Skip to main content

Targeting Small Molecules and Peptides to the p66-p51 Reverse Transcriptase Interface

  • Chapter
  • First Online:
  • 1113 Accesses

Abstract

Thirty years after the discovery of human immunodeficiency virus (HIV) (Sepkowitz 2001), the causative agent of acquired immunodeficiency syndrome (HIV/AIDS), and the successful development and approval of antiretroviral drugs, no curative treatment is available (Simon et al. 2006; Saliba and Yeni 2006; Sarafianos et al. 2004). Therefore, there remains an urgent need for new and less toxic drugs that are either active against the emerging drug-resistant viruses or directed to novel targets in the replication cycle, which may complement multidrug combinations. A better understanding of individual steps of the viral replication cycle and of the dynamics during infection has provided major breakthroughs for the development of a wide spectrum of antiviral strategies (Sarafianos et al. 2004; Camarasa et al. 2006). Recently, in order to offer new perspectives for the design of inhibitors, extensive efforts have been made in the synthesis of molecules that target the interface of multi-subunit proteins required for virus entry, replication, and maturation (Camarasa et al. 2006; Divita et al. 1994; Mori et al. 2011; Esposito et al. 2012; Warrilow et al. 2009).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abba-Moussa D, Divita G Peptide-based antagonist of HIV-1 reverse transcriptase dimerization as potent inhibitors of multidrug-resistant strains propagation. submitted

    Google Scholar 

  • Abba-Moussa D, Aldrian-Herrada G, Agopian A, Boublick Y, Schinazi R, Clayette P, Divita G Insight into the mechanism of peptide-based inhibitors of HIV-1 reverse transcriptase maturation. Submitted

    Google Scholar 

  • Abbondanzieri EA, Bokinsky G, Rausch JW, Zhang JX, Le Grice SF, Zhuang X (2008) Dynamic binding orientations direct activity of HIV reverse transcriptase. Nature 453(7192):184–189

    Article  PubMed  CAS  Google Scholar 

  • Agopian A, Depollier J, Lionne C, Divita G (2007) p66 Trp24 and Phe61 are essential for accurate association of HIV-1 reverse transcriptase with primer/template. J Mol Biol 373(1):127–140, 12

    Article  PubMed  CAS  Google Scholar 

  • Agopian A, Gros E, Aldrian-Herrada G, Bosquet N, Clayette P, Divita G (2009) A new generation of peptide-based inhibitors targeting HIV-1 reverse transcriptase conformational flexibility. J Biol Chem 284(1):254–264

    Article  PubMed  CAS  Google Scholar 

  • Balzarini J, Pérez-Pérez MJ, San-Félix A, Camarasa MJ, Bathurst IC, Barr PJ, De Clercq E (1992a) Kinetics of inhibition of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase by the novel HIV-1-specific nucleoside analogue [2',5'-bis-O-(tert-butyldimethylsilyl)-beta-D-ribofuranosyl]-3'-spiro-5 "- (4"-amino-1",2"-oxathiole-2",2"-dioxide)thymine (TSAO-T). J Biol Chem 267(17):11831–11838, Jun 15

    PubMed  CAS  Google Scholar 

  • Balzarini J, Pérez-Pérez MJ, San-Félix A, Schols D, Perno CF, Vandamme AM, Camarasa MJ, De Clercq E (1992b) 2',5'-Bis-O-(tert-butyldimethylsilyl)-3'-spiro-5''-(4''-amino-1'',2''- oxathiole-2'',2'-dioxide)pyrimidine (TSAO) nucleoside analogues: highly selective inhibitors of human immunodeficiency virus type 1 that are targeted at the viral reverse transcriptase. Proc Natl Acad Sci USA 89(10):4392–4396, May 15

    Article  PubMed  CAS  Google Scholar 

  • Barre-Sinoussi F, Chermann JC, Rey F, Nugeyre MT, Chamaret S, Gruest J, Dauguet C, Axler-Blin C, Vezinet-Brun F, Rouzioux C, Rozenbaum W, Montagnier L (1983) Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220:868–871

    Article  PubMed  CAS  Google Scholar 

  • Borkow G, Salomon H, Wainberg MA, Parniak MA (2002) Attenuated infectivity of HIV type 1 from epithelial cells pretreated with a tight-binding nonnucleoside reverse transcriptase inhibitor. AIDS Res Hum Retroviruses 18:711–714

    Article  PubMed  CAS  Google Scholar 

  • Camarasa MJ, Velazquez S, San-Felix A, Perez-Perez MJ, Gago F (2006) Dimerization inhibitors of HIV-1 reverse transcriptase, protease and integrase: a single mode of inhibition for the three HIV enzymes? Antiviral Res 1:260–267

    Article  Google Scholar 

  • Cherry E, Liang C, Rong L, Quan Y, Inouye P, Li X, Morin N, Kotler M, Wainberg MA (1998) Characterization of human immunodeficiency virus type-1 (HIV-1) particles that express protease-reverse transcriptase fusion proteins. J Mol Biol 284(1):43–56

    Article  PubMed  CAS  Google Scholar 

  • Coffin JM (1995) HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy. Science 267(5197):483–489

    Article  PubMed  CAS  Google Scholar 

  • De Clercq E (2002) Strategies in the design of antiviral drugs. Nat Rev Drug Discov 1:13–25

    Article  PubMed  Google Scholar 

  • De Clercq E (2004) Non-nucleoside reverse transcriptase inhibitors (NNRTIs): past, present, and future. Chem Biodivers 1:44–64

    Article  PubMed  Google Scholar 

  • Depollier J, Hourdou ML, Aldrian-Herrada G, Rothwell P, Restle T, Divita G (2005) Insight into the mechanism of a peptide inhibitor of HIV reverse transcriptase dimerization. Biochemistry 44:1909–1918

    Article  PubMed  CAS  Google Scholar 

  • di Marzo Veronese F, Copeland TD, DeVico AL, Rahman R, Oroszlan S, Gallo RC, Sarngadharan MG (1986) Characterization of highly immunogenic p66/p51 as the reverse transcriptase of HTLV-III/LAV. Science 231:1289–1291

    Article  PubMed  Google Scholar 

  • Divita G, Müller B, Immendörfer U, Gautel M, Rittinger K, Restle T, Goody RS (1993a) Kinetics of interaction of HIV reverse transcriptase with primer/template. Biochemistry 32(31):7966–7971, 10

    Article  PubMed  CAS  Google Scholar 

  • Divita G, Restle T, Goody RS (1993b) Characterization of the dimerization process of HIV-1 reverse transcriptase heterodimer using intrinsic protein fluorescence. FEBS Lett 324(2):153–158, 14

    Article  PubMed  CAS  Google Scholar 

  • Divita G, Restle T, Goody RS, Chermann JC, Baillon JG (1994) Inhibition of human immunodeficiency virus type 1 reverse transcriptase dimerization using synthetic peptides derived from the connection domain. J Biol Chem 269:13080–13083

    PubMed  CAS  Google Scholar 

  • Divita G, Rittinger K, Geourjon C, Deleage G, Goody RS (1995a) Dimerization kinetics of HIV-1 and HIV-2 reverse transcriptase: a two step process. J Mol Biol 245:508–521

    Article  PubMed  CAS  Google Scholar 

  • Divita G, Rittinger K, Restle T, Immendorfer U, Goody RS (1995b) Conformational stability of dimeric HIV-1 and HIV-2 reverse transcriptases. Biochemistry 34:16337–16346

    Article  PubMed  CAS  Google Scholar 

  • Divita G, Baillon JG, Rittinger K, Chermann JC, Goody RS (1995c) Interface peptides as structure-based human immunodeficiency virus reverse transcriptase inhibitors. J Biol Chem 270:28642–28646

    Article  PubMed  CAS  Google Scholar 

  • Esnouf R, Ren J, Ross C, Jones Y, Stammers D, Stuart D (1995) Mechanism of inhibition of HIV-1 reverse transcriptase by non-nucleoside inhibitors. Nat Struct Biol 2:303–308

    Article  PubMed  CAS  Google Scholar 

  • Esposito F, Corona A, Tramontano E (2012) HIV-1 reverse transcriptase still remains a new drug target: structure, function, classical inhibitors, and new inhibitors with innovative mechanisms of actions. Mol Biol Int 2012:586401

    PubMed  Google Scholar 

  • Fauci AS (1988) The human immunodeficiency virus: infectivity and mechanisms of pathogenesis. Science 239:617–622

    Article  PubMed  CAS  Google Scholar 

  • Figueiredo A, Moore KL, Mak J, Sluis-Cremer N, de Bethune MP, Tachedjian G (2006) Potent nonnucleoside reverse transcriptase inhibitors target HIV-1 Gag-Pol. PLoS Pathog 2(11):e119, Nov

    Article  PubMed  Google Scholar 

  • Figueiredo A, Zelina S, Sluis-Cremer N, Tachedjian G (2008) Impact of residues in the nonnucleoside reverse transcriptase inhibitor binding pocket on HIV-1 reverse transcriptase heterodimer stability. Curr HIV Res 6(2):130–137, Mar

    Article  PubMed  CAS  Google Scholar 

  • Fisher TS, Prasad VR (2002) Substitutions of Phe61 located in the vicinity of template 5’-overhang influence polymerase fidelity and nucleoside analog sensitivity of HIV-1 reverse transcriptase. J Biol Chem 277(25):22345–22352

    Article  PubMed  CAS  Google Scholar 

  • Fisher TS, Darden T, Prasad VR (2003) Substitutions at Phe61 in the beta3-beta4 hairpin of HIV-1 reverse transcriptase reveal a role for the fingers subdomain in strand displacement DNA synthesis. J Mol Biol 325:443–459

    Article  PubMed  CAS  Google Scholar 

  • Gotte M, Li X, Wainberg MA (1999) HIV-1 reverse transcription: a brief overview focused on structure-function relationships among molecules involved in initiation of the reaction. Arch Biochem Biophys 365:199–210

    Article  PubMed  CAS  Google Scholar 

  • Grohmann D, Corradi V, Elbasyouny M, Baude A, Horenkamp F, Laufer SD, Manetti F, Botta M, Restle T (2008) Small molecule inhibitors targeting HIV-1 reverse transcriptase dimerization. Chembiochem 9(6):916–922, Apr 14

    Article  PubMed  CAS  Google Scholar 

  • Hornak V, Simmerling C (2007) Targeting structural flexibility in HIV-1 protease inhibitor binding. Drug Discov Today 12:132–138

    Article  PubMed  CAS  Google Scholar 

  • Huang H, Chopra R, Verdine GL, Harrison SC (1998) Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. Science 282:1669–1675

    Article  PubMed  CAS  Google Scholar 

  • Jacobo-Molina A, Ding J, Nanni RG, Clark AD Jr, Lu X, Tantillo C, Williams RL, Kamer G, Ferris AL, Clark P et al (1993) Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double stranded DNA at 3.0 a resolution shows bent DNA. Proc Natl Acad Sci USA 90:6320–6324

    Article  PubMed  CAS  Google Scholar 

  • Jacques PS, Wöhrl BM, Ottmann M, Darlix JL, Le Grice SF (1994) Mutating the "primer grip" of p66 HIV-1 reverse transcriptase implicates tryptophan-229 in template-primer utilization. J Biol Chem 269(42):26472–26478

    PubMed  CAS  Google Scholar 

  • Kati WM, Johnson KA, Jerva LF, Anderson KS (1992) Mechanism and fidelity of HIV reverse transcriptase. J Biol Chem 267:25988–25997

    PubMed  CAS  Google Scholar 

  • Katz RA, Skalka AM (1994) The retroviral enzymes. Annu Rev Biochem 63:133–173

    Article  PubMed  CAS  Google Scholar 

  • Kohlstaedt LA, Wang J, Friedman JM, Rice PA, Steitz TA (1992) Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science 256:1783–1790

    Article  PubMed  CAS  Google Scholar 

  • Le Grice SFJ (1993) Human immunodeficiency virus reverse transcriptase. In: Skala A, Goff SP (eds) Reverse transcriptase. Cold Spring Harbor Laboratory Press, Plainview, NY, pp. 163–191

    Google Scholar 

  • Liao WH, Wang CT (2004) Characterization of human immunodeficiency virus type 1 Pr160 gag-pol mutants with truncations downstream of the protease domain. Virology 2329(1):180–188

    Article  Google Scholar 

  • Liu S, Harada BT, Miller JT, Le Grice SF, Zhuang X (2010) Initiation complex dynamics direct the transitions between distinct phases of early HIV reverse transcription. Nat Struct Mol Biol 7(12):1453–1460

    Article  Google Scholar 

  • Menendez-Arias L (2002) Targeting HIV: antiretroviral therapy and development of drug resistance. Trends Pharmacol Sci 23:381–388

    Article  PubMed  CAS  Google Scholar 

  • Mori M, Manetti F, Botta M (2011) Targeting protein-protein and protein-nucleic acid interactions for anti-HIV therapy. Curr Pharm Des 17(33):3713–3728

    Article  PubMed  CAS  Google Scholar 

  • Morris MC, Vidal P, Chaloin L, Heitz F, Divita G (1997) A new peptide vector for efficient delivery of oligonucleotides into mammalian cells. Nucleic Acids Res 25(14):2730–2736, Jul 15

    Article  PubMed  CAS  Google Scholar 

  • Morris MC, Robert-Hebmann V, Chaloin L, Mery J, Heitz F, Devaux C, Goody RS, Divita G (1999a) A new potent HIV-1 reverse transcriptase inhibitor: a synthetic peptide derived from the interface subunit domain. J Biol Chem 274:24941–24946

    Article  PubMed  CAS  Google Scholar 

  • Morris MC, Berducou C, Mery J, Heitz F, Divita G (1999b) The thumb domain of the P51-subunit is essential for activation of HIV reverse transcriptase. Biochemistry 38(46):15097–15103, Nov 16

    Article  PubMed  CAS  Google Scholar 

  • Morris MC, Depollier J, Mery J, Heitz F, Divita G (2001) A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat Biotechnol 19(12):1173–1176, Dec

    Article  PubMed  CAS  Google Scholar 

  • Müller B, Restle T, Weiss S, Gautel M, Sczakiel G, Goody RS (1989) Co-expression of the subunits of the heterodimer of HIV-1 reverse transcriptase in escherichia coli. J Biol Chem 264:13975–13978

    PubMed  Google Scholar 

  • Nielsen MH, Pedersen FS, Kjems J (2005) Molecular strategies to inhibit HIV-1 replication. Retrovirology 2:10

    Article  PubMed  Google Scholar 

  • Opar A (2007) New HIV drug classes on the horizon. Nat Rev Drug Discov 6:258–259

    Article  PubMed  CAS  Google Scholar 

  • Parniak MA, Sluis-Cremer N (2000) Inhibitors of HIV-1 reverse transcriptase. Adv Pharmacol 49:67–196

    Article  PubMed  CAS  Google Scholar 

  • Pauwels R (2004) New non-nucleoside reverse transcriptase inhibitors (NNRTIs) in development for the treatment of HIV infections. Curr Opin Pharmacol 4(5):437–446

    Article  PubMed  CAS  Google Scholar 

  • Ren J, Bird LE, Chamberlain PP, Stewart-Jones GB, Stuart DI, Stammers DK (2002) Structure of HIV-2 reverse transcriptase at 2.35 a resolution and the mechanism of resistance to non-nucleoside inhibitors. Proc Natl Acad Sci USA 99:14410–14415

    Article  PubMed  CAS  Google Scholar 

  • Restle T, Müller B, Goody RS (1990) Dimerization of human immunodeficiency virus type 1 reverse transcriptase. A target for chemotherapeutic intervention. J Biol Chem 265:8986–8988

    PubMed  CAS  Google Scholar 

  • Restle T, Pawlita M, Sczakiel G, Müller B, Goody RS (1992) Structure-function relationships of HIV-1 reverse transcriptase determined using monoclonal antibodies. J Biol Chem 267(21): 14654–14661, Jul 25

    PubMed  CAS  Google Scholar 

  • Richman DD (1996) Antiretroviral drug resistance: mechanisms, pathogenesis, clinical significance. Adv Exp Med Biol 394:383–395

    Article  PubMed  CAS  Google Scholar 

  • Rittinger K, Divita G, Goody RS (1995) Human immunodeficiency virus reverse transcriptase substrate-induced conformational changes and the mechanism of inhibition by nonnucleoside inhibitors. Proc Natl Acad Sci USA 92:8046–8049

    Article  PubMed  CAS  Google Scholar 

  • Rodgers DW, Gamblin SJ, Harris BA, Ray S, Culp JS, Hellmig B, Woolf DJ, Debouck C, Harrison SC (1995) The structure of unliganded reverse transcriptase from the human immunodeficiency virus type 1. Proc Natl Acad Sci USA 92:1222–1226

    Article  PubMed  CAS  Google Scholar 

  • Saliba G, Yeni P (2006) Recent and future therapeutic advances in the management of HIV infection. Pathol Biol (Paris) 54(10):545–550

    Article  CAS  Google Scholar 

  • Sarafianos SG, Clark AD Jr, Das K, Tuske S, Birktoft JJ, Ilankumaran P, Ramesha AR, Sayer JM, Jerina DM, Boyer PL, Hughes SH, Arnold E (2002) Structures of HIV-1 reverse transcriptase with pre- and post-translocation AZTMP-terminated DNA. EMBO J 21:6614–6624

    Article  PubMed  CAS  Google Scholar 

  • Sarafianos SG, Das K, Hughes SH, Arnold E (2004) Taking aim at a moving target: designing drugs to inhibit drug-resistant HIV-1 reverse transcriptases. Curr Opin Struct Biol 14:716–730

    Article  PubMed  CAS  Google Scholar 

  • Sarafianos SG, Marchand B, Das K, Himmel DM, Parniak MA, Hughes SH, Arnold E (2009) Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition. J Mol Biol 385(3):693–713

    Article  PubMed  CAS  Google Scholar 

  • Sepkowitz KA (2001) AIDS—the first 20 years. N Engl J Med 344(23):1764–1772

    Article  PubMed  CAS  Google Scholar 

  • Simon V, Ho DD, Abdool Karim Q (2006) HIV/AIDS epidemiology, pathogenesis, prevention, and treatment. Lancet 368:489–504

    Article  PubMed  Google Scholar 

  • Sluis-Cremer N, Tachedjian G (2002) Modulation of the oligomeric structures of HIV-1 retroviral enzymes by synthetic peptides and small molecules. Eur J Biochem 269:5103–5111

    Article  PubMed  CAS  Google Scholar 

  • Sluis-Cremer N, Tachedjian G (2008) Mechanisms of inhibition of HIV replication by non-nucleoside reverse transcriptase inhibitors. Virus Res 134(1–2):147–156

    Article  PubMed  CAS  Google Scholar 

  • Sluis-Cremer N, Dmitrienko GI, Balzarini J, Camarasa MJ, Parniak MA (2000) Human immunodeficiency virus type 1 reverse transcriptase dimer destabilization by 1-[Spiro[4“-amino-2”,2“ -dioxo-1”,2“ -oxathiole-5”,3’-[2’, 5’-bis-O-(tert-butyldimethylsilyl)-beta-D-ribofuranosyl]]]-3-ethylthy mine. Biochemistry 39(6):1427–1433

    Article  PubMed  CAS  Google Scholar 

  • Sluis-Cremer N, Arion D, Parniak MA (2002) Destabilization of the HIV-1 reverse transcriptase dimer upon interaction with N-acyl hydrazone inhibitors. Mol Pharmacol 62(2):398–405

    Article  PubMed  CAS  Google Scholar 

  • Sluis-Cremer N, Arion D, Abram ME, Parniak MA (2004a) Proteolytic processing of an HIV-1 pol polyprotein precursor: insights into the mechanism of reverse transcriptase p66/p51 heterodimer formation. Int J Biochem Cell Biol 36(9):1836–1847, Sep

    Article  PubMed  CAS  Google Scholar 

  • Sluis-Cremer N, Temiz NA, Bahar I (2004b) Conformational changes in HIV-1 reverse transcriptase induced by nonnucleoside reverse transcriptase inhibitor binding. Curr HIV Res 2:323–332

    Article  PubMed  CAS  Google Scholar 

  • Spence RA, Kati WM, Anderson KS, Johnson KA (1995) Mechanism of inhibition of HIV-1 reverse transcriptase by nonnucleoside inhibitors. Science 267(5200):988–993

    Article  PubMed  CAS  Google Scholar 

  • Srivastava S, Sluis-Cremer N, Tachedjian G (2006) Dimerization of human immunodeficiency virus type 1 reverse – transcriptase as an antiviral target. Curr Pharm Des 12(15):1879–1894

    Article  PubMed  CAS  Google Scholar 

  • Tachedjian G, Goff SP (2003) The effect of NNRTIs on HIV reverse transcriptase dimerization. Curr Opin Investig Drugs 4(8):966–973

    PubMed  Google Scholar 

  • Tachedjian G, Aronson HE, Goff SP (2000) Analysis of mutations and suppressors affecting interactions between the subunits of the HIV type 1 reverse transcriptase. Proc Natl Acad Sci USA 97:6334–6339

    Article  PubMed  CAS  Google Scholar 

  • Tachedjian G, Orlova M, Sarafianos SG, Arnold E, Goff SP (2001) Nonnucleoside reverse transcriptase inhibitors are chemical enhancers of dimerization of the HIV type 1 reverse transcriptase. Proc Natl Acad Sci USA 98:7188–7193

    Article  PubMed  CAS  Google Scholar 

  • Tachedjian G, Aronson HE, de los Santos M, Seehra J, McCoy JM, Goff SP (2003) Role of residues in the tryptophan repeat motif for HIV-1 reverse transcriptase dimerization. J Mol Biol 326(2):381–396, Feb 14

    Article  PubMed  CAS  Google Scholar 

  • Tachedjian G, Moore KL, Goff SP, Sluis-Cremer N (2005) Efavirenz enhances the proteolytic processing of an HIV-1 pol polyprotein precursor and reverse transcriptase homodimer formation. FEBS Lett 579(2):379–384, Jan 17

    Article  PubMed  CAS  Google Scholar 

  • Telesnitsky A, Goff SP (1997) Reverse transcriptase and the generation of retroviral DNA. In: Coffin JM, Hughes SH, Varmus HE (eds) Retroviruses. Cold Spring Harbor Laboratory Press, Plainview, NY, pp. 121–160

    Google Scholar 

  • Venezia CF, Howard KJ, Ignatov ME, Holladay LA, Barkley MD (2006) Effects of efavirenz binding on the subunit equilibria of HIV-1 reverse transcriptase. Biochemistry 45(9):2779–2789, 7

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Smerdon SJ, Jager J, Kohlstaedt LA, Rice PA, Friedman JM, Steitz TA (1994) Structural basis of asymmetry in the human immunodeficiency virus type 1 reverse transcriptase heterodimer. Proc Natl Acad Sci USA 91(15):7242–7246

    Article  PubMed  CAS  Google Scholar 

  • Wapling J, Srivastava S, Shehu-Xhilaga M, Tachedjian G (2007) Targeting human immunodeficiency virus type 1 assembly, maturation and budding. Drug Target Insights 2:159–182

    PubMed  Google Scholar 

  • Warrilow D, Tachedjian G, Harrich D (2009) Maturation of the HIV reverse transcription complex: putting the jigsaw together. Rev Med Virol 19(6):324–337

    Article  PubMed  CAS  Google Scholar 

  • Young SD, Britcher SF, Tran LO, Payne LS, Lumma WC, Lyle TA, Huff JR, Anderson PS, Olsen DB, Carroll SS et al (1995) L-743, 726 (DMP-266): a novel, highly potent nonnucleoside inhibitor of the human immunodeficiency virus type 1 reverse transcriptase. Antimicrob Agents Chemother 39(12):2602–2605

    Article  PubMed  CAS  Google Scholar 

  • Zhan P, Chen X, Li D, Fang Z, De Clercq E, Liu X (2011) HIV-1 NNRTIs: structural diversity, pharmacophore similarity, and implications for drug design. Med Res Rev. doi:10.1002/med.20241, Apr 26

    PubMed  Google Scholar 

  • Zybarth G, Carter C (1995) Domains upstream of the protease (PR) in human immunodeficiency virus type 1 Gag-Pol influence PR autoprocessing. J Virol 69(6):3878–3884

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Centre National de la Recherche Scientifique (CNRS) and by grant from the Agence Nationale de Recherche sur le SIDA (ANRS) and SIDACTION. This work is part of the program “Targeting Replication and Integration of HIV” (TRIoH) supported by the EC (LSHB-CT-2003-503480). We would like to thank all members of the laboratory and our collaborators for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Divita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Moussa, D.A., Agopian, A., Divita, G. (2013). Targeting Small Molecules and Peptides to the p66-p51 Reverse Transcriptase Interface. In: LeGrice, S., Gotte, M. (eds) Human Immunodeficiency Virus Reverse Transcriptase. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7291-9_8

Download citation

Publish with us

Policies and ethics