
Authoring Multi-Actor Behaviors in Crowds

with Diverse Personalities

Mubbasir Kapadia, Alexander Shoulson, Funda Durupinar, and Norman I. Badler

Abstract Multi-actor simulation is critical to cinematic content creation, disaster

and security simulation, and interactive entertainment. A key challenge is provid-

ing an appropriate interface for authoring high-fidelity virtual actors with feature-

rich control mechanisms capable of complex interactions with the environment and

other actors. In this chapter, we present work that addresses the problem of behav-

ior authoring at three levels: Individual and group interactions are conducted in an

event-centric manner using parameterized behavior trees, social crowd dynamics are

captured using the OCEAN personality model, and a centralized automated planner

is used to enforce global narrative constraints on the scale of the entire simulation.

We demonstrate the benefits and limitations of each of these approaches and propose

the need for a single unifying construct capable of authoring functional, purposeful,

autonomous actors which conform to a global narrative in an interactive simulation.

1 Introduction

Multi-actor simulation is a critical component of cinematic content creation, disas-

ter and security simulation, and interactive entertainment. Depending on the appli-

cation, a simulation may involve two or three actors interacting in complex ways, a

group of actors participating in an event, or a large crowd with hundreds and thou-

Mubbasir Kapadia

University of Pennsylvania e-mail: mubbasir@seas.upenn.edu

Alexander Shoulson

University of Pennsylvania e-mail: shoulson@seas.upenn.edu

Funda Durupinar

University of Pennsylvania e-mail: fundad@seas.upenn.edu

Norman I. Badler

University of Pennsylvania e-mail: badler@seas.upenn.edu

1

2 Mubbasir Kapadia, Alexander Shoulson, Funda Durupinar, and Norman I. Badler

sands of actors. For example, a user may want to author huge armies in movies,

the repercussions of a car accident in a busy city street, the reactions of a crowd to

a disturbance, a virtual marketplace with buyers and vendors haggling for prices,

and thieves that are on the lookout for stealing opportunities. The existing base-

line for multi-actor simulations consists of numerous relatively independent walk-

ing pedestrians. While their visual appearances may be quite varied, their behavioral

repertoire is not, and their interactions are generally limited to attention control and

collision avoidance. The next generation of interactive virtual world applications

require functional, purposeful, heterogeneous actors with individual personalities

and desires, while exhibiting complex group interactions, and conforming to global

narrative constraints.

Readily authoring such complex multi-actor situations is an open problem. Exist-

ing techniques are often a bottleneck in the production process, requiring the author

to either manually script every detail in an inflexible way or to provide a higher level

description that lacks appropriate control to ensure correct or interesting behavior.

The challenge is to provide a method of authoring that is intuitive, simple, auto-

matic, yet has enough expressive power to control details at the appropriate level of

abstraction. In this chapter, we present work that addresses the problem of behavior

authoring at three levels. Our goal is to explain these levels and construct feasible

and authorable computational models of when and how they interact.

First, we present a method to capture social crowd dynamics by mapping low-

level simulation parameters to the OCEAN personality model. Each personality trait

is associated with nominal behaviors – facilitating a plausible mapping of person-

ality traits to existing behavior types. We validate our mapping by conducting a

user study which assesses the perception of personality traits in a variety of crowd

simulations demonstrating these behaviors [1].

Second, we describe a framework for authoring background characters using an

event-centric control model, which shifts behavior authoring from writing complex

reactive agents to defining particular activities. Interactions between groups of ac-

tors are defined using parameterized behavior trees, and a centralized Group Coor-

dinator dispatches events to agents based on their situational and locational context,

while satisfying a global distribution of events that is user specified [2, 3, 4].

Third, we present a multi-actor planning framework for generating complicated

behaviors between interacting actors in a user-authored scenario. Users define the

state and action space of actors and specialize existing actor definitions to add va-

riety and purpose to their simulation. Actors with dependent goals are grouped to-

gether into a set of independent composite domains. For each of these domains, a

multi-actor planner generates a trajectory of actions for all actors to meet the desired

behavior. We author and demonstrate a simulation of more than one hundred pedes-

trians and vehicles in a busy city street and inject heterogeneity and drama into our

simulation using specializations [5].

The rest of this document is articulated as follows. Section 2 reviews prior work

in behavior authoring for interactive virtual characters. Section 3 describes the use of

the OCEAN personality model to capture social crowd dynamics. Section 4 presents

an event-centric paradigm for authoring multi-actor interactions, and Section 5 pro-

Authoring Multi-Actor Behaviors in Crowds with Diverse Personalities 3

poses the use of domain-independent planning for behavior generation. Finally,

Section 6 discusses the comparative benefits and limitations of each of these ap-

proaches, and proposes the need for a single unifying construct capable of authoring

functional, purposeful, autonomous actors which conform to a global narrative in an

interactive simulation.

2 Related Work

Behavioral animation in crowds has been studied extensively from many different

perspectives [6] which can be broadly classified into three overlapping categories:

(1) steering based approaches, (2) cognitively based approaches and, (3) narrative

driven approaches. Many implementations blend aspects of these three categories

– steering-based models in particular are often used in concert with one of the two

other approaches. However, since each model has a very different approach to agent

control and motivation it is difficult to evenly incorporate all three.

Steering based approaches. These techniques focus on agent movement with a fo-

cus on collision avoidance and trajectory planning. Centralized techniques [7, 8, 9,

10] focus on the system as a whole, modeling flow characteristics rather than in-

dividual pedestrians. Particle based approaches [11, 12] simulate agents using par-

ticle dynamics. Social force based approaches [13, 14, 15, 16] simulates physical

as well as psychological forces between steering agents. Cellular Automata mod-

els [17, 18, 19] simulate agents defined as mathematical idealizations for physical

systems in which space and time are discretized. Rule-based approaches [20, 21, 22]

use carefully designed conditions and heuristics to define agent behavior. Data-

driven methods [23, 24] use real world data to derive steering choices. The works

of [25, 26, 27] use predictions in the space-time domain to perform steering in envi-

ronments populated with dynamic threats. Local field methods [28, 29] uses egocen-

tric fields to model agent affordances and recent work [30] demonstrates a synthetic

vision-based approach for steering.

Cognitively based approaches. These techniques populate virtual worlds with rich

individual agents which sense the environment and other agents, and act based

on personalized desires, motivations, and other attributes such as mood and emo-

tions. Agent decision-making is simulated using a wide variety of cognitively based

models such as decision networks [31], neural networks [32], partially-observable

markov decision problems [33], fuzzy logic [34], hierarchical state machines [35],

scripts [36, 37, 38], and planners [39]. These models capture domain specific

knowledge, effectual actions, and personal agent goals to simulate functional, pur-

poseful autonomous agents [40]. Several studies represent individual differences

through psychological states [41, 16]. The OCEAN personality model [42] and

the OCC emotion model [43] are commonly used in the simulation of autonomous

agents. Such models aid to improve believability of embodied conversational char-

4 Mubbasir Kapadia, Alexander Shoulson, Funda Durupinar, and Norman I. Badler

acters [44, 45] as well as agents in a crowd [46].

Narrative driven approaches. These systems orchestrate the behavior of actors in

a scene from a global scope, dictating actions to participants based on the needs of

the scenario constraints rather than the individual agents’ motivations. Drama Man-

agers [47] are used weave a story around the actions of a player and the principal ac-

tors in the environment. Director-based systems such as Facade [48], Thespian [49],

Mimesis [50], and others act upon a small number of high-dimensional agents rep-

resenting principal characters in the simulation. These systems can be controlled by

a planning approach [51], using actions and preconditions as a dynamic script for

the intended plot. Smart Events [52] externalize behavior logic to authored events

that occur in the environment. Unlike cognitively-driven simulations, virtual actors

respond to impulses sent by a central controller responsible for enforcing the con-

straints of a global narrative system.

3 The Impact of the OCEAN Personality Model on the

Perception of Crowds

Personality is the sum of a persons behavioral, temperamental, emotional, and men-

tal traits. A popular model that describes personality is the Five Factor, or OCEAN

(openness, conscientiousness, extroversion, agreeableness, and neuroticism) model.

The personality space is composed of these five orthogonal dimensions.

• Openness describes a dimension of personality that portrays the imaginative and

creative aspect of human character. Appreciation of art, inclination towards going

through new experiences and curiosity are characteristics of an open individual.

• Conscientiousness determines the extent to which an individual is organized, tidy

and careful.

• Extroversion is related to the social aspect of human character.

• Agreeableness is a measure of friendliness, generosity and the tendency to get

along with other people.

• Neuroticism refers to emotional instability and the tendency to experience neg-

ative emotions. Neurotic people tend to be too sensitive and they are prone to

mood swings.

Each factor is bipolar and composed of several traits, which are essentially the

adjectives that are used to describe people [53]. Some of the relevant adjectives

describing each of the personality factors for each pole are given in Table 1.

We have mapped these trait terms to the low-level behavior parameters in the

HiDAC (High-Density Autonomous Crowds) crowd simulation system. HiDAC

models individual differences by assigning each person different psychological

and physiological traits. Users normally set these parameters to model the non-

uniformity and diversity of a crowd. Our approach frees users of the tedious task

Authoring Multi-Actor Behaviors in Crowds with Diverse Personalities 5

O+ Curious, alert, informed, perceptive

O- Simple, narrow, ignorant

C+ Persistent, orderly, predictable, dependable, prompt

C- Messy, careless, rude, changeable

E+ Social, active, assertive, dominant, energetic

E- Distant, unsocial, lethargic, vigorless, shy

A+ Cooperative, tolerant, patient, kind

A- Bossy, negative, contrary, stubborn, harsh

N+ Oversensitive, fearful, dependent, submissive, unconfident

N- Calm, independent, confident

Table 1 Trait-descriptive adjectives

of low-level parameter tuning by combining all these behaviors in distinct personal-

ity factors.

By incorporating a standard personality model to a high-density crowd simu-

lation, our approach creates plausible variations in the crowd and enables novice

users to dictate these variations. A crowd consists of subgroups with different per-

sonalities. Variations in the characteristics of subgroups influence emergent crowd

behavior. The user can add any number of groups with shared personality traits and

can edit these characteristics during the course of an animation.

In order to verify the plausibility of our mapping we have conducted tests that

evaluate users’ perception of the personality traits in the generated animations. We

created several animations to examine how modifying the personality parameters

of subgroups affects global crowd behavior. The animations exhibit the emergent

behaviors of agents in scenarios in which the settings assigned according to the

OCEAN model drive crowds behavior. In order to validate our system, we deter-

mined the correspondence between our mapping and the users perception of these

trait terms in the videos. The results indicate a high correlation between our param-

eters and the participants perception of them.

3.1 Personality-to-Behavior Mapping

A crowd is composed of subgroups with different personalities. Variations in the

characteristics of the subgroups influence emergent crowd behavior. The user can

add any number of groups with shared personality traits and can edit these char-

acteristics during the course of an animation. An agent’s personality π is a five-

dimensional vector, where each dimension is represented by a personality factor,

ψi. The distribution of the personality factors in a group of individuals is modeled

by a Gaussian distribution function N with mean µi and standard deviation σi:

π = < ψO,ψC,ψE ,ψA,ψN > (1)

ψi = N(µi,σ
2
i), f or i ∈ {O,C,E,A,N}, (2)

6 Mubbasir Kapadia, Alexander Shoulson, Funda Durupinar, and Norman I. Badler

where µ ∈ [0,1] and σ ∈ [−0.1,0.1].
An individual’s overall behavior β is a combination of different behaviors. Each

behavior is a function of personality as:

β = (β1,β2, . . . ,βn) (3)

β j = f (n), f or j = 1, . . . ,n (4)

(5)

Since each factor is bipolar, ψ can take both positive and negative values. For

instance, a value of 1 for extroversion means that the individual has extroverted

character; whereas a value of -1 means that the individual is highly introverted.

By analyzing the meaning and usage of each low-level parameter and built-in

behavior in the HiDAC model, we characterize these by the adjectives that are used

to describe personalities. Thus, we devise a mapping between the agents’ personal-

ity factors (adjectives) and the HiDAC parameters, as shown in Table 2. A positive

factor takes values in the range [0.5,1], whereas a negative factor takes values in

the range [0,0.5). A factor given without any sign indicates that both poles apply to

that behavior. For instance E+ for a behavior means that only extroversion is related

to that behavior; introversion is not applicable. As indicated in Table 2, a behavior

can be defined by more than one personality dimension. The more adjectives of a

certain factor defined for a behavior, the stronger is the impact of that factor on that

behavior. We assign a weight to the factor’s impact on a specific behavior. The sum

of the weights for a specific type of behavior is 1. In order to understand how the

mapping from a personality dimension to a specific type of behavior is performed,

we explain four representative mappings. The remaining ones are mathematically

similar.

Right preference. When the crowd is dispersed, individuals tend to look for avoid-

ance from far away and they prefer to move towards the right hand side of the obsta-

cle they are about to face. This behavior shows the individual’s level of conformity to

the rules A disagreeable or non-conscientious agent makes a right or left preference

with equal probability, while the probability of choosing the right side increases with

increase in values of agreeableness and conscientiousness. Given Pi(Right) ∝ A,C

and β
Right
i ∈ {0,1}, right preference Pi(Right) is computed as follows

Pi(Right) =

{

0.5 if ψA
i < 0 or ψC

i < 0

ωARψA
i +ωCRψC

i otherwise
(6)

β
Right
i =

{

1 if Pi(Right)≥ 0.5

0 otherwise
(7)

Personal space. Personal space determines the territory in which an individual feels

comfortable. Agents try to preserve their personal space when they approach other

agents and when other agents approach from behind. However, these two values are

Authoring Multi-Actor Behaviors in Crowds with Diverse Personalities 7

Leadership Dominant, assertive, bossy, dependable,

confident, unconfident, submissive, de-

pendent, social, unsocial

E, A-, C+, N

Trained/not trained Informed, ignorant O

Communication Social, unsocial E

Panic Oversensitive, fearful, calm, orderly, pre-

dictable

N, C+

Impatience Rude, assertive, patient, stubborn, toler-

ant, orderly

E+, C, A

Pushing Rude, kind, harsh, assertive, shy A, E

Right preference Cooperative, predictable, negative, con-

trary, changeable

A, C

Avoidance /personal space Social, distant E

Waiting radius Tolerant, patient, negative A

Waiting timer Kind, patient, negative A

Exploring environment Curious, narrow O

Walking speed Energetic, lethargic, vigorless E

Gesturing Social, unsocial, shy, energetic, lethargic E

Table 2 Low-level parameters vs. trait-descriptive adjectives

not the same. According to the research on Western cultures, the average personal

space of an individual is found to be 0.7 meters in front and 0.4 meters behind [54].

Given β
PersonalSpace
i ∝−1 E and β

PersonalSpace
i ∈ {0.5,0.7,0.8}, the personal space of

an agent i with respect to an agent j is computed as follows

β
PersonalSpace
i, j =







0.8 f (i, j) if ψE
i ∈ [0, 1

3
)

0.7 f (i, j) if ψE
i ∈ [1

3
,

2
3
]

0.5 f (i, j) if ψE
i ∈ (2

3
,1]

(8)

f (i, j) =

{

1 if i is behind j
0.4
0.7

otherwise
(9)

Waiting radius. In an organized situation, individuals tend to wait for space avail-

able before moving. This waiting space is called the waiting radius and it depends

on the kindness and consideration of an individual, i.e., the agreeableness dimen-

sion. Given β
WaitingRadius
i ∝ A and β

WaitingRadius
i ∈ {0.25,0.45,0.65}. , the waiting

radius is computed as follows

β
WaitingRadius
i, j =







0.25 if ψA
i ∈ [0, 1

3
)

0.45 if ψA
i ∈ [1

3
,

2
3
]

0.65 if ψA
i ∈ (2

3
,1]

(10)

Walking speed. The maximum walking speed is determined by an individual’s en-

ergy level. As extroverts tend to be more energetic while introverts are more lethar-

gic, this parameter is controlled by the extroversion trait. Given β
WalkingSpeed
i ∝ E

and β
WalkingSpeed
i ∈ [1,2], the walking speed is computed as follows

8 Mubbasir Kapadia, Alexander Shoulson, Funda Durupinar, and Norman I. Badler

β
WalkingSpeed
i = ψE

i +1, (11)

3.2 User Studies on Personality

In order to evaluate if the suggested mappings are correctly perceived, we con-

ducted user studies. We created several animations to see how global crowd behav-

ior is affected by modifying the personality parameters of subgroups. Some of these

animations can be found at http://cg.cis.upenn.edu/hms/research/

Ocean/.

3.2.1 Experiment Design

We created 15 videos presenting the emergent behaviors of people in various sce-

narios where the crowds’ behavior is driven by the settings assigned through the

OCEAN model. We performed the mapping from HiDAC parameters to OCEAN

factors by using trait-descriptive adjectives. We determined the correspondence be-

tween our mapping and the users’ perception of these trait terms in the videos in or-

der to validate our system. 70 subjects (21 female, 49 male, ages 18-30) participated

in the experiment. We showed the videos to the participants through a projected dis-

play and asked them to fill out a questionnaire consisting of 123 questions– about

eight questions per video. The videos were shown one by one; after each video,

participants were given some time to answer the questions related to the video. The

participants did not have any prior knowledge about the experiment. Questions as-

sessed how much a person agreed with statements such as “I think the people in this

video are kind.” or “I think the people with black suits are calm.” We asked ques-

tions that included the adjectives describing each OCEAN factor instead of asking

directly about the factors because we assumed that the general public might be un-

familiar with the OCEAN model. Participants chose answers on a scale from 0 to

10, where 0 = totally disagree, 5 = neither agree nor disagree, and 10 = totally agree.

We omitted the antonyms from the list of adjectives for the sake of conciseness. The

remaining adjectives were assertive,calm, changeable, contrary, cooperative, cu-

rious, distant, energetic, harsh, ignorant, kind, orderly, patient, predictable, rude,

shy, social, stubborn, and tolerant.

3.2.2 Sample Scenarios

A sample scenario testing the impact of openness took place in a museum setting as

one of the key factors determining openness is the belief in the importance of art.

Figure 1 (a) shows a screenshot from the sample animation. We tested the adjectives

curiosity and ignorance with this scenario. There were three groups of people, with

Authoring Multi-Actor Behaviors in Crowds with Diverse Personalities 9

openness values of 0, 0.5, and 1. We mapped the number of tasks that each agent

must perform to openness, with each task requiring looking at a painting. The least

open agents (with blue hair) left the museum first, followed by the agents with open-

ness values of 0.5 (with black hair). The most open agents (with red hair) stayed the

longest.

In order to test whether the personalities of people creating congestion are dis-

tinguished, we showed the participants two videos of same duration and asked them

to compare the characteristics of the agents in each video. Each video consisted of

two groups of people moving through each other. The first video showed people

with high agreeableness and conscientiousness values(µ = 0.9 and σ = 0.1 for both

traits), whereas the second video showed people with low agreeableness and con-

scientiousness values(µ = 0.1 and σ = 0.1 for both traits). In the first video, groups

managed to cross each other while in the second video congestion occurred after a

fixed period of time. Such behaviors emerged since agreeable and conscientious in-

dividuals are more patient; they dont push each other and are always predictable, as

they prefer to move on the right side. Figure 1 (b) shows how congestion occurred

due to low conscientiousness and agreeableness. People were stuck at the center

and refused to let other people move. They were also stubborn, negative, and not

cooperative.

Another video assessed how extroverts and introverts were perceived according

to their distribution around a point of attraction. Figure 1 (c) shows a screenshot

from the video in which the agents in blue suits are extroverted (µ = 0.9 and σ =
0.1) and those in grey suits are introverted (µ = 0.1 and σ = 0.1). At the end of

the animation, introverts were left out of the ring structure around the object of

attraction. Because extroverts are faster, they approached the attraction point in less

time. In addition, when other agents blocked their way, they tended to push them to

reach their goal. The figure also shows the difference between the personal spaces

of extroverts and introverts. This animation tested the adjectives, social, distant,

assertive, energetic, and shy.

Figure 1 (d) shows a screenshot from the animation demonstrating the effect of

neuroticism, non-conscientiousness and disagreeableness on panic behavior. Five of

the 13 agents had neuroticism values of µ = 0.9 and σ = 0.1, conscientiousness val-

ues of µ = 0.1 and σ = 0.1 and agreeableness values of µ = 0.1 and σ = 0.1. The

other agents, which are psychologically stable, have neuroticism values of µ = 0.1

and σ = 0.1, conscientiousness values of µ = 0.9 and σ = 0.1 and agreeableness

values of µ = 0.9 and σ = 0.1. The agents in black suits are neurotic, less consci-

entious, and disagreeable. The figure shows that they tend to panic more, push other

agents, force their way through the crowd, and rush to the door. They are not pre-

dictable, cooperative, patient, or calm but they are rude, changeable, negative, and

stubborn.

10 Mubbasir Kapadia, Alexander Shoulson, Funda Durupinar, and Norman I. Badler

(a) (b)

(c) (d)

Fig. 1 Snapshots of a crowd simulation authored using our framework: (a) Openness tested in a

museum. The most open people (red-heads) stay the longest, whereas the least open people (blue-

heads) leave the earliest. (b) People with low conscientiousness and agreeableness values cause

congestion.(c) Ring formation where extroverts (blue suits) are inside and introverts are outside.

(d) Neurotic, non-conscientious and disagreeable agents (in black suits) show panic behavior.

3.2.3 Analysis

After collecting the participants’ answers for all the videos, we first organized the

data for the adjectives. Each adjective is classified by its question number, the actual

simulation parameter and the participants’ answers for the corresponding question.

We calculated the Pearson correlation (r) between the simulation parameters and the

average of the subjects’ answers for each question.

We grouped the relevant adjectives for each OCEAN factor to assess the per-

ception of personality traits. The evaluation process is similar to the evaluation of

adjectives; this time considering the questions for all the adjectives corresponding

to an OCEAN factor. For instance, as openness is related to curiosity and ignorance,

we took into account the adjectives curious and ignorant. Again, we averaged the

Authoring Multi-Actor Behaviors in Crowds with Diverse Personalities 11

subjects’ answers for each question. Then, we computed the correlation with the pa-

rameters and the mean throughout all the questions inquiring curious and ignorant.

We computed the significance of the correlation coefficients as 1− p, where p

is the two-tailed probability that is calculated considering the sample size and the

correlation value. Higher correlation and significance values suggest more accurate

user perception.

3.2.4 Results

Figure 2(a) depicts the correlation coefficients and significance values for the adjec-

tives. Significance is low (< 0.95) for changeable, orderly, ignorant, predictable,

social and cooperative. Low significance is caused by low correlation values for

changeable and orderly. However, although the correlation coefficients are found

to be high for predictable, ignorant, social and cooperative, low significance can

be explained due to small sample size. From the participants’ comments, we de-

termined that changeable is especially confusing because the participants identified

non-conscientious agents as rude but perceived them as persistent in their rudeness.

Orderly is another weakly correlated adjective. Analyzing the results for each

video, we found that agents in the evacuation drill scenario were perceived to be

orderly although they displayed panic behavior. In these videos, even if the agents

pushed each other and moved fast, some kind of order could be observed. This was

due to the smooth flow of the crowd during building evacuation. Although people

were impatient and rude, the overall crowd behavior appeared orderly. On the other

hand, in a scenario showing queuing behavior in front of a water dispenser, the

participants could easily distinguish orderly agents from disorderly ones. Orderly

agents waited at the end of the queue, whereas disorderly agents rushed to the front.

In this scenario, although the main goal was the same for all the agents (drinking

water), there were two distinguishable groups that acted differently.

Figure 2 (b) shows the correlation coefficients and their significance for the

OCEAN parameters. These values are computed by taking into account all the rele-

vant adjectives for each OCEAN factor. All the coefficients have high significance,

with a probability of less than 0.5% of occurring by chance (p < 0.005). The sig-

nificance is high because all the adjectives describing a personality factor are taken

into account, achieving sufficiently large sample size.

The correlation coefficient for conscientiousness is comparatively low, showing

that the participants correctly perceived only approximately 44% of the traits(r2 ≈
0.44). Low correlation values for orderly and changeable reduce the overall corre-

lation. If we consider only rude and predictable for conscientiousness, correlation

increases by 18.6%. The results suggest that people can observe the politeness as-

pect in short-term crowd behavior settings more easily than the organizational as-

pects. This observation also explains why the perception of agreeableness is highly

correlated with the actual parameters.

12 Mubbasir Kapadia, Alexander Shoulson, Funda Durupinar, and Norman I. Badler

(a) (b)

Fig. 2 (a) The correlation coefficients between the parameters and the subjects answers for the

descriptive adjectives (blue), and the significance values for the corresponding correlation coeffi-

cients (orange). Significance is low (¡0.95) for changeable, orderly, ignorant, predictable, social,

and cooperative.(b)The correlation coefficients between actual parameters and subjects answers

for the Ocean factors (blue), and the two-tailed probability values for the corresponding correla-

tion coefficients (orange). All the coefficients have high significance.

Figure 2 also shows that the participants perceived neuroticism the best. In this

study, we have only considered the calmness aspect of neuroticism, which is tested

in emergency settings and building evacuation scenarios.

4 Coordinating Agent Interactions with Behavior Events

When two actors interact in a virtual world, they must coordinate tasks and exchange

information. Managing this complexity is difficult when designing the behavior of

each actor in isolation. For sophisticated cooperative or competitive behavior, an

actor must constantly communicate and perform actions dependent on both its own

and other actors’ current state. This call-and-response type of interchange is tradi-

tionally authored in pieces across multiple actors, with certain steps anticipating the

behavior of another actor involved in the interaction. If a cooperative or competitive

behavior involves actors taking on certain roles (such as “leader/follower”), partici-

pating actors must negotiate the nature of their participation in the interaction, which

further complicates the behavior authoring process.

Consider two agents participating in a transaction involving bargaining over a

piece of merchandise. In a localized agent-centric model, the interaction begins

when the buyer, B, has a desire for an item that is sold by the seller, S. B approaches

S’s market stall and displays a greeting animation. S is notified that B played a greet-

ing animation and has to recognizes that B wants to buy something that he (S) has for

sale in order to begin the bargaining process. Throughout the interaction, the agents

transmit notifications to one another about which animations were played and the

current price negotiated. They must regularly receive these notifications and inter-

Authoring Multi-Actor Behaviors in Crowds with Diverse Personalities 13

pret the mode and mood of the interaction, maintaining the state of the conversation

and the currently negotiated price, as well as the item in question when deciding on

an appropriate response. For a simple sequence of animations, this exhibits a high

level of complexity that must be duplicated and maintained in both agents’ state. In

contrast, suppose a centralized data structure could coordinate these agents instead.

The centralized structure selects B and S out of a pool of available agents, instructs

B to approach S, dispatches the appropriate animations to each in sequence, and

maintains centralized information such as the current mood of the conversation, the

item being haggled over, and the current offers from both parties. Moreover, this

centralized structure can be invoked immediately to involve the two agents in this

kind of interaction, rather than waiting for the whim of actor B to decide that he

suddenly wants to purchase an item from S.

This centralized data structure simplifies the process of designing interactions

between actors, using a behavior paradigm we call event-centric authoring. Rather

than requiring multiple actors to handle the responsibilities of message passing and

stimuli response, a behavior event consists as a body of centralized control logic

with its own state and unrestricted access to the actor(s) involved in the event. Par-

ticipating actors temporarily suspend their own autonomy and are controlled entirely

by the event structure, which treats them as limbs of a central entity for the duration

of its execution. A conversation could be conducted with a central event instruct-

ing the two actors to approach one another and then take turns playing the requisite

sounds and gesture animations. When the event is completed, or fails, the involved

actors resume their own autonomy until co-opted to participate in another event.

Events also define roles for their participants that must be filled on instantiation by

a particular actor type. For example, an event for a transaction between two actors

could may stipulate that the seller be of type “Merchant Actor”. Events exist in a

system to augment the richness of available behavior, and need not detract from an

actor’s own individuality. Actors can still retain rich autonomous behaviors and only

occasionally be involved in higher-order events.

4.1 Parameterized Behavior Trees

Though they could be designed with any suitable method, we create events using

Parameterized Behavior Trees (PBTs) [4], an expansion on standard behavior tree

models [55, 56] with a specialized data flow architecture to handle multiple agents

and shared state data. PBTs, and behavior trees in general, represent a flexible graph-

ical programming language with explicit goal direction that is easy to visualize for

complex behavior structures. They contain an inherent hierarchical structure that

makes them easy to visualize and conceptualize at a macroscopic level. In gen-

eral, a subtree represents a goal at its root, and the means by which that goal can

be achieved with its leaves. This allows for implicit documentation within the tree

structure, so that certain branches of the tree can be understood by the goals they

attempt to accomplish, without the need to necessarily expose any of their children.

14 Mubbasir Kapadia, Alexander Shoulson, Funda Durupinar, and Norman I. Badler

The core mechanic of behavior trees in general is the success or failure of each

node in the tree. Each node attempts to execute an action and reports success or fail-

ure to its parent node. The parent can use that information for selecting the next node

to execute. Sequence nodes execute each child in order. If one child of a sequence

node fails, that sequence reports failure to its parent and ceases execution. Sequence

nodes succeed when all of their children succeed. Conversely, selector nodes cease

execution and report success if any one of their children succeeds. A selector node

reports failure only if all of its children fail. Figure 3 represents a simple behavior

Assert:

door.IsOpen()
actor.Open(door)

actor.Enter(room)

(Selector)

(Sequence)

actor : Human

door : Door

Enter

(Action)

Fig. 3 An encapsulated behavior for entering a room through a door.

tree for opening a door and entering a room. If the assertion succeeds, the selector

will propagate success and skip over the door opening action. Otherwise, if the as-

sertion fails, the selector will attempt to perform its next child, which consists of an

action opening a door. Assuming one of the two actions is successful, the selector

will report success to the root sequence node, which will then execute its next action

directing the actor to enter the opened room.

Unlike traditional behavior trees, PBTs are designed with data fields that take

on values at runtime and propagate information through the structure of the tree,

eventually moving through the tree’s action or assertion leaf nodes to the underly-

ing functions those leaves invoke. These data can be targets for low-level character

controller, or flags that affect branching decisions within the tree itself. With pa-

rameterization, subtrees can be encapsulated for reuse with parameters by multiple

PBTs, not unlike a subroutine in a traditional programming language. The right side

of Figure 3 shows how the simple door behavior tree can be encapsulated into a

generic PBT with the typed parameters “actor” and “door” that take on values at

runtime. The single node created by this encapsulation can be accessed by means

of a lookup node, which acts as a placeholder for the entire subtree and fills the

parameter fields with object references at runtime. Encapsulated subtrees can also

act polymorphically, so that different actor types can “implement” a given subtree

signature in multiple different ways. When an event invokes an actor’s capabilities,

or tells an actor to execute a specific subtree with certain parameters, the actual im-

plementation of those actions can still be personalized to the actor or that actor’s

type.

Authoring Multi-Actor Behaviors in Crowds with Diverse Personalities 15

actor1.goto(site) actor2.goto(site)

(Parallel Seq.)
(Loop)

catcher.Catch(ball)thrower.Throw(ball)

thrower : Human

catcher : Human

ball : Ball

Toss

actor1: Human

actor2 : Human

ball : Ball

site : Location

PlayCatch

actor1, actor2, ball

Toss

actor2, actor1, ball

Toss

Fig. 4 Composing an event for two actors to play catch.

Parameterized subtrees that take multiple actors as parameters define the logic for

behavior events. Figure 4 displays an event for two actors playing a game of catch

at different levels of the hierarchy. First we define a simple sub-event taking two

actors and animating one tossing a ball to another. This sub-event is encapsulated as

a “Toss” tree, with two actor parameters and an object parameter. Next, we define the

actual “PlayCatch” event. This event directs the two actors to approach a location

(given as a parameter when this tree is instantiated), and loops the actors playing

the “Toss” sub-event. Observe that the event reverses the actor roles in the “Toss”

subtree so that the ball passes back and forth between actors.

The “PlayCatch” subtree is also encapsulated with parameters, so the “Play-

Catch” tree can be instantiated at runtime using entities in the environment for its

actor or object roles. At any point during the simulation, a virtual director can se-

lect two actors and a location, provide those actors with a ball, and instantiate this

event using those objects as parameters. The event will then completely manage the

actors’ behavior in a centralized manner as they perform the complicated interac-

tions needed for playing a game of catch. This authoring approach avoids issues

such as shared ownership of the ball item, since all state information for the event

is maintained in the event’s own state space, rather than in the state space of one

of the actors. Note that the event does not own the ball or the actors involved, but

does acquire control over them for the duration of the event. The ball, or any prop,

may persist in the world or may be destroyed depending on the virtual director’s

decision.

16 Mubbasir Kapadia, Alexander Shoulson, Funda Durupinar, and Norman I. Badler

In general, we use events for all complex interactive behavior, but actors are also

independently controlled by separate PBTs for their autonomous actions. When an

actor is not involved in an event, it executes its own internal behavior tree that locally

invokes that actor’s capabilities and modifies that actor’s traits. When an actor is

selected to participate in an event, that actor’s internal tree is halted, and the actor’s

traits and capabilities are exposed to be modified and invoked by the PBT contained

in the event. In general, events are designed to terminate after the implicit goal of

the event is accomplished or fails, while actors’ internal trees never terminate.

4.2 Selecting Actors for Events

Since events contain centralized behavior for interactions between actors, we expect

scenario authors to design a library of events for a variety of interactions between

actors of different types within an environment. Events accept parameters for the

actors involved and any other modifiers that may affect the progression of the in-

teraction between those actors, including the location in which it takes place. Since

events work only on actor types, they are not designed for any one specific actor

within the world. Instead, events are designed to operate generically on any selec-

tion of actors matching the interfaces expected by the event. At runtime, over the

course of the simulation, we use a global director construct to determine which

events should be performed in the world, and what actors should perform them.

When the global director decides that a specific event should be performed at

a location in the world (a process we will discuss later), that director must select

the actors to participate in that interaction. There are several details that factor into

this decision. The first filter is the type of the actor. The structure of the event itself

specifies that each of its roles can only be filled by an actor of a given hierarchical

type, so the director can only select actors of that type when filling that role. Other

filters for actor candidates may be more detailed. The director may select an actor

for a role based on its traits, its relationships with other characters, or the history

of events in which it has participated. These qualities of an actor may be fixed at

initialization, or modifiable at runtime.

If a scenario has many events that select actors based on the actions they have

performed during that simulation, then the simulation’s actors exhibit a quality we

call progressive differentiation. That is, actors begin as largely homogeneous char-

acters in the world and are slowly differentiated by one another based on the actions

they perform at the behest of the director [3]. This kind of differentiation is impor-

tant because it matches the perception of a human user in the environment. To a

user observing the simulation, actors are already undifferentiated because the user

has just encountered them for the first time. The user only learns to distinguish ac-

tors’ personalities based on the actions they perform and the manner in which they

are performed. Much in the same way, the director personifies actors at runtime

based on the actions it selects for them, and maintains that history to inform se-

lection of actors for further events. An actor selected to tell a joke to a crowd may

Authoring Multi-Actor Behaviors in Crowds with Diverse Personalities 17

have that history recorded, making the director more likely to select that actor again

for another “joke” event, and progressively characterize that actor as a “comedian”

character. Because this differentiation experience happens simultaneously for the

director and a human user, selective differentiation accomplishes a key goal of fa-

cilitating the user’s internal narrative for rationalizing the chain of events presented

in the scenario.

4.3 Selecting Events to Perform

After the behavior authors for a given scenario create a library of potential events

that can be performed in the environment, the centralized director needs a method

to pick which events to execute, when, and where in the virtual world. There are

many ways a director could be designed to do this, including planning approaches

to capture causality in narrative, but we present a simple statistical model suitable for

maintaining a variety of actions in the background of a scene. This mostly applies

to undifferentiated characters acting as “extras” to add atmosphere to a location [2].

City Park

40% Conversing 7% Playing Catch

14% Reading

Fig. 5 Assigning regions in a virtual space, each with a desired actor activity distribution.

Areas in the environment are annotated as regions, which keep track of the ac-

tors currently present and the events in which they are involved. The scenario de-

signer specifies a distribution of event classes that should be enforced within that

given region for the actors present. Event classes may be broad categories such as

“conversation”, or “playing a game”, and members of these classes may be more

specific, such as “arguing over politics”, or “playing catch with a ball”. A desired

event distribution specifies what percentage of the actors in that environment should

be involved in events of a certain class. For instance, in a park, the author may

designate that 15% of all actors in the park should be playing games with one an-

other, while another 25% should be conversing. Figure 5 illustrates the process of

assigning regions over a virtual space and specifying the event distribution for each.

We use a specialized director called a Group Coordinator to enforce these dis-

tributions. At a given point in time, the Group Coordinator inspects a region and

18 Mubbasir Kapadia, Alexander Shoulson, Funda Durupinar, and Norman I. Badler

Desired Distribution

Tick Active
Events

Match Within
Threshold?

Select Event
and Actors

Begin
Execution

Active
Events

Location DB

Actual Distribution

Scene
State

Available
Actors Actor3

Event Tree

Event DB

Instantiated/Populated Event

Actor3

Actor24

Actor11

Fig. 6 The Group Coordinator’s decision process for maintaining the distribution of events in a

region.

determines the distribution density of the events being performed in that region at

that instant. If the instantaneous calculated distribution differs significantly from the

expected distribution specified by the scenario author, then the Group Coordinator

must correct the error. The director accomplishes this by identifying the most under-

represented event category, finding an event from the event library in that category,

and invoking that new event on some suitable actors in or near that region. So long as

there are suitable actors available to perform events in or near that region, the Group

Coordinator will ensure that the actual distribution of events being performed will

match the ideal distribution specified by the author within some threshold. This deci-

sion process is illustrated in Figure 6. The desired event distribution for a region can

also be changed over time, reflecting a gradual shift caused by some phenomenon

such as a day/night cycle.

To achieve the greatest event variety, events in this framework should not be

causally linked. This technique is suitable for ambient activities performed by char-

acters on which the user won’t focus, but prominent actors in the environment must

account for causality. If the user does begin to focus on one of these background

Authoring Multi-Actor Behaviors in Crowds with Diverse Personalities 19

Fig. 7 A virtual middle eastern marketplace for demonstrating multi-actor interactions.

characters, then that character can be promoted to a principal character and man-

aged by an event dispatch algorithm that does account for causality and differentia-

tion. The goal of this algorithm is a simple interface to greatly affect the perceived

variety of the activities being performed in a virtual space. Different regions also

allow for different types of activity, where events suitable for a city park would not

be appropriate in a movie theater.

We use the behavior trees from this Group Coordinator control process to imple-

ment a virtual middle eastern marketplace, as displayed in Figure 7. To accurately

implement this setting, actors must be capable of interacting with one another in sit-

uations such as haggling, negotiating, and conversation. By default, actors maintain

an individual “shopping list” of items they wish to procure from the stalls in the mar-

ket. An actor’s own tree directs that actor to move between stalls looking for items.

When a stall has an item that an actor desires, the buyer and seller are placed in

a negotiation event that directs them through gestures and movements representing

two individuals haggling over an item. After the negotiation event ends, the buyer

has either acquired the item or failed, and moves to the next stall on its shopping list.

Periodically, actors are also selected by the Group Coordinator to stop and converse

with one another, which suspends whatever else they were doing at the time (unless

they were involved in a negotiation). This simple system captures the ambience of

characters moving in the background and maintaining a baseline of activity in what

should be a busy scene.

5 Authoring Complex Multi-Actor Interactions using Domain

Independent Planning

This section presents a multi-actor planning framework [5, 57] for generating com-

plicated behaviors between interacting actors in a user-authored scenario. Users de-

fine the state and action space of actors and specialize existing actor definitions

to add variety and purpose to their simulation. Actors with dependent goals are

grouped together into a set of independent composite domains. For each of these

domains, a multi-actor planner generates a trajectory of actions for all actors to meet

the desired behavior. We author and demonstrate a simulation of more than one hun-

20 Mubbasir Kapadia, Alexander Shoulson, Funda Durupinar, and Norman I. Badler

Fig. 8 An overview of the framework.

dred actors (pedestrians and vehicles) in a busy city street and inject heterogeneity

and drama into our simulation using specializations.

Figure 8 presents an overview of our framework. First, a domain expert defines

the problem domain of the actors in the scenario (domain specification). Next, a

director specializes the actors using modifiers, constraints, and behaviors (domain

specialization). Actors with dependent goals or constraints enforcing their interac-

tion are grouped into a composite domain, forming a set of independent domains.

For each domain, a multi-actor planner generates a trajectory of actions that satis-

fies the composite goal while optimizing each actors objective. Each searchs results

become part of a global plan, which generates the resulting simulation.

5.1 Behavior Specification

Domain Specification. Domain specification is the lowest abstraction level for au-

thoring behaviors. It involves defining the state space and action space for all actors

in a scenario. Each actor has a state and can affect the state of itself or others through

actions. Different actors in the same scenario might have different domain specifi-

cations. For example, we can define a traditional actor to simulate a pedestrian and

define the environment as an actor that can be used to trigger global events, such as

natural disasters.

1. The state space. We represent an actors state space using metrics - physical

or abstract properties that are affected by actions. Users can extend metrics by

applying operators to existing metrics to provide an intuitive understanding of

the simulations properties. We denote the space of metrics for all actors in the

scenario as mi.

2. The action space. The action space is a set of actions an actor can perform to

modify its state and the state of other actors. An action has three properties:

preconditions that determine whether the action is possible in a given state, the

Authoring Multi-Actor Behaviors in Crowds with Diverse Personalities 21

Action actionName (parameters) {
Precondition: conditions on elements of {mi} or {ci}
Effect: effects on elements of {mi}
Cost Effect: effects on elements of {ci}

}

Modifier modifierName {
Precondition: conditions on elements of {mi} or {ci}
Effect: effects on elements of {mi} or {ci}

}

Constraint modifierName {
Precondition: conditions on elements of {mi} or {ci}
Constraint: conditions on elements of {mi}

}

Behavior behaviorName {
Precondition: conditions on elements of {mi}
Goal: conditions on elements of {mi}
Objective Function: values of {wi}

}

Fig. 9 Domain Specification and Specialization. Actions, modi-

fiers, constraints and, behaviors defined using our framework.

actions effect on the state of the actor and target actors, and the cost of executing

the action.

3. Costs. Costs are a numerical measure of executing an action. Different actions

can affect different cost metrics by different amounts. Examples of cost metrics

include distance and energy. We denote the space of costs as ci.

Domain Specialization. Users can reuse actor definitions across different scenarios

by specializing actors in a state-dependent manner without modifying the original

definition. This allows authors to specify and generate vastly different, purposeful

simulations intuitively, with minimal specification. We provide three ways to spe-

cialize actors: effect modifiers, cost modifiers, and constraints.

1. Modifiers. Modifiers specialize the effects and costs of actions in a state-

dependent manner. For example, users can place an effect modifier on elderly

actors to reduce their normal speed of movement. Cost modifiers indicate what

actions are in an actors best interest at a particular state. For example, users can

author a cautious actor by increasing the cost of actions that might place the actor

in danger (for example, entering a burning building). Here, the notion of danger

would be a user-specified metric in the actors state space.

2. Constraints. Constraints enforce strict requirements on actors; they can prune

the choices of an actor in a particular state. For example, constraints can prevent

pedestrians from walking on the road or from disobeying traffic signals. Users

can also place constraints on the simulations trajectory to author specific events

22 Mubbasir Kapadia, Alexander Shoulson, Funda Durupinar, and Norman I. Badler

(for example, two cars must collide), generate complex interactions between ac-

tors, and direct high-level stories.

Behavior State Machine Specification. A behavior state defines an actors current

goal and objective function. The goal is a desired state the actor must reach; the

objective function is a weighted sum of costs the actor must optimize. Users can

define multiple behaviors for an actor that depend on its current state.

5.2 Behavior Generation

The entire problem domain is decomposed into a set of independent composite do-

mains where actors with dependent goals or constraints enforcing their interaction

are part of one composite domain. The composite state space is the cartesian product

of the states of each actor and the composite action space is the union of the actions

of each actor in the composite domain. The composite domain is denoted by Σ .

We define a particular problem instance P = (Σ ,s0,g,{oi}) by determining the

initial state s0, composite goal g, and objectives {oi} of each actor in the composite

domain. A composite goal can be single or multiple objectives for an actor, common

or conflicting objectives between actors, as well as global constraints specified for

the entire scene. The composite goal, g, is the logical combination of the goals for all

actors in the composite domain. We combine common goals using the ∧ operator,

indicating that all actors must satisfy these goals. We combine contradicting goals

using the ∨ operator, indicating that any actor must satisfy its goal. The problem

definition P= (Σ ,s0,g,{oi}) becomes the input for the planner.

5.2.1 Multiactor Action-Time Planner

During planning, the heuristic search generates a trajectory of actions for all actors

in the composite space that satisfies g while optimizing {oi}. This facilitates the

generation of complicated interactions between actors, without needing centralized

planning across all actors in the scenario. Even though an actors actions affect only

the state space of its composite domain, the planner determines an actions possibil-

ity by considering the global state space of all actors in the scenario. This ensures

collision-free trajectories between two independent plans. So, we can overlay the

action trajectories for actors in different groups to generate a complete simulation.

Our planner builds on traditional planning approaches in three ways. First, it

works in the composite space of multiple actors with competitive or collaborative

goals. Second, it explicitly takes into account that different actions take various

amounts of time and that actors actions overlap. Finally, it uses an automatically

derived heuristic estimate to speed up the search.

Overview. For the current state, our heuristic planner generates a set of possible

transitions. Each transition represents the forward simulation of the actions by one

Authoring Multi-Actor Behaviors in Crowds with Diverse Personalities 23

time step in the composite space in which actors are simultaneously executing ac-

tions. The planner chooses a transition by minimizing the sum of the transitions

total cost and the heuristic estimate of reaching the composite goal. It computes a

transitions cost such that an action optimizes its own objective function. When the

planner reaches a state that satisfies g, it returns the generated plan.

Transitions. A transition represents the simultaneous execution of actions chosen

by all actors in the composite domain by one time step. A transition is valid and

ready to simulate if all actors have a valid action theyre executing or ready to ex-

ecute. An action is possible if three conditions are met: (1) the actor is currently

not executing an action, (2) the preconditions of the action are satisfied and, (3) no

constraints prohibit the action.

For a valid transition, all actions are simulated for one time step in a random

order. The explicit modeling of time in the action definition results in overlapping

actions, partially executed actions (action failure), and actors performing new ac-

tions while other actors are still performing their current action. After a transition,

an actor might be in one of three states: (1) Success. The actor successfully com-

pleted the action. (2) Executing. The actor partially executed the action at that time

step. (3) Failure. Other actors actions negated the actions preconditions. For both

the success and failure states, the actor must choose a new action in the next time

step.

Cost and Heuristic Function. The cost of simulating a transition {ai}, at state s, in

the time interval (t, t + 1) where ai is the action chosen by actor i in the composite

domain is ∑i oi({c j}). The heuristic function is used to provide a cost estimate from

the current state to the goal state. Our design of a heuristic function is straightfor-

ward and efficient. We first relax the preconditions on the actions (all actions are

deemed possible at any given instant of time) and do a fast greedy search for a tra-

jectory of actions that takes the planner from the current state to the goal. The sum

of the cost of all actions is the heuristic, h for that particular state, s.

5.2.2 The Animation and Simulation Engine

Once weve generated trajectories for the actors, we use a simple steering algorithm

to simulate coin-shaped agents to accurately follow paths. Then, the animation sys-

tem animates models of virtual humans and vehicles along the simulated paths. It

animates characters by transitioning between walk, run, and stop animations on the

basis of the movement speed. It also employs animations to visualize actors current

actions, such as a thief stealing a hot dog.

5.2.3 Behavior Generation Algorithm

The algorithm used to generate multi-actor behaviors is described below:

24 Mubbasir Kapadia, Alexander Shoulson, Funda Durupinar, and Norman I. Badler

1. Define Actors, Aci = 〈Si,Ai,Ci,Bi〉, where Si is the state space, Ai is the action

space, Ci is the set of constraints and modifiers, and Bi is the set of behaviors

defined for actor i.

2. Determine Composite Domains, CD j = 〈Sc
j,A

c
j,C

c
j ,B

c
j〉, where Sc

j = {S1 × S2 ×
... Sn} is the composite state space, Ac

j =
⋃n

i=1{Ai} is the composite action space,

Cc
i = {Ci} is the set of specializations, and Bc

j = {Bi} is the set of behaviors

defined for all actors i = 1 to n in the composite domain CD j.

3. For each Composite Domain, CD j

a. Define Search Domain, Σ = (Sc,Ac,Cc).
b. Determine initial state in the composite space of all agents, s0 =

⋃n
i=1 s0

i

c. Determine active behaviors, bi for each actor, i in composite domain, CD j.

The active behavior for each actor determines the goal, gi and the objective

function oi.

d. The composite goal, g is the logical combination of the goals, {gi} for all

actors in the composite domain. Common goals are combined using an ∧ op-

erator, indicating that all actors must satisfy their goal. Contradicting goals

are combined using an ∨ operator, indicating that any one of the actors must

satisfy their goal.

e. If no behavior is active for actors, Return.

f. Solve for sequence of actions π by performing a search, π = Search(Σ ,s0,g,{oi}),
where Σ is the search domain, s0 is the composite start state, g is the composite

goal, and {oi} are the objective functions for each actor.

4. Combine plans for all domains, Π = π1 ∪π2 ∪ ...πn.

5. Execute Global Plan, Π .

6. Determine new states of all actors.

7. Repeat Steps 2-6.

5.3 City Simulation

We demonstrate the effectiveness of our framework by authoring a car accident in

a busy city street and observing the repercussions of the event on other actors that

are part of the simulation, such as the old man and his son, whose behaviors are

automatically generated using our framework.

Actor Specification. We first define the state space and action space of three actors

in the scenario: (1) a generic pedestrian, (2) a vehicle and, (3) a traffic signal.

1. Pedestrian: The state of a pedestrian comprises its position, orientation, speed

of movement, mass, and, a collision radius. In addition, pedestrians have the

following abstract metrics: hunger, safety, amount of money. These metrics are

variables whose values are modified by actions. The Move action (Figure 12(a))

kinematically translates an actor and has an associated distance and energy cost.

Authoring Multi-Actor Behaviors in Crowds with Diverse Personalities 25

(a) (b) (c) (d)

Fig. 10 Snapshots of a city simulation authored using our framework: (a) Actors queue up at a hot

dog stand while the vendors talk to one another. In the meantime, a thief lies in the shadows waiting

for an opportunity to steal the money from the stand. (b) Cars giving right of way to pedestrians.

(c) Cautious actors run to a place of safety in the event of an accident. (d) Fire-fighters extinguish

the fire while daring actors look on.

(a) (b) (c) (d)

Fig. 11 Interaction between thief and the vendors: (a) The thief steals money from the hot dog

stand when the vendors walk away (because of the accident). (b)-(d) The vendors collaboratively

work together to surround the thief in the alley and manage to catch him.

The routine CheckCollisions(..) returns false if Move causes the pedes-

trian to enter a state of collision. Additional actions (e.g. Eat) can be associated

with different metrics (e.g. hunger). A pedestrian is given a simple behavior to

move towards a specified goal position ((Figure 12(b)) while minimizing distance

and energy cost. The goal positions are randomly generated to produce a realistic

city simulation with wandering pedestrians. Additionally, the pedestrians mon-

itor the state of a traffic signal which coordinates the movement of pedestrians

and vehicles at an intersection ((Figure 12(c)).

2. Vehicles: The state and action space of vehicles is defined similarly to simulate

their movement. In addition, they have a metric damage which increases if a

vehicle collides with another vehicle. Vehicles are constrained to stay on the

roads, give right of way to pedestrians, and obey the traffic lights.

3. Traffic Signals: A traffic signal represents an environment actor that models the

simulation of the traffic signals at the intersection. It has a single metric signal

state which is the current state that the traffic signals at the intersection are

in. An action, ChangeTrafficSignal (Table 3(a)) determines the state of

the traffic signal based upon the current simulation time. The pedestrian and the

vehicles query the signal state in order to follow the traffic signals.

Actor Specialization We can easily and intuitively specialize actors using our

framework. Fire-fighter actors are specialized pedestrians with lower weights to the

safety cost metric and with a common goal to extinguish fires. A grandfather pedes-

26 Mubbasir Kapadia, Alexander Shoulson, Funda Durupinar, and Norman I. Badler

Action Move(Velocity : v, TStep: dt) {
Precondition:

CheckCollisions(self.position + v · dt) == false;

Effect:

self.position = self.position + v · dt;

Cost Effect:

self.energyCost = 1
2
(self.mass)|v|

2
;

self.distanceCost = |v|dt;

}

(a)

Behavior GoalBehavior {
Precondition: self.goalPosition 6= 0;

Goal: self.goalPosition;

Objective Function:

min(self.distanceCost + self.energyCost);

}

(b)

Constraint PedSignalConstraint {
Precondition: true;

Constraint:

if ((signal.signalState == 0

∧CrossingRoad(self.position,C))
∨(signal.signalState == 1

∧CrossingRoad(self.position,A))
∨(trafficSignal.signalState == 2

∧CrossingRoad(self.position,B)))
true;

else false;

}
(c)

Fig. 12 A generic pedestrian with a simple Move action (a), a be-

havior to go to a specified goal position (b), and a constraint to

follow the traffic signals (c).

trian is specialized by reducing the walking speed and specializing them to follow

their grandson. The objective of the grandson is to escort his grandson at all times

and to keep him away from danger (e.g. car accidents, oncoming traffic and other

pedestrians) which is achieved by incorporating the safety cost of the grandfather in

the grandsons objective function.

Cautious and daring actors are authored by affecting the cost of actions that place

them in danger (Table 3(b)). A street vendor is given the behavior of manning his

hot dog stand and ensuring that his money is not stolen. A thief is authored with a

goal to steal money using a Steal action (Table 3 (i),(j)) while minimizing the risk

of getting caught (Table 3(j)). A cost modifier assigns a high cost to stealing in the

presence of other actors. A reckless vehicle is modeled by introducing a high cost to

moving at slower speeds and relaxing the constraints of obeying traffic signals and

collisions with other vehicles (Table 3 (f),(g)).

Authoring Multi-Actor Behaviors in Crowds with Diverse Personalities 27

5.4 Results

We populate a city block with pedestrians and vehicles using our framework. Ac-

tor specializations provide an easy and intuitive way to add variety and purpose

to the virtual world. We observe pedestrians walking along the sidewalks in the

city in a goal-oriented manner (satisfying hunger by getting a hot dog, going to

the park to meet a friend, stopping to take a look at objects of interest) while

obeying constraints and modifications (obey traffic lights, avoid collisions, stay

off the streets etc). A video demonstrating the results can be found at http:

//cg.cis.upenn.edu/hms/research/MultiActorPlanning/.

The accident scenario. To add drama to the simulation, we introduce constraints

on the trajectory of the entire simulation. First, we introduce a constraint, AccidentC

(Table 3(e)), that an accident must happen (i.e. two vehicles must collide). A sim-

ulation is generated where two reckless vehicles collide with one another, resulting

in a fire that stops the traffic at the intersection (Figure 10(d)). Cautious pedestrians

who are near the accident run away to a safe distance in panic or walk away calmly

(depending on their specialization) while daring actors approach the scene of the

accident. The car accident triggers the activation of the behaviors in the fire-fighters

who run to the location of the fires. They work together collaboratively to extinguish

both fires (a result of the planner working in the composite domain). Upon noticing

the accident, the vendor runs to a place of safety (high cost modifier on safety). As

soon as the thief notices that the vendor has left his stand, he slowly approaches the

stand, steals the money and runs to a place of safety.

Varying the simulation. We vary the simulation result by introducing other spe-

cializations or modifying existing ones. In a first take, we define the objectives of

the two vendors to minimize safety cost as well as the cost of being robbed as in-

dividuals. When the accident happens, they run to a place of safety while keeping

the stand in eyesight. As soon as they see the thief stealing the money, they both

chase after him. However, the thief has a head-start and runs away. This is because

the planner generates solutions that tries to achieve the objective of each vendor

independently. Hence, we observe that in the composite domain of the thief and

two vendors, the thief succeeds. In a second take, we modify the objectives of the

vendors to minimize the cost of both being robbed (Table 3(h)). The common goal

of the vendors implies that the planner searches for a solution that optimizes their

combined objectives. As a result, the two vendors cooperate to corner the thief in an

alley (Figures 11(a)-(d)).

Performance and Implementation Details. We demonstrate 106 actors in the city

simulation, with 15 cars and 91 pedestrians. Based on constraints, goal definitions

and spatial locality, the following composite domains are defined: (1) 15 cars and

4 fire-fighters, (2) old man and son and, (3) generic pedestrians grouped together

based on spatial locality. Dividing the problem domain into smaller composite do-

mains reduces the branching factor of the search by two orders of magnitude, re-

28 Mubbasir Kapadia, Alexander Shoulson, Funda Durupinar, and Norman I. Badler

ducing the search problem to smaller, more feasible searches. The plans for each

of these domains is then overlayed to form the complete solution. The performance

results are provided in Figure 13. The amortized performance of our behavior gen-

eration framework for the results shown in the video is 0.02 seconds per actor per

second of simulation generated.

Number of actors 106

Number of composite domains 12

Max # of actors in a composite domain 19

Total generation time 219 sec

Max generation time for one domain 76 sec

Min generation time for one domain 8 sec

Generation time per actor 2.06 sec

Length of output simulation 95 sec

Amortized time per actor per second 0.02 sec

Fig. 13 Performance Results.

6 Discussion

A key challenge in multi-actor simulations is to provide an appropriate interface for

authoring high-fidelity virtual actors with feature-rich control mechanisms capable

of complex interactions, while satisfying global scenario constraints. This chapter

presents work that addresses the problem of behavior authoring at three levels.

Modeling Agent Personality. The OCEAN personality model defines 5 orthogonal

axes to intuitively describe the personality of an agent. We describe a mapping of

these personality traits to low-level simulation parameters, facilitating the control of

agent and group personality in order to observe the emergence of different crowd

behaviors. We validate our mapping by conducting a user study which assesses the

perception of personality traits in a variety of crowd simulations demonstrating these

behaviors. The personality traits provide an intuitive and flexible interface for au-

thors to control social crowd dynamics.

Event Centric Authoring of Multi-Actor Interactions. We describe an event-

centric behavior authoring paradigm where a user-authored centralized controller,

defined using parameterized behavior trees (PBTs) [4] is used to coordinate behav-

iors between multiple interacting actors. Actors participating in an event temporar-

ily suspend autonomy and are controlled by the event structure which treats them

as limbs of a central entity for the duration of the event. PBTs provide a flexible,

graphical programming language for authoring behaviors, and event-centric author-

ing alleviates the burden or coordinating the interactions between virtual actors.

Authoring Multi-Actor Behaviors in Crowds with Diverse Personalities 29

However, there is greater burden on the author to define events, and to stitch to-

gether event sequences to create more complex narratives.

Automated Planning for Simulating Multi-Actor Interactions. The use of do-

main independent planners automates the behavior generation process where users

only need to specify goals and objectives for actors. In order to inject heterogeneity

into the simulation, generic actor definitions can be specialized by modifying the

cost and effect of actions. Furthermore, the use of composite domains where actors

with common or conflicting objectives are part of a single planning domain, facili-

tates the generation of complex interactions between actors. However, this method

has the following limitations:

• The behaviors generated by our framework are heavily dependent on the manner

in which actors are grouped together and the weights of the objectives.

• One of the major design choices of this framework was the use of a multi-actor

planner which prohibits its use in interactive applications such as games.

• It is non-intuitive to define interactions between multiple actors which is accom-

plished indirectly by specifying common objectives and global constraints.

Towards A Unified Framework for Authoring Diversity in Personality and Be-

havior Multi-Actor Simulations. The traits of an actor that define personality,

mood, and emotion provide an intuitive and high-level interface for specializing in-

dividual actors as well as groups of actors. Incorporating these traits into the behav-

ior authoring process, especially at the event-centric level, facilitates the emergence

of different actor interactions as a parametrization of these traits. For example, a

behavior to describe a Protest event would differ based on the personality and mood

of actors participating in the protest. A hostile and extroverted actor is more likely

be an active participant while an anxious and nervous actor is more likely to steer

away from the scene of the protest. Figure 14 illustrates the use of personality and

mood traits in an authored event.

Authoring complex multi-actor interactions becomes prohibitive when designing

the behavior of each agent in isolation. In order to cooperate or compete, actors must

constantly communicate information and account for the current state of neighbor-

ing actors while performing an action. Planning based approaches provide flexi-

bility of automation at higher performance, while event-centric authoring mitigates

the need for treating every actor as an individual at greater burden to the author. A

promising direction of exploration is to develop a planning based framework that

automatically triggers sequences of user-authored events that satisfy global narra-

tive constraints, while conforming to the roles of individual actors in the scenario. A

planner can also be used at the discretion of the centralized controller to act along-

side the event level as another tool for coordinating small narrative-driven actor

interactions.

Events provide the facility to pre-author and tune actor interactions, while plan-

ners allow the generation of more dynamic activities in an automatic fashion. Using

events, we can build a library of pre-authored collaborative action sequences of nar-

rative and interactive significance. After preparing these actor interactions, we can

30 Mubbasir Kapadia, Alexander Shoulson, Funda Durupinar, and Norman I. Badler

Fig. 14 A Protest event that takes into account the personality and mood of actors participating

in the event.

apply a multi-actor planner to influence more local behaviors among groups of ac-

tors related by activity or domain in addition to selecting and applying the events we

have designed. The planner may even be invoked at the discretion of the centralized

controller, allowing various degrees of autonomy and control as needed by compu-

tational load, actor characteristics, or interactive user actions.

Acknowledgements We would like to thank the following people for their significant contribu-

tions in the research projects reported here. Francisco Garcia, Matthew Jones, Robert Mead, and

Daniel Garcia helped define a parameterization of behavior trees for use in event-centric authoring.

Nuria Pelechano, Jan Allbeck, and Ugur Gudukbay were involved in defining personality parame-

ters for crowd simulations. Shawn Singh, Petros Faloutsos, and Glenn Reinman were instrumental

in proposing the use of domain-independent planning for behavior authoring.

Parts of this research were supported by U.S. Army MURI “SUBTLE” and U.S. Army Robotics

Collaborative Technology Alliance. The opinions expressed are solely those of the authors and not

the sponsors.

Authoring Multi-Actor Behaviors in Crowds with Diverse Personalities 31

References

1. F. Durupinar, N. Pelechano, J. M. Allbeck, U. Güdükbay, and N. I. Badler, “How the ocean

personality model affects the perception of crowds,” IEEE Computer Graphics and Applica-

tions, vol. 31, no. 3, pp. 22–31, 2011.
2. A. Shoulson and N. I. Badler, “Event-Centric Control for Background Agents,” in Proceedings

of the 4th International Conference on Interactive Digital Storytelling (ICIDS ’11). Springer,

2011, pp. 193–198.
3. A. Shoulson, D. Garcia, and N. I. Badler, “Selecting Agents for Narrative Roles,” in Proceed-

ings of the 4th Workshop on Intelligent Narrative Technologies (INT4). AAAI Press, 2011.
4. A. Shoulson, F. Garcia, M. Jones, R. Mead, and N. I. Badler, “Parameterizing Behavior Trees,”

in Proceedings of the 4th International Conference on Motion in Games (MIG ’11). Springer,

2011, pp. 144–155.
5. M. Kapadia, S. Singh, G. Reinman, and P. Faloutsos, “A behavior-authoring framework for

multiactor simulations,” Computer Graphics and Applications, IEEE, vol. 31, no. 6, pp. 45

–55, nov.-dec. 2011.
6. N. Badler, Virtual Crowds: Methods, Simulation, and Control (Synthesis Lectures on Com-

puter Graphics and Animation). Morgan and Claypool, 2008.
7. L. F. Henderson, “The statistics of crowd fluids.” Nature, vol. 229, no. 5284, pp. 381–383,

February 1971. [Online]. Available: http://dx.doi.org/10.1038/229381a0
8. G. Lovas, “Modeling and simulation of pedestrian traffic flow,” in Transportation Research

Record, 1994, pp. 429–443.
9. J. Milazzo, N. Rouphail, J. Hummer, and D. Allen, “The effect of pedestrians on the capacity

of signalized intersections,” in Transportation Research Record, 1998, pp. 37–46.
10. S. P. Hoogendoorn and S. P. Hoogendoorn, “Pedestrian travel behavior modeling,” in In 10th

International Conference on Travel Behavior Research, Lucerne, 2003, pp. 507–535.
11. C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral model,” in SIGGRAPH

’87: Proceedings of the 14th annual conference on Computer graphics and interactive tech-

niques. ACM, 1987, pp. 25–34.
12. C. Reynolds, “Steering behaviors for autonomous characters,” 1999. [Online]. Available:

citeseer.ist.psu.edu/reynolds99steering.html
13. D. Helbing and P. Molnar, “Social force model for pedestrian dynamics,” PHYSICAL

REVIEW E, vol. 51, p. 4282, 1995. [Online]. Available: doi:10.1103/PhysRevE.51.4282
14. D. Helbing, I. Farkas, and T. Vicsek, “Simulating dynamical features of escape

panic.” Nature, vol. 407, no. 6803, pp. 487–90, 2000. [Online]. Available: http:

//www.ncbi.nlm.nih.gov/pubmed/11028994
15. A. Braun, S. R. Musse, L. P. L. d. Oliveira, and B. E. J. Bodmann, “Modeling individual be-

haviors in crowd simulation,” in CASA ’03: Proceedings of the 16th International Conference

on Computer Animation and Social Agents (CASA 2003). Washington, DC, USA: IEEE

Computer Society, 2003, p. 143.
16. N. Pelechano, J. M. Allbeck, and N. I. Badler, “Controlling individual agents in

high-density crowd simulation,” in Proceedings of the 2007 ACM SIGGRAPH/Eurographics

symposium on Computer animation, ser. SCA ’07. Aire-la-Ville, Switzerland, Switzerland:

Eurographics Association, 2007, pp. 99–108. [Online]. Available: http://dl.acm.org/citation.

cfm?id=1272690.1272705
17. J. Dijkstra, H. J. P. Timmermans, and A. J. Jessurun, “A multi-agent cellular automata system

for visualising simulated pedestrian activity,” in in S. Bandini and T. Worsch (Eds.), The-

oretical and Practical Issues on Cellular Automata - Proceedings on the 4th International

Conference on Cellular Automata for research and Industry. Springer Verlag, 2000, pp.

29–36.
18. S. Chenney, “Flow tiles,” Proceedings of the 2004 ACM SIGGRAPH/Eurographics Sympo-

sium on Computer Animation (SCA 04), pp. 233–242, 2004.
19. K. Nishinari, A. Kirchner, A. Namazi, and A. Schadschneider, “Extended floor field ca model

for evacuation dynamics,” IEICE Trans Inf and Syst, vol. E84-D, no. 1, p. 7, 2003. [Online].

Available: http://arxiv.org/abs/cond-mat/0306262

32 Mubbasir Kapadia, Alexander Shoulson, Funda Durupinar, and Norman I. Badler

20. F. Lamarche and S. Donikian, “Crowd of virtual humans: a new approach for real time navi-

gation in complex and structured environments.” in Computer Graphics Forum 23., 2004.

21. C. Loscos, D. Marchal, and A. Meyer, “Intuitive crowd behaviour in dense urban environ-

ments using local laws,” in TPCG ’03: Proceedings of the Theory and Practice of Computer

Graphics 2003. Washington, DC, USA: IEEE Computer Society, 2003, p. 122.

22. J. van den Berg, S. Patil, J. Sewall, D. Manocha, and M. Lin, “Interactive navigation of mul-

tiple agents in crowded environments,” in SI3D ’08: Proceedings of the 2008 symposium on

Interactive 3D graphics and games. ACM, 2008, pp. 139–147.

23. K. H. Lee, M. G. Choi, Q. Hong, and J. Lee, “Group behavior from video: a data-

driven approach to crowd simulation,” in SCA ’07: Proceedings of the 2007 ACM SIG-

GRAPH/Eurographics symposium on Computer animation. Aire-la-Ville, Switzerland,

Switzerland: Eurographics Association, 2007, pp. 109–118.

24. A. Lerner, Y. Chrysanthou, and D. Lischinski, “Crowds by example,” Computer Graphics

Forum, vol. 26, no. 3, pp. 655–664, September 2007.

25. S. Paris, J. Pettré, and S. Donikian, “Pedestrian reactive navigation for crowd simulation: a

predictive approach,” in EUROGRAPHICS 2007, vol. 26, 2007, pp. 665–674.

26. J. van den Berg, M. C. Lin, and D. Manocha, “Reciprocal velocity obstacles for real-time

multi-agent navigation,” in IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND

AUTOMATION. IEEE, 2008, pp. 1928–1935.

27. S. Singh, M. Kapadia, W. Hewlett, and P. Faloutsos, “A modular framework for adaptive agent-

based steering,” in Proceedings of the 2011 symposium on Interactive 3D graphics and games,

ser. I3D ’11. ACM, 2011.

28. M. Kapadia, S. Singh, W. Hewlett, and P. Faloutsos, “Egocentric affordance fields in pedes-

trian steering,” in I3D ’09: Proceedings of the 2009 symposium on Interactive 3D graphics

and games. ACM, 2009, pp. 215–223.

29. M. Kapadia, S. Singh, W. Hewlett, G. Reinman, and P. Faloutsos, “Parallelized egocentric

fields for autonomous navigation,” The Visual Computer, International Journal of Computer

Graphics, 2012.

30. J. Ondřej, J. Pettré, A.-H. Olivier, and S. Donikian, “A synthetic-vision based steering

approach for crowd simulation,” in ACM SIGGRAPH 2010 papers, ser. SIGGRAPH

’10. New York, NY, USA: ACM, 2010, pp. 123:1–123:9. [Online]. Available:

http://doi.acm.org/10.1145/1833349.1778860

31. Q. Yu and D. Terzopoulos, “A decision network framework for the behavioral animation of

virtual humans,” in Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on

Computer animation, ser. SCA ’07. Aire-la-Ville, Switzerland, Switzerland: Eurographics

Association, 2007, pp. 119–128. [Online]. Available: http://dl.acm.org/citation.cfm?id=

1272690.1272707

32. B. M. Blumberg, “Old tricks, new dogs: ethology and interactive creatures,” Ph.D. dissertation,

1997, supervisor-Maes, Pattie.

33. D. V. Pynadath and S. C. Marsella, “Psychsim: Modeling theory of mind with decision-

theoretic agents,” Proceedings of the International Joint Conference on Artificial Intelligence,

pp. 1181—1186, 2005.

34. Massive Software Inc., “Massive: Simulating life,” 2010, www.massivesofware.com.

35. E. Menou, “Real-time character animation using multi-layered scripts and spacetime opti-

mization,” in Proceedings of ICVS ’01. London, UK: Springer-Verlag, 2001, pp. 135–144.

36. K. Perlin and A. Goldberg, “Improv: a system for scripting interactive actors in virtual worlds,”

in Proceedings of ACM SIGGRAPH. New York, NY, USA: ACM, 1996, pp. 205–216.

37. H. Vilhjálmsson, N. Cantelmo, J. Cassell, N. E. Chafai, M. Kipp, S. Kopp, M. Mancini,

S. Marsella, A. N. Marshall, C. Pelachaud, Z. Ruttkay, K. R. Thórisson, H. Welbergen, and

R. J. Werf, “The behavior markup language: Recent developments and challenges,” in Pro-

ceedings of IVA ’07, 2007, pp. 99–111.

38. A. B. Loyall, “Believable agents: building interactive personalities,” Ph.D. dissertation, Pitts-

burgh, PA, USA, 1997.

Authoring Multi-Actor Behaviors in Crowds with Diverse Personalities 33

39. J. Funge, X. Tu, and D. Terzopoulos, Cognitive Modeling: Knowledge, Reasoning and Plan-

ning for Intelligent Characters. ACM Press/Addison-Wesley Publishing Co., 1999, pp. 29–

38.

40. W. Shao and D. Terzopoulos, “Autonomous pedestrians,” Graph. Models, vol. 69, pp.

246–274, September 2007. [Online]. Available: http://dl.acm.org/citation.cfm?id=1323742.

1323926

41. J. Allbeck and N. Badler, “Toward representing agent behaviors modified by personality and

emotion,” 2002.

42. J. Wiggins, The five-factor model of personality: theoretical perspectives. Guilford Press,

1996. [Online]. Available: http://books.google.com/books?id=UzXvvAsESjEC

43. A. Ortony, G. Clore, and A. Collins, The Cognitive Structure of Emotions. Cambridge:

Cambridge University Press, 1988.

44. P. Gebhard, “Alma: a layered model of affect,” in Proceedings of the fourth international joint

conference on Autonomous agents and multiagent systems, ser. AAMAS ’05. New York,

NY, USA: ACM, 2005, pp. 29–36. [Online]. Available: http://doi.acm.org/10.1145/1082473.

1082478

45. A. Egges, S. Kshirsagar, and N. Magnenat-Thalmann, “Generic personality and emotion

simulation for conversational agents: Research articles,” Comput. Animat. Virtual Worlds,

vol. 15, pp. 1–13, March 2004. [Online]. Available: http://dl.acm.org/citation.cfm?id=

1071195.1071196

46. S. J. Guy, S. Kim, M. C. Lin, and D. Manocha, “Simulating heterogeneous crowd behaviors

using personality trait theory,” in Proceedings of the 2011 ACM SIGGRAPH/Eurographics

Symposium on Computer Animation, ser. SCA ’11. New York, NY, USA: ACM, 2011, pp.

43–52. [Online]. Available: http://doi.acm.org/10.1145/2019406.2019413

47. B. Magerko, J. E. Laird, M. Assanie, A. Kerfoot, and D. Stokes, “Ai characters and directors

for interactive computer games,” Artificial Intelligence, vol. 1001, pp. 877–883, 2004.

48. M. Mateas and A. Stern, Integrating Plot , Character and Natural Language Processing

in the Interactive Drama Faade, 2003, vol. 2. [Online]. Available: http://www.cs.ucsc.edu/
∼michaelm/tenurereview/publications/mateas-tidse2003.pdf

49. M. Si, S. C. Marsella, and D. V. Pynadath, THESPIAN: An Architecture for Interactive Peda-

gogical Drama, 2005, pp. 595–602.

50. M. O. Riedl, C. J. Saretto, and R. M. Young, Managing interaction between users and agents

in a multi-agent storytelling environment. ACM Press, 2003, vol. 34, pp. 186–193. [Online].

Available: http://portal.acm.org/citation.cfm?doid=860575.860694

51. B. Li and M. Riedl, Creating Customized Game Experiences by Leveraging Human

Creative Effort: A Planning Approach. Springer, 2011, p. 99116. [Online]. Available:

http://www.springerlink.com/index/428G8512624879U6.pdf

52. C. Stocker, L. Sun, P. Huang, W. Qin, J. M. Allbeck, and N. I. Badler, “Smart events and

primed agents,” Proceedings of the 10th International Conference on Intelligent Virtual Agents

(IVA 10), vol. 6356, p. 1527, 2010.

53. L. R. Goldberg, “An alternative ”description of personality”: The big-five factor structure,”

Journal of Personality and Social Psychology, vol. 59, pp. 1216–1229, 1990.

54. E. T. Hall, The Hidden Dimension. Anchor Books, 1966.

55. D. Isla, “Handling complexity in the Halo 2 ai,” Game Developers Conference, 2005.

[Online]. Available: http://www.gamasutra.com/gdc2005/features/20050311/isla 01.shtml

56. B. Knalfa, “Introduction to behavior trees,” http://www.altdevblogaday.com/2011/02/24/

introduction-to-behavior-trees/, 2011.

57. M. Kapadia, S. Singh, G. Reinman, and P. Faloutsos, “Multi-actor Planning for Directable

Simulations,” in Proceedings of the 2011 Workshop on Digital Media and Digital Content

Management. IEEE Computer Society, 2011, pp. 111–116.

34 Mubbasir Kapadia, Alexander Shoulson, Funda Durupinar, and Norman I. Badler

Action ChangeTrafficSignal {
Precondition:

true;

Effect:

timeMod = currentTime % 100;

if (timeMode <= 35)

self.signalState = 0;

else if (timeMode <= 70)

self.signalState = 1;

else self.signalState = 2;

}

(a)

CostModifier DaringCM {
Precondition:

∃ a: a.danger > 0 ;

Cost Effect:

self.safetyCost =

MAX_COST - max(a.danger);

}

(b)

EffectModifier DaringEM {
Precondition:

true;

Effect:

a = argmax(a.danger) ;

self.goalPosition = a.position;

}

(c)

Behavior FireFighterB {
Precondition:

∃ a ∈ Actors: a.fire > 0;

Goal:

∀ a ∈ Actors a.fire = 0;

Objective Function:

min(0.3·self.safetyCost
+ self.distanceCost

+ self.energyCost);

}

(d)

Constraint AccidentC {
Precondition:

true;

Constraint:

// Two vehicles must collide

// at some point in time

∃ a1,a2 :

IsAVehicle(a1) ∧
IsAVehicle(a2) ∧
Distance(a1,a2) < 5.0;

}

(e)

EffectModifier RecklessVehicleEM {
Precondition:

true;

Effect:

self.collisionRadius = MIN;

self.followSignals = FALSE;

}

(f)

CostModifier RecklessVehicleCM {
Precondition:

true;

Effect:

// low cost for traveling

// at MAX_SPEED

self.speedCost

= MAX_SPEED-self.speed;

}

(g)

Behavior CooperativeVendorB {
Precondition:

true;

Goal:

self.money >= 100 ∧
otherVendor.money >= 100;

Objective Function:

min(self.stolenCost

+ otherVendor.stolenCost);

}

(h)

Behavior ThiefB {
Precondition:

true;

Goal:

self.money >= 100

Objective Function:

min(self.distanceCost

+ self.energyCost);

}

(i)

Action Steal(Actor a, Amount: m){
Precondition:

m <= a.money ∧
DistanceBetween(self,a) < 1.0;

Effect:

a.money = a.money - m

self.money = self.money + m

Cost:

self.stealCost = m;

a.stolenCost = m;

}

(j)

Table 3 Scripts used to author the city simulation.

