Skip to main content

Motor and Kinesthetic Imagery

  • Chapter
  • First Online:
Multisensory Imagery

Abstract

This chapter aims to provide an overview of the functional, ­physiological, and neural characteristics of motor imagery. The literature reviewed shows that motor imagery shares many characteristics with motor executions, both at a behavioral and a physiological level. Furthermore, functional imaging studies show that imagining a movement activates a motor network that largely overlaps with that involved when actively performing a movement. However, the involvement of the primary motor cortex in motor imagery is still under debate. The range of behavioral, physiological, and neural effects of motor imagery also overlap with those reported during action observation, although activation of a motor network through imagery or observation may be less extensive than during action execution, with observation perhaps providing the least activation. Thus, the idea that motor imagery evokes similar motor representations as execution of movements may be used in a range of different applications such as motor (re)learning in sport psychology and rehabilitation of motor disorders. Moreover, brain-computer interfaces are now in development, using mental processes to interface with computers, which may be of great relevance to paralyzed patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anema HA, de Haan AM, Gebuis T, Dijkerman HC (2012) Thinking about touch facilitates tactile but not auditory processing. Exp Brain Res 218(3):373–380. doi:10.1007/s00221-012-3020-0

    Article  PubMed  Google Scholar 

  • Avenanti A, Bolognini N, Maravita A, Aglioti SM (2007) Somatic and motor components of action simulation. Curr Biol 17(24):2129–2135

    Article  PubMed  CAS  Google Scholar 

  • Aziz-Zadeh L, Maeda F, Zaidel E, Mazziotta J, Iacoboni M (2002) Lateralization in motor facilitation during action observation: a TMS study. Exp Brain Res 144(1):127–131

    Article  PubMed  Google Scholar 

  • Bakker M, de Lange FP, Stevens JA, Toni I, Bloem BR (2007) Motor imagery of gait: a quantitative approach. Exp Brain Res 179(3):497–504

    Article  PubMed  CAS  Google Scholar 

  • Barker AT, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of human motor cortex. Lancet 325(8437):1106–1107

    Article  PubMed  CAS  Google Scholar 

  • Beyer L, Weiss T, Hansen E, Wolf A, Seidel A (1990) Dynamics of central nervous activation during motor imagination. Int J Psychophysiol 9(1):75–80

    Article  PubMed  CAS  Google Scholar 

  • Blakemore S-J, Sirigu A (2003) Action prediction in the cerebellum and in the parietal lobe. Exp Brain Res 153(2):239–245

    Article  PubMed  Google Scholar 

  • Brass M, Bekkering H, Wohlschläger A, Prinz W (2000) Compatibility between observed and executed finger movements: comparing symbolic, spatial, and imitative cues. Brain Cogn 44(2):124–143

    Article  PubMed  CAS  Google Scholar 

  • Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V, Seitz RJ et al (2001) Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. Eur J Neurosci 13:400–404

    PubMed  CAS  Google Scholar 

  • Caeyenberghs K, Wilson PH, van Roon D, Swinnen SP, Smits-Engelsman BCM (2009) Increasing convergence between imagined and executed movement across development: evidence for the emergence of movement representations. Dev Sci 12(3):474–483

    Article  PubMed  Google Scholar 

  • Catmur C, Mars RB, Rushworth MF, Heyes C (2011) Making mirrors: premotor cortex stimulation enhances mirror and counter-mirror motor facilitation. J Cogn Neurosci 23(9):2352–2362

    Article  PubMed  Google Scholar 

  • Chang Y, Lee J-J, Seo J-H, Song H-J, Kim Y-T, Lee HJ, Kim HJ et al (2010) Neural correlates of motor imagery for elite archers. NMR Biomed 24(4):366–372

    PubMed  Google Scholar 

  • Cheney PD (1985) Role of cerebral cortex in voluntary movements. A review. Phys Ther 65(5):624–635

    PubMed  CAS  Google Scholar 

  • Chong TT-J, Cunnington R, Williams MA, Mattingley JB (2009) The role of selective attention in matching observed and executed actions. Neuropsychologia 47(3):786–795

    Article  PubMed  Google Scholar 

  • Clark S, Tremblay F, Ste-Marie D (2004) Differential modulation of corticospinal excitability during observation, mental imagery and imitation of hand actions. Neuropsychologia 42(1):105–112

    Article  PubMed  Google Scholar 

  • Collet C, Guillot A, Lebon F, MacIntyre T, Moran A (2011) Measuring motor imagery using psychometric, behavioral, and psychophysiological tools. Exerc Sport Sci Rev 39(2):85–92

    Article  PubMed  Google Scholar 

  • Crémers J, Dessoullières A, Garraux G (2011) Hemispheric specialization during mental imagery of brisk walking. Hum Brain Mapp 33(4):873–882

    Article  PubMed  Google Scholar 

  • Decety J, Grèzes J, Costes N, Perani D, Jeannerod M, Procyk E, Fazio F (1997) Brain activity ­during observations of actions. Influence of action content and subject’s strategy. Brain 120:1763–1777

    Article  PubMed  CAS  Google Scholar 

  • Decety J, Jeannerod M, Germain M, Pastene J (1991) Vegetative response during imagined movement is proportional to mental effort. Behav Brain Res 42(1):1–5

    Article  PubMed  CAS  Google Scholar 

  • Decety J, Jeannerod M (1996) Mentally simulated movements in virtual reality: does Fitts’s law hold in motor imagery? Behav Brain Res 72:127–134

    Article  Google Scholar 

  • Decety J, Sjöholm H, Ryding E, Stenberg G, Ingvar DH (1990) The cerebellum participates in mental activity: tomographic measurements of regional cerebral blood flow. Brain Res 535(2):313–317

    Article  PubMed  CAS  Google Scholar 

  • Deiber MP, Ibañez V, Sadato N, Hallett M (1996) Cerebral structures participating in motor preparation in humans: a positron emission tomography study. J Neurophysiol 75(1):233–247

    PubMed  CAS  Google Scholar 

  • Dijkerman HC, de Haan EH (2007) Somatosensory processes subserving perception and action. Behav Brain Sci 30(2):189–239

    Article  PubMed  Google Scholar 

  • Dijkerman HC, Ietswaart M, Johnston M, MacWalter RS (2004) Does motor imagery training improve hand function in chronic stroke patients? A pilot study. Clin Rehabil 18(5):538–549

    Article  PubMed  CAS  Google Scholar 

  • Dijkerman HC, Smit MC (2007) Interference of grasping observation during prehension, a behavioural study. Exp Brain Res 176(2):387–396

    Article  PubMed  CAS  Google Scholar 

  • Dinstein I, Hasson U, Rubin N, Heeger DJ (2007) Brain areas selective for both observed and executed movements. J Neurophysiol 98(3):1415–1427

    Article  PubMed  Google Scholar 

  • Fadiga L, Buccino G, Craighero L, Fogassi L, Gallese V, Pavesi G (1999) Corticospinal ­excitability is specifically modulated by motor imagery: a magnetic stimulation study. Neuropsychologia 37(2):147–158

    Article  PubMed  CAS  Google Scholar 

  • Fadiga L, Fogassi L, Pavesi G, Rizzolatti G (1995) Motor facilitation during action observation: a magnetic stimulation study. J Neurophysiol 73(6):2608–2611

    PubMed  CAS  Google Scholar 

  • Frak V, Paulignan Y, Jeannerod M (2001) Orientation of the opposition axis in mentally simulated grasping. Exp Brain Res 136(1):120–127

    Article  PubMed  CAS  Google Scholar 

  • Gandevia SC, Wilson LR, Inglis JT, Burke D (1997) Mental rehearsal of motor tasks recruits alpha-motoneurones but fails to recruit human fusimotor neurones selectively. J Physiol 505:259–266

    Article  PubMed  CAS  Google Scholar 

  • Gangitano M, Mottaghy FM, Pascual-Leone A (2001) Phase-specific modulation of cortical motor output during movement observation. Neuroreport 12(7):1489–1492

    Article  PubMed  CAS  Google Scholar 

  • Gangitano M, Mottaghy FM, Pascual-Leone A (2004) Modulation of premotor mirror neuron activity during observation of unpredictable grasping movements. Eur J Neurosci 20(8):2193–2202

    Article  PubMed  Google Scholar 

  • Gazzaniga MS, Ivry RB, Mangun GR (2002) Cognitive Neuroscience, 2nd edn. W.W. Norton & Company, New York

    Google Scholar 

  • Gentili R, Cahouet V, Ballay Y, Papaxanthis C (2004) Inertial properties of the arm are accurately predicted during motor imagery. Behav Brain Res 155(2):231–239

    Article  PubMed  Google Scholar 

  • Gerardin E, Sirigu A, Lehericy S, Poline JB, Gaymard B, Marsault C et al (2000) Partially overlapping neural networks for real and imagined hand movements. Cereb Cortex 10(11):1093–1104

    Article  PubMed  CAS  Google Scholar 

  • Grèzes J, Decety J (2001) Functional anatomy of execution, mental simulation, observation, and verb generation of actions: a meta-analysis. Hum Brain Mapp 12(1):1–19

    Article  PubMed  Google Scholar 

  • Guillot A, Collet C (2005a) Duration of mentally simulated movement: a review. J Mot Behav 37(1):10–20

    Article  PubMed  CAS  Google Scholar 

  • Guillot A, Collet C (2005b) Contribution from neurophysiological and psychological methods to the study of motor imagery. Brain Res Rev 50(2):387–397

    Article  PubMed  Google Scholar 

  • Guillot A, Collet C, Nguyen VA, Malouin F, Richards C, Doyon J (2008) Functional neuroanatomical networks associated with expertise in motor imagery. Neuroimage 41(4):1471–1483

    Article  PubMed  Google Scholar 

  • Guillot A, Lebon F, Rougget D, Champely S, Doyon J, Collet C (2007) Muscular responses during motor imagery as a function of muscle contraction types. Int J Psychophysiol 66(1):18–27

    Article  PubMed  CAS  Google Scholar 

  • Hall CR (1985) Individual differences in the mental practice and imagery of motor skill performance. Can J Appl Sport Sci 10(4):17S–21S

    PubMed  CAS  Google Scholar 

  • Hanakawa T, Immisch I, Toma K, Dimyan MA, Van Gelderen P, Hallett M (2003) Functional properties of brain areas associated with motor execution and imagery. J Neurophysiol 89(2):989–1002

    Article  PubMed  Google Scholar 

  • Heremans E, Helsen WF, De Poel HJ, Alaerts K, Meyns P, Feys P (2009) Facilitation of motor imagery through movement-related cueing. Brain Res 1278:50–58

    Article  PubMed  CAS  Google Scholar 

  • Hétu S, Mercier C, Eugène F, Michon P-E, Jackson PL (2011) Modulation of brain activity during action observation: influence of perspective, transitivity and meaningfulness. PLoS ONE 6(9):e24728

    Article  Google Scholar 

  • Ikeda K, Higashi T, Sugawara K, Tomori K, Kinoshita H, Kasai T (2012) The effect of visual and auditory enhancements on excitability of the primary motor cortex during motor imagery: a pilot study. Int J Rehabil Res 35(1):82–84

    Article  PubMed  Google Scholar 

  • Isaac AR, Marks DF (1994) Individual differences in mental imagery experience: developmental changes and specialization. Br J Psychol 85(Pt 4):479–500

    Article  PubMed  Google Scholar 

  • Ivry RB, Keele SW, Diener HC (1988) Dissociation of the lateral and medial cerebellum in movement timing and movement execution. Exp Brain Res 73(1):167–180

    Article  PubMed  CAS  Google Scholar 

  • Jeannerod M (1994) The representing brain: Neural correlates of motor intention and imagery. Behav Brain Sci 17:187–245

    Article  Google Scholar 

  • Jeannerod M (2001) Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage 14:S103–S109

    Article  PubMed  CAS  Google Scholar 

  • Jeannerod M (2006) Motor Cognition: What Actions Tell the Self. Oxford University Press, New York

    Google Scholar 

  • Jeannerod M, Decety J (1995) Mental motor imagery: a window into representational stages of action. Curr Opin Neurobiol 5:727–732

    Article  PubMed  CAS  Google Scholar 

  • Johnson SH (2000) Imagining the impossible: intact motor representations in hemiplegics. Neuroreport 11(4):729–732

    Article  PubMed  CAS  Google Scholar 

  • Kasess CH, Windischberger C, Cunnington R, Lanzenberger R, Pezawas L, Moser E (2008) The suppressive influence of SMA on M1 in motor imagery revealed by fMRI and dynamic causal modeling. Neuroimage 40(2):828–837

    Article  PubMed  Google Scholar 

  • Keysers C, Gazzola V (2009) Expanding the mirror: vicarious activity for actions, emotions, and sensations. Curr Opin Neurobiol 19(6):666–671

    Article  PubMed  CAS  Google Scholar 

  • Kilner J, Paulignan Y, Blakemore S (2003) An interference effect of observed biological movement on action. Curr Biol 13(6):522–525

    Article  PubMed  CAS  Google Scholar 

  • de Lange FP, Roelofs K, Toni I (2008) Motor imagery: a window into the mechanisms and alterations of the motor system. Cortex 44(5):494–506

    Article  PubMed  Google Scholar 

  • Lebon F, Rouffet D, Collet C, Guillot A (2008) Modulation of EMG power spectrum frequency during motor imagery. Neurosci Lett 435(3):181–185

    Article  PubMed  CAS  Google Scholar 

  • Lebon F, Byblow WD, Collet C, Guillot A, Stinear CM (2012) The modulation of motor cortex excitability during motor imagery depends on imagery quality. Eur J Neurosci 35:323–331

    Article  PubMed  Google Scholar 

  • Lederman SJ, Klatzky RL (1987) Hand movements: a window into haptic object recognition. Cogn Psychol 19(3):342–368

    Article  PubMed  CAS  Google Scholar 

  • Lemon RN (1993) Cortical Control of the Primate Hand. Oxford University Press, Oxford

    Google Scholar 

  • Lemon RN (2008) Descending pathways in motor control. Annu Rev Neurosci 31:195–218. doi:10.1146/annurev.neuro.31.060407.125547

    Article  PubMed  CAS  Google Scholar 

  • Loporto M, McAllister C, Williams J, Hardwick R, Holmes P (2011) Investigating central mechanisms underlying the effects of stimulation. J Mot Behav 43(5):37–41

    Article  Google Scholar 

  • Lorey B, Pilgramm S, Walter B, Stark R, Munzert J, Zentgraf K (2010) Your mind’s hand: motor imagery of pointing movements with different accuracy. Neuroimage 49(4):3239–3247

    Article  PubMed  Google Scholar 

  • Lotze M, Halsband U (2006) Motor imagery. J Physiol Paris 99(4–6):386–395

    Article  PubMed  Google Scholar 

  • Lotze M, Zentgraf K (2010) Contribution of the primary motor cortex to motor imagery. In: Guillot A, Collet C (eds) The Neurophysiological Foundations of Mental and Motor Imagery. Oxford University Press, New York

    Google Scholar 

  • Macuga KL, Frey SH (2011) Neural representations involved in observed, imagined, and imitated actions are dissociable and hierarchically organized. Neuroimage 59(3):2798–2807

    Article  PubMed  Google Scholar 

  • Maeda F, Kleiner-Fisman G, Pascual-Leone A, Cavallo A, Becchio C, Sartori L, Bucchioni G et al (2002) Motor Facilitation While Observing Hand Actions: Specificity of the Effect and Role of Observer’s Orientation. J Neurophysiol 87:1329–1335

    PubMed  Google Scholar 

  • Maruff P, Wilson PH, De Fazio J, Cerritelli B, Hedt A, Currie J (1999) Asymmetries between dominant and non-dominant hands in real and imagined motor task performance. Neuropsychologia 37(3):379–384

    Article  PubMed  CAS  Google Scholar 

  • Mattar AAG, Gribble PL (2005) Motor learning by observing. Neuron 46(1):153–160

    Article  PubMed  CAS  Google Scholar 

  • Molenberghs P, Cunnington R, Mattingley JB (2011) Brain regions with mirror properties: a meta-analysis of 125 human fMRI studies. Neurosci Biobehav Rev 36(1):341–349

    Article  PubMed  Google Scholar 

  • Munzert J, Lorey B, Zentgraf K (2009) Cognitive motor processes: the role of motor imagery in the study of motor representations. Brain Res Rev 60(2):306–326

    Article  PubMed  Google Scholar 

  • Oishi K, Kasai T, Maeshima T (2000) Autonomic response specificity during motor imagery. J Physiol Anthropol Appl Human Sci 19(6):255–261

    Article  PubMed  CAS  Google Scholar 

  • Olivetti Belardinelli M, Palmiero M, Sestieri C, Nardo D, Di Matteo R, Londei A, D’Ausilio A et al (2009) An fMRI investigation on image generation in different sensory modalities: the influence of vividness. Acta Psychol 132(2):190–200

    Article  CAS  Google Scholar 

  • Oosterhof NN, Tipper SP, Downing PE (2012) Viewpoint (in)dependence of action representations: an MVPA study. J Cogn Neurosci 24(4):975–989. doi:10.1162/jocn_a_00195

    Article  PubMed  Google Scholar 

  • Owen AM, Coleman MR, Boly M, Davis MH, Laureys S, Pickard JD (2006) Detecting awareness in the vegetative state. Science 313(5792):1402

    Article  PubMed  CAS  Google Scholar 

  • Paivio A (1986) Mental Representations: A Dual Coding Approach. Oxford University Press, New York

    Google Scholar 

  • Papaxanthis C, Schieppati M, Gentili R, Pozzo T (2002) Imagined and actual arm movements have similar durations when performed under different conditions of direction and mass. Exp Brain Res 143(4):447–452

    Article  PubMed  Google Scholar 

  • Parsons LM (1987) Imagined spatial transformation of one’s body. J Exp Psychol Gen 116(2):172–191

    Article  PubMed  CAS  Google Scholar 

  • Parsons LM (1994) Temporal and kinematic properties of motor behavior reflected in mentally simulated action. J Exp Psychol Hum Percept Perform 20(4):709–730

    Article  PubMed  CAS  Google Scholar 

  • di Pellegrino G, Fadiga L, Fogassi L, Gallese V, Rizzolatti G (1992) Understanding motor events: a neurophysiological study. Exp Brain Res 91(1):176–180

    Article  PubMed  Google Scholar 

  • Personnier P, Ballay Y, Papaxanthis C (2010) Mentally represented motor actions in normal aging: III. Electromyographic features of imagined arm movements. Behav Brain Res 206(2):184–191

    Article  PubMed  Google Scholar 

  • Petit L, Courtney SM, Ungerleider LG, Haxby JV (1998) Sustained activity in the medial wall during working memory delays. J Neurosci 18(22):9429–9437

    PubMed  CAS  Google Scholar 

  • Rizzolatti G, Craighero L (2004) The mirror-neuron system. Annu Rev Neurosci 27:169–192

    Article  PubMed  CAS  Google Scholar 

  • Rizzolatti G, Fadiga L, Matelli M, Bettinardi V, Paulesu E, Perani D, Fazio F (1996) Localization of grasp representations in humans by PET: 1. Observation versus execution. Exp Brain Res 111(2):246–252

    Article  PubMed  CAS  Google Scholar 

  • Sirigu A, Cohen L, Duhamel JR, Pillon B, Dubois B, Agid Y, Pierrot-Deseilligny C (1995) Congruent unilateral impairments for real and imagined hand movements. Neuroreport 6(7):997–1001

    Article  PubMed  CAS  Google Scholar 

  • Skoura X, Personnier P, Vinter A, Pozzo T, Papaxanthis C (2008) Decline in motor prediction in elderly subjects: right versus left arm differences in mentally simulated motor actions. Cortex 44(9):1271–1278

    Article  PubMed  Google Scholar 

  • Stephan KM, Fink GR, Passingham RE, Silbersweig D, Ceballos-Baumann AO, Frith CD, Frackowiak RS (1995) Functional anatomy of the mental representation of upper extremity movements in healthy subjects. J Neurophysiol 73(1):373–386

    PubMed  CAS  Google Scholar 

  • Stinear CM, Coxon JP, Byblow WD (2009) Primary motor cortex and movement prevention: where Stop meets Go. Neurosci Biobehav Rev 33(5):662–673

    Article  PubMed  Google Scholar 

  • Talaraich J, Tournoux P (1988) Co-Planar Stereotaxic Atlas of the Human Brain. George Thieme, Stuttgard

    Google Scholar 

  • Thach WT (1996) On the specific role of the cerebellum in motor learning and cognition: clues from PET activation and lesion studies in man. Behav Brain Sci 19(3):411–431

    Article  Google Scholar 

  • Wang Y, Morgan WP (1992) The effect of imagery perspectives on the psychophysiological responses to imagined exercise. Behav Brain Res 52(2):167–174

    Article  PubMed  CAS  Google Scholar 

  • Williams J, Pearce AJ, Loporto M, Morris T, Holmes PS (2011) The relationship between corticospinal excitability during motor imagery and motor imagery ability. Behav Brain Res 226(2):369–375

    Article  PubMed  Google Scholar 

  • Wolbers T, Weiller C, Büchel C (2003) Contralateral coding of imagined body parts in the superior parietal lobe. Cereb Cortex 13(4):392–399

    Article  PubMed  CAS  Google Scholar 

  • Wolpert DM (1997) Computational approaches to motor control. Trends Cogn Sci 1(6):209–216

    Article  PubMed  CAS  Google Scholar 

  • Wuyam B, Moosavi SH, Decety J, Adams L, Lansing RW, Guz A (1995) Imagination of dynamic exercise produced ventilatory responses which were more apparent in competitive sportsmen. J Physiol 482:713–724

    PubMed  CAS  Google Scholar 

  • Yoo S-S, Freeman DK, McCarthy JJ, Jolesz FA (2003) Neural substrates of tactile imagery: a functional MRI study. Neuroreport 14(4):581–585

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen A. Anema .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Anema, H.A., Dijkerman, H.C. (2013). Motor and Kinesthetic Imagery. In: Lacey, S., Lawson, R. (eds) Multisensory Imagery. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5879-1_6

Download citation

Publish with us

Policies and ethics