Skip to main content

The Role of Temporal and Thermal Stability in Sensing Material Selection

  • Chapter
  • First Online:
Handbook of Gas Sensor Materials

Part of the book series: Integrated Analytical Systems ((ANASYS))

  • 3979 Accesses

Abstract

The problems of stability and reliability of gas sensors operation are dominant while designing devices for sensor market, regardless of used sensing materials. Therefore, sensing materials and conditions of their operation should be selected according to mentioned above requirements. Present chapter gives general view on this problem basing on the examples of polymers, metal oxides, solid electrolytes and semiconductors. Chapter includes 3 figures, 1 Table and 30 references.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcock CB (ed) (1968) Electromotive force measurements in high-temperature systems. Institution of Mining and Metallurgy, London, pp 125–144

    Google Scholar 

  • Badwal SPS (1992) Zirconia-based solid electrolytes: microstructure, stability and ionic conductivity. Solid State Ion 52:23–32

    Article  CAS  Google Scholar 

  • Badwal SPS, Ciacchi FT, Milosevic D (2000) Scandia–zirconia electrolytes for intermediate temperature solid oxide fuel cell operation. Solid State Ion 136–137:91–99

    Article  Google Scholar 

  • Bang S (2008) Ionic conductivity and phase stability of yttria stabilized zirconia doped with monovalent and pentavalent cations for solid oxide fuel cell electrolyte applications. PhD Thesis. University of California, Irvine, USA

    Google Scholar 

  • Bendahan M, Lauque P, Lambert-Mauriat C, Carchano H, Seguin JL (2002) Sputtered thin films of CuBr for ammonia microsensors: morphology, composition and ageing. Sens Actuators B 84:6–11

    Article  CAS  Google Scholar 

  • Connolly EJ, Timmer B, Pham HTM, Groeneweg J, Sarro PM, Olthuis W, French PJ (2005) A porous SiC ammonia sensor. Sens Actuators B 109:44–46

    Article  CAS  Google Scholar 

  • Fergus JW (2008) A review of electrolyte and electrode materials for high temperature electrochemical CO2 and SO2 gas sensors. Sens Actuators B 134:1034–1041

    Article  CAS  Google Scholar 

  • Han PG, Wong H, Poon MC (2001) Sensitivity and stability of porous polycrystalline silicon gas sensor. Coll Surf A 179:171–175

    Article  CAS  Google Scholar 

  • Hattori M, Takeda Y, Sakaki Y, Nakanishi A, Ohara S, Mukai K, Lee J-H, Fukui T (2004) Effect of aging on conductivity of yttria stabilized zirconia. J Power Sources 126:23–27

    Article  CAS  Google Scholar 

  • Kerlau M, Merdrignac-Conanec O, Reichel P, Barsan N, Weimar U (2006) Preparation and characterization of gallium (oxy)nitride powders: preliminary investigation as new gas sensor materials. Sens Actuators B 115:4–11

    Article  CAS  Google Scholar 

  • Kondo H, Sekino T, Kusunose T, Nakayama T, Yamamoto Y, Niihara K (2003) Phase stability and electrical property of NiO-doped yttria-stabilized zirconia. Mater Lett 57:1624–1628

    Article  CAS  Google Scholar 

  • Kondoh J, Kawashima T, Kikuchi S, Tomii Y, Ito Y (1998a) Effect of aging on yttria‐stabilized zirconia. J Electrochem Soc 145:1527–1536

    Article  CAS  Google Scholar 

  • Kondoh J, Kikuchi S, Tomii Y, Ito Y (1998b) Effect of aging on yttria‐stabilized zirconia. II. A study of the effect of the microstructure on conductivity. J Electrochem Soc 145:1536–1550

    Article  CAS  Google Scholar 

  • Korotcenkov G (2007) Metal oxides for solid state gas sensors. What determines our choice? Mater Sci Eng B 139:1–23

    Article  CAS  Google Scholar 

  • Korotcenkov G, Cho BK (2011) Instability of metal oxide-based conductometric gas sensors and approaches to stability improvement. Sens Actuators B 156:527–538

    Article  CAS  Google Scholar 

  • Kumar D, Sharma RC (1998) Advances in conductive polymers. Eur Polym J 34:1053–1060

    Article  CAS  Google Scholar 

  • Lima JPH, de Andrade AM (2009) Stability study of conducting polymers as gas sensors. In: Proceedings of 11th international conference on advanced materials, ICAM 2009, Sept. 20–25, Rio de Janeiro, Brazil, p I566

    Google Scholar 

  • Moghadam FK, Stevenson DA (1982) Influence of annealing on the electrical conductivity of polycrystalline ZrO2+8 wt% Y2O3. J Am Ceram Soc 65:213–216

    Article  CAS  Google Scholar 

  • Morita M, Ohmi T, Hasegawa E, Kawakami M, Ohwada M (1990) Growth of native oxide on a silicon surface. J Appl Phys 68(3):1272–1281

    Article  CAS  Google Scholar 

  • Nomura K, Mizutani Y, Kawai M, Nakamura Y, Yamamoto O (2000) Aging and Raman scattering study of scandia and yttria doped zirconia. Solid State Ion 132:235–239

    Article  CAS  Google Scholar 

  • Pasierb P, Komornicki S, Kozinski S, Gajerski R, Rekas M (2004) Long-term stability of potentiometric CO2 sensors based on Nasicon as a solid electrolyte. Sens Actuators B 101:47–56

    Article  CAS  Google Scholar 

  • Pei Q, Inganas O (1992) Poly(3-octylthiophene-co-3-methylthiophene), a processible and stable conducting copolymer. Synth Met 45:353–357

    Article  Google Scholar 

  • Pei Q, Inganaes O, Gustafsson G, Granstrom M, Andersson M (1993) Routes toward processible and stable conducting poly(thiophene)s. Synth Met 55:1221–1226

    Article  CAS  Google Scholar 

  • Rahman MS, Pal U, Choudhury AK, Maiti S (1991) New conducting polymers, 3.* Doping, stability, electrical, and optical characteristics of poly-(p-phenylphosphoethynediyl). Colloid Polym Sci 269:576–582

    Article  CAS  Google Scholar 

  • Razumovskii SD, Zaikov GY (1982) Effect of ozone on saturated polymers. Polym Sci USSR 24(10):2305–2325

    Article  Google Scholar 

  • Tourillon G, Garnier F (1983) Stability of conducting polythiophene and derivatives. J Electrochem Soc 30:2042–2044

    Article  Google Scholar 

  • Wang Y, Rubner MF (1990) Stability studies of the electrical conductivity of various poly (3-alkylthiophenes). Synth Met 39:153–175

    Article  CAS  Google Scholar 

  • Wang Y, Rubner MF, Buckley J (1991) Stability studies of electrically conducting polyheterocycles. Synth Met 41–43:1103–1108

    Article  Google Scholar 

  • Worrell WL, Wang C (2001) The stability, mixed-conductivity and applications of cation-doped yttria-stabilized ­zirconia (YSZ). In: Proceedings of 2001 Joint International Meeting—the 200th Meeting of The Electrochemical Society and the 52nd Annual Meeting of the International Society of Electrochemistry, San Francisco, California, September 2–7, Abstract 1534

    Google Scholar 

  • Yamamoto O, Arachi Y, Takeda Y, Imanishi N, Mizutani Y, Kawai M, Nakamura Y (1995) Electrical conductivity of stabilized zirconia with ytterbia and scandia. Solid State Ion 79:137–146

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Korotcenkov, G. (2014). The Role of Temporal and Thermal Stability in Sensing Material Selection. In: Handbook of Gas Sensor Materials. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7388-6_18

Download citation

Publish with us

Policies and ethics