Skip to main content

DnaA, DnaB, and DnaC

  • Living reference work entry
  • First Online:
Molecular Life Sciences
  • 5008 Accesses

Synopsis

DnaA and DnaC are specifically required at the stage of initiation of DNA replication from the E. coli replication origin (oriC) to load the replicative DNA helicase (DnaB) at this chromosomal site. Each of these proteins is multifunctional. DnaA is a protein that binds ATP and also DNA, but in a sequence-specific manner. Additionally, DnaA interacts with other proteins and with acidic phospholipids. Like DnaA, DnaC and DnaB bind ATP. DnaB and DnaC also form a complex with each other. Structure-function studies reveal how the respective protein’s activities are coordinated during the initiation stage of DNA replication.

Introduction

DnaA, DnaB, and DnaC act together to establish the replication fork machinery at oriC. Studies of each protein reveal that they possess specific biochemical activities that can be assigned to distinct structural domains (Fig. 1). ATP binding by each protein is critical for activity, and individual domains involved in nucleotide binding have been...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abe Y et al (2007) Structure and function of DnaA N-terminal domains: specific sites and mechanisms in inter-DnaA interaction and in DnaB helicase loading on oriC. J Biol Chem 282(24):17816–17827

    PubMed  CAS  Google Scholar 

  • Abrahams JP et al (1994) Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature 370(6491):621–628

    PubMed  CAS  Google Scholar 

  • Ahmadian MR et al (1997) Confirmation of the arginine-finger hypothesis for the GAP-stimulated GTP-hydrolysis reaction of Ras. Nat Struct Biol 4(9):686–689

    PubMed  CAS  Google Scholar 

  • Allen GC Jr, Kornberg A (1991) Fine balance in the regulation of DnaB helicase by DnaC protein in replication in Escherichia coli. J Biol Chem 266(33):22096–22101

    PubMed  CAS  Google Scholar 

  • Almiron M et al (1992) A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli. Genes Dev 6(12B):2646–2654

    PubMed  CAS  Google Scholar 

  • Altuvia S et al (1994) The dps promoter is activated by OxyR during growth and by IHF and sigma S in stationary phase. Mol Microbiol 13(2):265–272

    PubMed  CAS  Google Scholar 

  • Arai K, Kornberg A (1981) Mechanism of dnaB protein action. II. ATP hydrolysis by dnaB protein dependent on single- or double-stranded DNA. J Biol Chem 256(10):5253–5259

    PubMed  CAS  Google Scholar 

  • Arai K, Yasuda S, Kornberg A (1981) Mechanism of dnaB protein action. I. Crystallization and properties of dnaB protein, an essential replication protein in Escherichia coli. J Biol Chem 256(10):5247–5252

    PubMed  CAS  Google Scholar 

  • Arias-Palomo E et al (2013) The bacterial DnaC helicase loader is a DnaB ring breaker. Cell 153(2):438–448

    PubMed  CAS  PubMed Central  Google Scholar 

  • Atlung T, Clausen ES, Hansen FG (1985) Autoregulation of the dnaA gene of Escherichia coli K12. Mol Gen Genet 200(3):442–450

    PubMed  CAS  Google Scholar 

  • Augustin LB, Jacobson BA, Fuchs JA (1994) Escherichia coli Fis and DnaA proteins bind specifically to the nrd promoter region and affect expression of an nrd-lac fusion. J Bacteriol 176(2):378–387

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bailey S, Eliason WK, Steitz TA (2007) Structure of hexameric DnaB helicase and its complex with a domain of DnaG primase. Science 318(5849):459–463

    PubMed  CAS  Google Scholar 

  • Biswas SB, Flowers S, Biswas-Fiss EE (2004) Quantitative analysis of nucleotide modulation of DNA binding by the DnaC protein of Escherichia coli. Biochem J 379:553–562

    PubMed  CAS  PubMed Central  Google Scholar 

  • Blaesing F et al (2000) Analysis of the DNA-binding domain of Escherichia coli DnaA protein. Mol Microbiol 36(3):557–569

    PubMed  CAS  Google Scholar 

  • Boeneman K, Crooke E (2005) Chromosomal replication and the cell membrane. Curr Opin Microbiol 8(2):143–148

    PubMed  CAS  Google Scholar 

  • Boeneman K et al (2009) Escherichia coli DnaA forms helical structures along the longitudinal cell axis distinct from MreB filaments. Mol Microbiol 72(3):645–657

    PubMed  CAS  PubMed Central  Google Scholar 

  • Braun RE, O’Day K, Wright A (1985) Autoregulation of the DNA replication gene dnaA in E. coli K-12. Cell 40(1):159–169

    PubMed  CAS  Google Scholar 

  • Browning DF, Grainger DC, Busby SJ (2010) Effects of nucleoid-associated proteins on bacterial chromosome structure and gene expression. Curr Opin Microbiol 13(6):773–780

    PubMed  CAS  Google Scholar 

  • Castuma CE, Crooke E, Kornberg A (1993) Fluid membranes with acidic domains activate DnaA, the initiator protein of replication in Escherichia coli. J Biol Chem 268(33):24665–24668

    PubMed  CAS  Google Scholar 

  • Charbon G et al (2011) Suppressors of DnaA(ATP) imposed overinitiation in Escherichia coli. Mol Microbiol 79(4):914–928

    PubMed  CAS  Google Scholar 

  • Chodavarapu S et al (2008a) Escherichia coli Dps interacts with DnaA protein to impede initiation: a model of adaptive mutation. Mol Microbiol 67(6):1331–1346

    PubMed  CAS  Google Scholar 

  • Chodavarapu S et al (2008b) Escherichia coli DnaA interacts with HU in initiation at the E. coli replication origin. Mol Microbiol 67(4):781–792

    PubMed  CAS  Google Scholar 

  • Chodavarapu S, Felczak MM, Kaguni JM (2011) Two forms of ribosomal protein L2 of Escherichia coli that inhibit DnaA in DNA replication. Nucleic Acids Res 39(10):4180–4191

    PubMed  CAS  PubMed Central  Google Scholar 

  • Corn JE, Berger JM (2006) Regulation of bacterial priming and daughter strand synthesis through helicase-primase interactions. Nucleic Acids Res 34(15):4082–4088

    PubMed  CAS  PubMed Central  Google Scholar 

  • Crampton DJ et al (2004) The arginine finger of bacteriophage T7 gene 4 helicase: role in energy coupling. Proc Natl Acad Sci USA 101(13):4373–4378

    PubMed  CAS  PubMed Central  Google Scholar 

  • Crooke E, Castuma CE, Kornberg A (1992) The chromosome origin of Escherichia coli stabilizes DnaA protein during rejuvenation by phospholipids. J Biol Chem 267(24):16779–16782

    PubMed  CAS  Google Scholar 

  • Davey MJ et al (2002a) Motors and switches: AAA+ machines within the replisome. Nat Rev Mol Cell Biol 3(11):826–835

    PubMed  CAS  Google Scholar 

  • Davey MJ et al (2002b) The DnaC helicase loader is a dual ATP/ADP switch protein. EMBO J 21(12):3148–3159

    PubMed  CAS  PubMed Central  Google Scholar 

  • Donate LE et al (2000) pH-controlled quaternary states of hexameric DnaB helicase. J Mol Biol 303(3):383–393

    PubMed  CAS  Google Scholar 

  • Drlica K, Rouviere-Yaniv J (1987) Histonelike proteins of bacteria. Microbiol Rev 51(3):301–319

    PubMed  CAS  PubMed Central  Google Scholar 

  • Enemark EJ, Joshua-Tor L (2006) Mechanism of DNA translocation in a replicative hexameric helicase. Nature 442(7100):270–275

    PubMed  CAS  Google Scholar 

  • Enemark EJ, Joshua-Tor L (2008) On helicases and other motor proteins. Curr Opin Struct Biol 18(2):243–257

    PubMed  CAS  PubMed Central  Google Scholar 

  • Erzberger JP, Berger JM (2006) Evolutionary relationships and structural mechanisms of AAA+ proteins. Annu Rev Biophys Biomol Struct 35:93–114

    PubMed  CAS  Google Scholar 

  • Erzberger JP, Pirruccello MM, Berger JM (2002) The structure of bacterial DnaA: implications for general mechanisms underlying DNA replication initiation. EMBO J 21(18):4763–4773

    PubMed  CAS  PubMed Central  Google Scholar 

  • Erzberger JP, Mott ML, Berger JM (2006) Structural basis for ATP-dependent DnaA assembly and replication-origin remodeling. Nat Struct Mol Biol 13(8):676–683

    PubMed  CAS  Google Scholar 

  • Felczak MM, Kaguni JM (2004) The box VII motif of Escherichia coli DnaA protein is required for DnaA oligomerization at the E. coli replication origin. J Biol Chem 279(49):51156–51162

    PubMed  CAS  Google Scholar 

  • Felczak MM, Kaguni JM (2009) DnaAcos hyperinitiates by circumventing regulatory pathways that control the frequency of initiation in Escherichia coli. Mol Microbiol 72:1348–1363

    PubMed  CAS  PubMed Central  Google Scholar 

  • Felczak MM, Simmons LA, Kaguni JM (2005) An essential tryptophan of Escherichia coli DnaA protein functions in oligomerization at the E. coli replication origin. J Biol Chem 280(26):24627–24633

    PubMed  CAS  Google Scholar 

  • Flatten I, Morigen, Skarstad K (2009) DnaA protein interacts with RNA polymerase and partially protects it from the effect of rifampicin. Mol Microbiol 71(4):1018–1030

    PubMed  Google Scholar 

  • Fujikawa N et al (2003) Structural basis of replication origin recognition by the DnaA protein. Nucleic Acids Res 31(8):2077–2086

    PubMed  CAS  PubMed Central  Google Scholar 

  • Galletto R, Jezewska MJ, Bujalowski W (2003) Interactions of the Escherichia coli DnaB helicase hexamer with the replication factor the DnaC protein. Effect of nucleotide cofactors and the ssDNA on protein-protein interactions and the topology of the complex. J Mol Biol 329(3):441–465

    PubMed  CAS  Google Scholar 

  • Galletto R, Jezewska MJ, Bujalowski W (2004) Unzipping mechanism of the double-stranded DNA unwinding by a hexameric helicase: the effect of the 3′ arm and the stability of the dsDNA on the unwinding activity of the Escherichia coli DnaB helicase. J Mol Biol 343(1):101–114

    PubMed  CAS  Google Scholar 

  • Garner J, Crooke E (1996) Membrane regulation of the chromosomal replication activity of E. coli DnaA requires a discrete site on the protein. EMBO J 15(13):3477–3485

    PubMed  CAS  PubMed Central  Google Scholar 

  • Garner J et al (1998) Membrane-mediated release of nucleotide from an initiator of chromosomal replication, Escherichia coli DnaA, occurs with insertion of a distinct region of the protein into the lipid bilayer. J Biol Chem 273(9):5167–5173

    PubMed  CAS  Google Scholar 

  • Glinkowska M et al (2003) The mechanism of regulation of bacteriophage lambda pR promoter activity by Escherichia coli DnaA protein. J Biol Chem 278(25):22250–22256

    PubMed  CAS  Google Scholar 

  • Gon S et al (2006) A novel regulatory mechanism couples deoxyribonucleotide synthesis and DNA replication in Escherichia coli. EMBO J 25(5):1137–1147

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hamdan SM, Richardson CC (2009) Motors, switches, and contacts in a replisome. Annu Rev Biochem 78:205–243

    PubMed  CAS  Google Scholar 

  • Herrick J, Sclavi B (2007) Ribonucleotide reductase and the regulation of DNA replication: an old story and an ancient heritage. Mol Microbiol 63(1):22–34

    PubMed  CAS  Google Scholar 

  • http://www.molgen.mpg.de/~messer/, August 28, 2014

  • Hupert-Kocurek K et al (2007) Genetic method to analyze essential genes of Escherichia coli. Appl Environ Microbiol 73(21):7075–7082

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ilyina TV, Gorbalenya AE, Koonin EV (1992) Organization and evolution of bacterial and bacteriophage primase-helicase systems. J Mol Evol 34(4):351–357

    PubMed  CAS  Google Scholar 

  • Ishida T et al (2004) DiaA, a novel DnaA-binding protein, ensures the timely initiation of Escherichia coli chromosome replication. J Biol Chem 279(44):45546–45555

    PubMed  CAS  Google Scholar 

  • Itsathitphaisarn O et al (2012) The hexameric helicase DnaB adopts a nonplanar conformation during translocation. Cell 151(2):267–277

    PubMed  CAS  PubMed Central  Google Scholar 

  • Iyer LM et al (2004) Evolutionary history and higher order classification of AAA+ ATPases. J Struct Biol 146(1–2):11–31

    PubMed  CAS  Google Scholar 

  • Jezewska MJ, Kim US, Bujalowski W (1996) Binding of Escherichia coli primary replicative helicase DnaB protein to single-stranded DNA. Long-range allosteric conformational changes within the protein hexamer. Biochemistry 35(7):2129–2145

    PubMed  CAS  Google Scholar 

  • Jezewska MJ, Rajendran S, Bujalowski W (1997) Strand specificity in the interactions of Escherichia coli primary replicative helicase DnaB protein with a replication fork. Biochemistry 36(33):10320–10326

    PubMed  CAS  Google Scholar 

  • Jezewska MJ, Rajendran S, Bujalowski W (1998a) Complex of Escherichia coli primary replicative helicase DnaB protein with a replication fork: recognition and structure. Biochemistry 37(9):3116–3136

    PubMed  CAS  Google Scholar 

  • Jezewska MJ et al (1998b) Does single-stranded DNA pass through the inner channel of the protein hexamer in the complex with the Escherichia coli DnaB Helicase? Fluorescence energy transfer studies. J Biol Chem 273(17):10515–10529

    PubMed  CAS  Google Scholar 

  • Kaguni JM (2011) Replication initiation at the Escherichia coli chromosomal origin. Curr Opin Chem Biol 15(5):606–613

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kaplan DL (2000) The 3′-tail of a forked-duplex sterically determines whether one or two DNA strands pass through the central channel of a replication-fork helicase. J Mol Biol 301(2):285–299

    PubMed  CAS  Google Scholar 

  • Kawakami H, Katayama T (2010) DnaA, ORC, and Cdc6: similarity beyond the domains of life and diversity. Biochem Cell Biol 88(1):49–62

    PubMed  CAS  Google Scholar 

  • Kawakami H, Keyamura K, Katayama T (2005) Formation of an ATP-DnaA-specific initiation complex requires DnaA arginine 285, a conserved motif in the AAA+ protein family. J Biol Chem 280(29):27420–27430

    PubMed  CAS  Google Scholar 

  • Kawakami H et al (2006) The exceptionally tight affinity of DnaA for ATP/ADP requires a unique aspartic acid residue in the AAA+ sensor 1 motif. Mol Microbiol 62(5):1310–1324

    PubMed  CAS  Google Scholar 

  • Keyamura K et al (2009) DiaA dynamics are coupled with changes in initial origin complexes leading to helicase loading. J Biol Chem 284(37):25038–25050

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kim S et al (1996) Coupling of a replicative polymerase and helicase: a tau-DnaB interaction mediates rapid replication fork movement. Cell 84(4):643–650

    PubMed  CAS  Google Scholar 

  • Koonin EV (1992) DnaC protein contains a modified ATP-binding motif and belongs to a novel family of ATPases including also DnaA. Nucleic Acids Res 20(8):1997

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kucherer C et al (1986) Regulation of transcription of the chromosomal dnaA gene of Escherichia coli. Mol Gen Genet 205(1):115–121

    PubMed  CAS  Google Scholar 

  • Learn BA et al (1997) Cryptic single-stranded-DNA binding activities of the phage lambda P and Escherichia coli DnaC replication initiation proteins facilitate the transfer of E. coli DnaB helicase onto DNA. Proc Natl Acad Sci USA 94(4):1154–1159

    PubMed  CAS  PubMed Central  Google Scholar 

  • LeBowitz JH, McMacken R (1986) The Escherichia coli dnaB replication protein is a DNA helicase. J Biol Chem 261(10):4738–4748

    PubMed  CAS  Google Scholar 

  • Leipe DD et al (2000) The bacterial replicative helicase DnaB evolved from a RecA duplication. Genome Res 10(1):5–16

    PubMed  CAS  Google Scholar 

  • Leonard AC, Grimwade JE (2011) Regulation of DnaA assembly and activity: taking directions from the genome. Annu Rev Microbiol 65:19–35

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lo YH et al (2009) The crystal structure of a replicative hexameric helicase DnaC and its complex with single-stranded DNA. Nucleic Acids Res 37(3):804–814

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lobner-Olesen A, Atlung T, Rasmussen KV (1987) Stability and replication control of Escherichia coli minichromosomes. J Bacteriol 169(6):2835–2842

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lu YB et al (1996) Direct physical interaction between DnaG primase and DnaB helicase of Escherichia coli is necessary for optimal synthesis of primer RNA. Proc Natl Acad Sci USA 93(23):12902–12907

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ludlam AV et al (2001) Essential amino acids of Escherichia coli DnaC protein in an N-terminal domain interact with DnaB helicase. J Biol Chem 276(29):27345–27353

    PubMed  CAS  Google Scholar 

  • Lyubimov AY, Strycharska M, Berger JM (2011) The nuts and bolts of ring-translocase structure and mechanism. Curr Opin Struct Biol 21(2):240–248

    PubMed  CAS  PubMed Central  Google Scholar 

  • Macvanin M, Adhya S (2012) Architectural organization in E. coli nucleoid. Biochim Biophys Acta 1819(7):830–835

    PubMed  CAS  Google Scholar 

  • Makise M et al (2002) Biochemical analysis of DnaA protein with mutations in both Arg328 and Lys372. Biochem J 362(Pt 2):453–458

    PubMed  CAS  PubMed Central  Google Scholar 

  • Makowska-Grzyska M, Kaguni JM (2010) Primase directs the release of DnaC from DnaB. Mol Cell 37(1):90–101

    PubMed  CAS  PubMed Central  Google Scholar 

  • Marszalek J, Kaguni JM (1994) DnaA protein directs the binding of DnaB protein in initiation of DNA replication in Escherichia coli. J Biol Chem 269(7):4883–4890

    PubMed  CAS  Google Scholar 

  • Messer W, Weigel C (1997) DnaA initiator – also a transcription factor. Mol Microbiol 24(1):1–6

    PubMed  CAS  Google Scholar 

  • Mizushima T et al (1994) Loss of flagellation in dnaA mutants of Escherichia coli. J Bacteriol 176(17):5544–5546

    PubMed  CAS  PubMed Central  Google Scholar 

  • Molt KL et al (2009) A role for nonessential domain II of initiator protein, DnaA, in replication control. Genetics 183(1):39–49

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mott ML, Berger JM (2007) DNA replication initiation: mechanisms and regulation in bacteria. Nat Rev Microbiol 5(5):343–354

    PubMed  CAS  Google Scholar 

  • Mott ML et al (2008) Structural synergy and molecular crosstalk between bacterial helicase loaders and replication initiators. Cell 135(4):623–634

    PubMed  CAS  PubMed Central  Google Scholar 

  • Neuwald AF et al (1999) AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 9(1):27–43

    PubMed  CAS  Google Scholar 

  • Newman G, Crooke E (2000) DnaA, the initiator of Escherichia coli chromosomal replication, is located at the cell membrane. J Bacteriol 182(9):2604–2610

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nishida S et al (2002) A nucleotide switch in the Escherichia coli DnaA protein initiates chromosomal replication: evidence from a mutant DnaA protein defective in regulatory ATP hydrolysis in vitro and in vivo. J Biol Chem 277(17):14986–14995

    PubMed  CAS  Google Scholar 

  • Nozaki S, Ogawa T (2008) Determination of the minimum domain II size of Escherichia coli DnaA protein essential for cell viability. Microbiology 154(Pt 11):3379–3384

    PubMed  CAS  Google Scholar 

  • Nozaki S, Niki H, Ogawa T (2009) Replication initiator DnaA of Escherichia coli changes its assembly form on the replication origin during the cell cycle. J Bacteriol 191(15):4807–4814

    PubMed  CAS  PubMed Central  Google Scholar 

  • Olliver A et al (2010) DnaA-ATP acts as a molecular switch to control levels of ribonucleotide reductase expression in Escherichia coli. Mol Microbiol 76(6):1555–1571

    PubMed  CAS  Google Scholar 

  • Quinones A et al (1997) DnaA protein stimulates polA gene expression in Escherichia coli. Mol Microbiol 23(6):1193–1202

    PubMed  CAS  Google Scholar 

  • Reha-Krantz LJ, Hurwitz J (1978a) The dnaB gene product of Escherichia coli. II. Single stranded DNA- dependent ribonucleoside triphosphatase activity. J Biol Chem 253(11):4051–4057

    PubMed  CAS  Google Scholar 

  • Reha-Krantz LJ, Hurwitz J (1978b) The dnaB gene product of Escherichia coli. I. Purification, homogeneity, and physical properties. J Biol Chem 253(11):4043–4050

    PubMed  CAS  Google Scholar 

  • Rimsky S, Travers A (2011) Pervasive regulation of nucleoid structure and function by nucleoid-associated proteins. Curr Opin Microbiol 14(2):136–141

    PubMed  CAS  Google Scholar 

  • Roth A, Messer W (1995) The DNA binding domain of the initiator protein DnaA. EMBO J 14(9):2106–2111

    PubMed  CAS  PubMed Central  Google Scholar 

  • San Martin C et al (1998) Three-dimensional reconstructions from cryoelectron microscopy images reveal an intimate complex between helicase DnaB and its loading partner DnaC. Structure 6(4):501–509

    PubMed  CAS  Google Scholar 

  • Sawaya MR et al (1999) Crystal structure of the helicase domain from the replicative helicase-primase of bacteriophage T7. Cell 99(2):167–177

    PubMed  CAS  Google Scholar 

  • Schaper S, Messer W (1997) Prediction of the structure of the replication initiator protein DnaA. Proteins 28(1):1–9

    PubMed  CAS  Google Scholar 

  • Seitz H, Weigel C, Messer W (2000) The interaction domains of the DnaA and DnaB replication proteins of Escherichia coli. Mol Microbiol 37(5):1270–1279

    PubMed  CAS  Google Scholar 

  • Sekimizu K, Kornberg A (1988) Cardiolipin activation of dnaA protein, the initiation protein of replication in Escherichia coli. J Biol Chem 263(15):7131–7135

    PubMed  CAS  Google Scholar 

  • Sekimizu K, Bramhill D, Kornberg A (1987) ATP activates dnaA protein in initiating replication of plasmids bearing the origin of the E. coli chromosome. Cell 50(2):259–265

    PubMed  CAS  Google Scholar 

  • Simmons LA, Felczak M, Kaguni JM (2003) DnaA protein of Escherichia coli: oligomerization at the E. coli chromosomal origin is required for initiation and involves specific N-terminal amino acids. Mol Microbiol 49(3):849–858

    PubMed  CAS  Google Scholar 

  • Singleton MR et al (2000) Crystal structure of T7 gene 4 ring helicase indicates a mechanism for sequential hydrolysis of nucleotides. Cell 101(6):589–600

    PubMed  CAS  Google Scholar 

  • Singleton MR, Dillingham MS, Wigley DB (2007) Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem 76:23–50

    PubMed  CAS  Google Scholar 

  • Skarstad K, Wold S (1995) The speed of the Escherichia coli fork in vivo depends on the DnaB:DnaC ratio. Mol Microbiol 17(5):825–831

    PubMed  CAS  Google Scholar 

  • Song HK et al (2000) Mutational studies on HslU and its docking mode with HslV. Proc Natl Acad Sci USA 97(26):14103–14108

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stephani K, Weichart D, Hengge R (2003) Dynamic control of Dps protein levels by ClpXP and ClpAP proteases in Escherichia coli. Mol Microbiol 49(6):1605–1614

    PubMed  CAS  Google Scholar 

  • Sutton MD, Kaguni JM (1997) Threonine 435 of Escherichia coli DnaA protein confers sequence- specific DNA binding activity. J Biol Chem 272(37):23017–23024

    PubMed  CAS  Google Scholar 

  • Sutton MD et al (1998) E. coli DnaA protein: the N-terminal domain and loading of DnaB helicase at the E. coli chromosomal origin. J Biol Chem 273:34255–34262

    PubMed  CAS  Google Scholar 

  • Thomsen ND, Berger JM (2009) Running in reverse: the structural basis for translocation polarity in hexameric helicases. Cell 139(3):523–534

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tougu K, Marians KJ (1996) The interaction between helicase and primase sets the replication fork clock. J Biol Chem 271(35):21398–21405

    PubMed  CAS  Google Scholar 

  • van den Berg EA et al (1985) Analysis of regulatory sequences upstream of the E. coli uvrB gene; involvement of the DnaA protein. Nucleic Acids Res 13(6):1829–1840

    PubMed  PubMed Central  Google Scholar 

  • Vetter IR, Wittinghofer A (2001) The guanine nucleotide-binding switch in three dimensions. Science 294(5545):1299–1304

    PubMed  CAS  Google Scholar 

  • Wahle E, Lasken RS, Kornberg A (1989a) The dnaB-dnaC replication protein complex of Escherichia coli. I. Formation and properties. J Biol Chem 264(5):2463–2468

    PubMed  CAS  Google Scholar 

  • Wahle E, Lasken RS, Kornberg A (1989b) The dnaB-dnaC replication protein complex of Escherichia coli. II. Role of the complex in mobilizing dnaB functions. J Biol Chem 264(5):2469–2475

    PubMed  CAS  Google Scholar 

  • Wang QP, Kaguni JM (1987) Transcriptional repression of the dnaA gene of Escherichia coli by dnaA protein. Mol Gen Genet 209(3):518–525

    PubMed  CAS  Google Scholar 

  • Wang QP, Kaguni JM (1989) dnaA protein regulates transcriptions of the rpoH gene of Escherichia coli. J Biol Chem 264(13):7338–7344

    PubMed  CAS  Google Scholar 

  • Wegrzyn G et al (1995) Transcriptional activation of the origin of coliphage lambda DNA replication is regulated by the host DnaA initiator function. Gene 154(1):47–50

    PubMed  CAS  Google Scholar 

  • Weigel C et al (1999) The N-terminus promotes oligomerization of the Escherichia coli initiator protein DnaA. Mol Microbiol 34(1):53–66

    PubMed  CAS  Google Scholar 

  • Wickner S, Hurwitz J (1975) Interaction of Escherichia coli dnaB and dnaC(D) gene products in vitro. Proc Natl Acad Sci USA 72(3):921–925

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wickner S, Wright M, Hurwitz J (1974) Association of DNA-dependent and -independent ribonucleoside triphosphatase activities with dnaB gene product of Escherichia coli. Proc Natl Acad Sci USA 71(3):783–787

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wu CA et al (1992) Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. V. Primase action regulates the cycle of Okazaki fragment synthesis. J Biol Chem 267(6):4074–4083

    PubMed  CAS  Google Scholar 

  • Xia W, Dowhan W (1995) In vivo evidence for the involvement of anionic phospholipids in initiation of DNA replication in Escherichia coli. Proc Natl Acad Sci USA 92(3):783–787

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yang S et al (2002) Flexibility of the rings: structural asymmetry in the DnaB hexameric helicase. J Mol Biol 321(5):839–849

    PubMed  CAS  Google Scholar 

  • Zheng W et al (2001) Mutations in DnaA protein suppress the growth arrest of acidic phospholipid-deficient Escherichia coli cells. EMBO J 20(5):1164–1172

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank the members of my lab for their support while I was writing. This work is supported by Grant GM090063 from the National Institutes of Health and by the Michigan Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon M. Kaguni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Kaguni, J.M. (2014). DnaA, DnaB, and DnaC. In: Bell, E. (eds) Molecular Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6436-5_142-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6436-5_142-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6436-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics