systematic review and meta-analysis. J Thromb Haemost. 2011;9(4):653–63.

    PubMed  CAS  Google Scholar 

  206. Palumbo A, et al. Prevention of thalidomide- and lenalidomide-associated thrombosis in myeloma. Leukemia. 2008;22(2):414–23.

    PubMed  CAS  Google Scholar 

  207. Richardson PG, et al. Phase 1 study of pomalidomide MTD, safety, and efficacy in patients with refractory multiple myeloma who have received lenalidomide and bortezomib. Blood. 2013;121(11): 1961–7.

    PubMed  CAS  Google Scholar 

  208. Schey SA, et al. Phase I study of an immunomodulatory thalidomide analog, CC-4047, in relapsed or refractory multiple myeloma. J Clin Oncol. 2004;22(16):3269–76.

    PubMed  CAS  Google Scholar 

  209. Miller KC, et al. Prospective evaluation of low-dose warfarin for prevention of thalidomide associated venous thromboembolism. Leuk Lymphoma. 2006;47(11):2339–43.

    PubMed  CAS  Google Scholar 

  210. Zangari M, et al. Deep vein thrombosis in patients with multiple myeloma treated with thalidomide and chemotherapy: effects of prophylactic and therapeutic anticoagulation. Br J Haematol. 2004;126(5): 715–21.

    PubMed  CAS  Google Scholar 

  211. Baz R, et al. The role of aspirin in the prevention of thrombotic complications of thalidomide and anthracycline-based chemotherapy for multiple myeloma. Mayo Clin Proc. 2005;80(12):1568–74.

    PubMed  CAS  Google Scholar 

  212. Zonder JA, et al. Thrombotic complications in patients with newly diagnosed multiple myeloma treated with lenalidomide and dexamethasone: benefit of aspirin prophylaxis. Blood. 2006;108(1):403; author reply 404.

    Google Scholar 

  213. Minnema MC, et al. Prevention of venous thromboembolism with low molecular-weight heparin in patients with multiple myeloma treated with thalidomide and chemotherapy. Leukemia. 2004;18(12):2044–6.

    PubMed  CAS  Google Scholar 

  214. Palumbo A, et al. Aspirin, warfarin, or enoxaparin thromboprophylaxis in patients with multiple myeloma treated with thalidomide: a phase III, open-label, randomized trial. J Clin Oncol. 2011; 29(8):986–93.

    PubMed  CAS  Google Scholar 

  215. Larocca A, et al. Aspirin or enoxaparin thromboprophylaxis for patients with newly diagnosed multiple myeloma treated with lenalidomide. Blood. 2012;119(4):933–9; quiz 1093.

    PubMed  CAS  Google Scholar 

  216. Jimenez-Zepeda VH, Dominguez-Martinez VJ. Acquired activated protein C resistance and thrombosis in multiple myeloma patients. Thromb J. 2006;4:11.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis Buadi M.B., Ch.B. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Mayo Foundation for Medical Education and Research

About this chapter

Cite this chapter

Buadi, F., Khan, A.C. (2014). Management of Treatment Complications and Supportive Care. In: Gertz, M., Rajkumar, S. (eds) Multiple Myeloma. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8520-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8520-9_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8519-3

  • Online ISBN: 978-1-4614-8520-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics