Skip to main content

Use of Synthetic Peptides for the Study of Membrane Protein Structure

  • Chapter
Membrane Protein Structure

Part of the book series: Methods in Physiology Series ((METHPHYS))

Abstract

Living cells maintain tenfold or greater concentration gradients of Na +, K+, and Ca2+ across an ion-impermeant hydrocarbon layer approximately 30 Å thick in their lipid bilayer membranes. Protein “pumps” embedded in these membranes create the gradients, and protein ion channels modulate their discharge in response to various stimuli. Physiological processes involving ion channels range from the very elementary sensory systems of single-celled organisms such as Escherichia coli (e.g., Saimi et al., 1988) to the massively interconnected information-processing network of the mammalian brain (e.g., Nicoll, 1988). Historically, ion channels were proposed to be the elementary ion conduction elements in nerve impulse transmission (reviewed by Hille, 1984). Decades of study of nervous system and muscle physiology have since identified hundreds of functionally distinct ion channels. More recently, recombinant DNA technology has provided the amino acid sequences of many ion channel proteins. They appear to form a small number of “families” (Numa, 1989) characterized both by function and by associated, distinguishing features of their sequences. The apparent correlation of sequence features with channel functional type has prompted much curiosity and speculation concerning the three-dimensional structure and mechanisms of functioning of ion channel proteins (see, e.g., Montal, 1990). Most of these proteins, however, contain thousands of amino acid residues. Given our current level of understanding of protein folding, such proteins are far too large and complicated for molecular modeling to provide a satisfactory level of structural detail. With three-dimensional crystal structures, of course, one might hope to pinpoint the features relevant to channel function, but crystals of ion channel proteins have, so far, not provided sufficiently high-resolution diffraction information to resolve sequence-related details. Consequently, other ways are needed to obtain structure—function information from sequence data. Comparative studies of natural sequence variations within channel families (e.g., Butler et al., 1989), functional analysis of site-directed mutations (e.g., Imoto et al., 1988; Stühmer et al., 1989), and studies of synthetic peptides with sequences based on specific channel proteins (e.g., Oiki et al., 1988) are all being used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akerfeldt, K. S., Kim, R. M., Camac, D., Groves, J. T., Lear, J. D., DeGrado, W. F. (1992) Tetraphilin: a four-helix proton channel built on a tetraphenylporphyrin framework. J. Am. Chem. Soc. 114: 9656–9657.

    Article  CAS  Google Scholar 

  • Armstrong, C. M. (1989) Reflections on selectivity. In: Membrane Transport. People and Ideas, edited by J. C. Tosteson. New York: Oxford University Press.

    Google Scholar 

  • Baker, E. N., and Hubbard, R. E. (1984) Hydrogen bonding in globular proteins. Prog. Biophys. Mol. Biol. 44: 97–179.

    Article  PubMed  CAS  Google Scholar 

  • Banner, D. W., Kokkinidis, M., and Tsernoglou, D. (1987) Structure of the ColE1 Rop protein at 1.7 A resolution. J. Mol. Biol. 196: 657–675.

    Article  PubMed  CAS  Google Scholar 

  • Benz, R. (1984) Structure and selectivity of porin channels. Curs - . Top. Membrane Transport 21: 199219.

    Google Scholar 

  • Bernheimer, A. W., and Rudy, B. (1986) Interactions between membranes and cytolytic peptides. Biochim. Biophys. Acta 864: 123–141.

    Article  PubMed  CAS  Google Scholar 

  • Betz, S. F., Raleigh, D. P., and DeGrado W. F. (1993) De novo protein design: from molten globules to native-like states. Curr. Opinion Struct. Biol. 3: 601–610.

    Article  CAS  Google Scholar 

  • Butler, A., Wei, A., Baker, K., and Salkoff, L. (1989) A family of putative potassium channel genes in Drosophila. Science 243: 943–947.

    CAS  Google Scholar 

  • Catterall, W. A. (1988) Structure and function of voltage-sensitive ion channels. Science 242: 50–61.

    Article  PubMed  CAS  Google Scholar 

  • Chattopadhyay, A., and London, E. (1987) Parallax method for direct measurement of membrane pene-tration depth utilizing fluorescence quenching by spin-labeled phospholipids. Biochemistry 26: 39–45.

    Article  PubMed  CAS  Google Scholar 

  • Chung, L. A., DeGrado, W. F., and Lear, J. D. (1990) Orientation of a model ion channel peptide in lipid vesicles. Biophys. J. 57: 462a.

    Google Scholar 

  • Chung, L. A., Lear, J. D., and DeGrado, W. F. (1992) Fluorescence study of the secondary structure and orientation of a model ion channel peptide in phospholipid vesicles. Biochemistry 31: 6608–6616.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, V., and Parry, D.A.D. (1990) a-Helical coils and bundles: how to design an a-helical protein. Proteins7: 1–15.

    Google Scholar 

  • Colquhoun, D., and Hawkes, A. G. (1983) The principles of the stochastic interpretation of ion-channel mechanisms. 135–175 In: Single-Channel Recording, edited by B. Sakmann and E. Neher. New York: Plenum.

    Google Scholar 

  • DeGrado, W. F., and Kaiser, E. T. (1980) Polymer-based oxime esters as supports for solid-phase peptide synthesis. Preparation of protected fragments. J. Org . Chem. 45: 1295–1300.

    CAS  Google Scholar 

  • DeGrado, W. F., and Lear, J. D. (1990) Conformationally constrained a-helical peptide models for protein ion channels. Biopolymerization 29: 209–213.

    Google Scholar 

  • DeGrado, W. F., Wasserman, Z. R., and Lear, J. D. (1989) Protein design, a minimalist approach. Science 243: 622–628.

    Article  PubMed  CAS  Google Scholar 

  • Diesenhoefer, J., and Michel, H. (1989) The photosynthetic reaction center from the purple bacterium Rhodopseudomonas viridis. Science 245: 1463–1473.

    Article  Google Scholar 

  • Eisenberg, D., Schwartz, E., Komaromy, M., and Wall, R. (1984) Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J. Mol. Biol. 179: 125–142.

    Article  PubMed  CAS  Google Scholar 

  • Eisenman, G. (1962) Cation selective glass electrodes and mode of operation. Biophys. J. 2 (Suppl. 2): 259–323.

    Article  PubMed  CAS  Google Scholar 

  • Eldridge, C., and Morowitz, H. J. (1978) A hydrodynamic theory for ion conduction through ohmic pores. J. Theor. Biol. 73: 539–548.

    Article  PubMed  CAS  Google Scholar 

  • Engleman, D. M., Henderson, R., McLachlan, A. D., and Wallace, B. A. (1980) Path of the polypeptide in bacteriorhodopsin. Proc. Natl. Acad. Sci. USA 77: 2023–2027.

    Article  Google Scholar 

  • Greenblatt, R. E., Blatt, Y., and Montai, M. (1985) The structure of the voltage-sensitive sodium channel. FEBS Lett. 193 (2): 125–134.

    Article  PubMed  CAS  Google Scholar 

  • Greengard, P. (1976) Possible role for cyclic nucleotides and phosphorylated membrane proteins in post-synaptic actions of neurotransmitters. Nature 260: 101–108.

    Article  PubMed  CAS  Google Scholar 

  • Grove, A., Tomich, J. M., and Montai, M. (1991) A molecular blueprint for the pore-forming structure of voltage-gated calcium channels. Proc. Natl. Acad. Sci. USA 88: 6418–6422.

    Article  PubMed  CAS  Google Scholar 

  • Guy, H. R., and Hucho, F. (1987) The ion channel of the nicotinic acetylcholine receptor. TINS 10 (8): 318–321.

    CAS  Google Scholar 

  • Guy, H. R., and Seetharamulu, P. (1986) Molecular model of the action potential sodium channel. Proc. Natl. Acad. Sci. USA 83: 508–512.

    Article  PubMed  CAS  Google Scholar 

  • Grenningloh, G., Rienitz, A., Schmidt, B., Methfessel, C., Zensen, M., Beyreuther, K., Gundelfinger, E. D., and Benz, H. (1987) The strychnine-binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors. Nature 328: 215–220.

    Article  PubMed  CAS  Google Scholar 

  • Hall, J. E., Vodyanoy, I., M.B.T., and Marshall, G. R. (1984) Alamethicin. A rich model for channel behavior. Biophys. J. 45: 233–247.

    CAS  Google Scholar 

  • Hartmann, H. A., Kirsch, G. E., Drewe, J. A., Taglialatela, M., Joho, R. H., and Brown, A. M. (1991) Exchange of conduction pathways between two related K+ channels. Science 251: 942–944.

    Article  PubMed  CAS  Google Scholar 

  • Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckmann, E., and Downing, K. H. (1990) Model for the structure of bacteriorhodopsin based on high resolution electron cryo-microscopy. J. Mol. Biol. 213: 899–929.

    Article  PubMed  CAS  Google Scholar 

  • Hille, B. (1984) Ionic Channels of Excitable Membranes. Sunderland, MA: Sinauer Associates Inc.

    Google Scholar 

  • Ho, S. P., and DeGrado, W. F. (1987) Design of a 4-helix bundle protein: synthesis of peptides which self-associate into a helical protein. J. Am. Chem. Soc. 109: 6751–6758.

    Article  CAS  Google Scholar 

  • Imoto, K., Busch, C:, Sakmann, B., Mishina, M., Konno, T., Nakai, J., Bujo, H., Mori, Y., and Fukuda

    Google Scholar 

  • K. (1988) Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Nature 335: 645–648.

    Article  Google Scholar 

  • Jacobs, R. E., and White, S. H. (1989) The nature of the hydrophobic binding of small peptides at the bilayer interface. Implications for the insertion of transbilayer helices. Biochemistry 28: 34213437.

    Google Scholar 

  • Jap, B. K., and Walian, P. J. (1990) Biophysics of the structure and function of porins. Q. Rev. Biophys. 23: 367–403.

    Article  PubMed  CAS  Google Scholar 

  • Kienker, P. (1989) Equivalence of aggregated Markov models of ion-channel gating. Proc. R. Soc. Lond. [Biol.] 236: 269–309.

    Article  CAS  Google Scholar 

  • Knowles, J. R. (1987) Tinkering with enzymes: what are we learning? Science 236: 1252–1256.

    Article  PubMed  CAS  Google Scholar 

  • Kyte, J., and Doolittle, R. F. (1982) A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157: 105–132.

    Article  PubMed  CAS  Google Scholar 

  • Langosch, D., Hartung, K., Grell, E., Bamberg, E., and Bentz, H. (1991) Ion channel formation by synthetic transmembrane segments of the inhibitory glycine receptor—a model study. Biochim. Biophys. Acta 1063: 36–44.

    Article  PubMed  CAS  Google Scholar 

  • Lear, J. D. (1990) Why did the voltage sensor cross the membrane? Comments Theor. Biol. 1(6): 329340.

    Google Scholar 

  • Lear, J. D., Wasserman, Z. R., and DeGrado, W. F. (1988) Synthetic amphiphilic peptide models for protein ion channels. Science 240: 1177–1181.

    Article  PubMed  CAS  Google Scholar 

  • Liebovitch, L. S., Fischbarg, J., Koniarek, J. P., Todorova, I., and Wang, M. (1987) Fractal model of ion-channel kinetics. Biochim. Biophys. Acta 896: 173–180.

    Article  PubMed  CAS  Google Scholar 

  • Liman, E. R., Hess, P., Weaver, F., and Koren, G. (1991) Voltage-sensing residues in the S4 region of a mammalian K+ channel. Nature 353: 752–756.

    Article  PubMed  CAS  Google Scholar 

  • Montai, M. (1990) Molecular anatomy and molecular design of channel proteins. FASEB J. 4: 26232635.

    Google Scholar 

  • Mullens, L. J. (1959) An analysis of conductance changes in squid axon. J. Gen. Physiol. 42: 817–829.

    Article  Google Scholar 

  • Mutter, M., Hersperger, R., Gubernator, K., and Müller, K. (1989) The construction of new proteins: V. A template-assembled synthetic protein (TASP) containing both a 4-helix bundle and b-barrel-like structure. Proteins Struct. Funct. Genet. 5: 13–21.

    Article  PubMed  CAS  Google Scholar 

  • Nicoll, R. (1988) The coupling of neurotransmitter receptors to ion channels in the brain. Science 241: 545–551.

    Article  PubMed  CAS  Google Scholar 

  • Numa, S. (1989) A molecular view of neurotransmitter receptors and ion channels. 123–165 In: The Harvey Lectures, Series 83. New York: Alan R. Liss, Inc.

    Google Scholar 

  • O’Shea, E. K., Klenner, J. D., King, P. S., and Alber, T. (1991) X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science 254: 539–544.

    Article  PubMed  Google Scholar 

  • Oiki, S., Danho, W., and Montai, M. (1988) Channel protein engineering: synthetic 22-mer peptide from the primary structure of the voltage-sensitive sodium channel forms ionic channels in lipid bilayers. Proc. Natl. Acad. Sci. USA 85: 2393–2397.

    Article  PubMed  CAS  Google Scholar 

  • Pethig, R. (1979) Dielectric and Electronic Properties of Biological Materials. New York: John Wiley Sons.

    Google Scholar 

  • Prasad, B. V., and Balaram, P. (1984) The stereochemistry of peptides containing a-amino isobutyric acid. CRC Crit. Rev. Biochem. 16: 307–348.

    Article  PubMed  CAS  Google Scholar 

  • Quandt, F. (1987) Burst kinetics of sodium channels which lack fast inactivation in mouse neuroblastoma cells. J. Physiol. 392: 563–585.

    PubMed  CAS  Google Scholar 

  • Rees, D. C., DeAntonio, L., and Eisenberg, D. (1989) Hydrophobic organization of membrane proteins. Science 245: 510–513.

    Article  PubMed  CAS  Google Scholar 

  • Richardson, J. S., and Richardson, D. C. (1989) The de novo design of protein structures. TIBS 14: 304309.

    Google Scholar 

  • Roseman, M. A. (1988) Hydrophobicity of the peptide C = O H—N hydrogen bonded group. J. Mol. Biol. 201: 621–623.

    Article  PubMed  CAS  Google Scholar 

  • Saimi, Y., Martinac, B., Gustin, M. C., Culbertson, M. R., Adler, J., and Kung, C. (1988) Ion channels in Paramecium, yeast, and Eschericia coli. Cold Spring Harbor Symp. Quant. Biol. 53: 667–673.

    Article  CAS  Google Scholar 

  • Sansom, M.S.P. (1991) The biophysics of peptide models of ion channels. Prog. Biophys. Mol. Biol. 55: 139–235.

    Article  PubMed  CAS  Google Scholar 

  • Schofield, P. R., Darlison, M. G., Fujita, N., Burt, D. R., Stephenson, F. A., Rodriguez, H., Rhee, L. M., Ramachandran, J., Reale, V., Glencorse, T. A., Seeburg, P. H., and Barnard, E. A. (1987) Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor super-family. Nature 328: 221–227.

    Article  PubMed  CAS  Google Scholar 

  • Sigworth, F. J., and Sine, S. M. (1987) Data transformation for improved display and fitting of single channel dwell time histograms. Biophys. J. 52: 1047–1054.

    Article  PubMed  CAS  Google Scholar 

  • Stiihmer, W. H., Conti, F., Suzuki, H., Wang, X., Noda, M., Yahagi, N., Kubo, H., and Numa, S. (1989) Structural parts involved in activation and inactivation of the sodium channel. Nature 339: 597603.

    Google Scholar 

  • Tosteson, M. T., Levy, J. J., Caporale, L. H., Rosenblatt, M., and Tosteson, D. C. (1987) Solid-phase synthesis of melittin: purification and functional characterization. Biochemistry 26: 6627–6631.

    Article  PubMed  CAS  Google Scholar 

  • Tosteson, M. T., Auld, D. S., and Tosteson, D. C. (1989) Voltage-gated channels formed in lipid bilayers by a positively charged segment of the Na-channel polypeptide. Proc. Natl. Acad. Sci. USA 86: 707–710.

    Article  PubMed  CAS  Google Scholar 

  • Unwin, R., Toyoshima, C., and Kubalek, E. (1988) Arrangement of the acetylcholine receptor subunits in the resting and desensitized states, determined by cryoelectron microscopy of crystallized Torpedo postsynaptic membranes. J. Cell Biol. 107: 1123–1138.

    Article  PubMed  CAS  Google Scholar 

  • Yellen, G., Jurman, M. E., Abramson, T., and MacKinnon, R. (1991) Mutations affecting internal TEA blockade identify the probable pore-forming region of a K+ channel. Science 251: 939–942.

    Article  PubMed  CAS  Google Scholar 

  • Yool, A. J., and Schwartz, T. L. (1991) Alteration of ionic selectivity of a K+ channel by mutation of the H5 region. Nature 349: 700–704.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 American Physiological Society

About this chapter

Cite this chapter

Lear, J.D., Wasserman, Z.R., Degrado, W.F. (1994). Use of Synthetic Peptides for the Study of Membrane Protein Structure. In: White, S.H. (eds) Membrane Protein Structure. Methods in Physiology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7515-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7515-6_15

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7515-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics