Skip to main content

Solar Cooling Systems

  • Reference work entry
  • First Online:
Book cover Solar Energy
  • 6079 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Air-conditioning:

Temperature and humidity control in buildings of each typology.

Coefficient of performance (COP):

Factor which describes the ratio between useful and supplied energy.

Cooling:

Removing of heat.

Cost of saved primary energy:

Theoretical cost for 1 kWh of primary energy which is saved using an alternative system (e.g., driven by renewable energy sources) instead of a conventional one (only driven by fossil fuels or electricity from grid).

Demonstration project:

Organized implementation of a novel approach which aims at assessing the merits of widespread use of the approach and at gaining practical experience.

Primary energy saving:

Difference between the annual primary energy consumption of a conventional system which uses fossil fuels or electricity from grid and the annual primary energy consumption of a comparable system driven (partly) by renewable energy sources.

Sorption:

Exothermic process which comprises adsorption (a liquid or gaseous substance is attached to the surface of a solid, porous material) and absorption (a liquid or gaseous substance is taken in by a liquid volume).

Bibliography

Primary Literature

  1. ÅF-Energikonsult AB, Energi och Miljö, Elisabeth Ekener Petersen et al (2001) cHose Energy savings by CHCP plants in the hotel sector. Within SAVE II Programme (European Commission Directorate General). Dissemination of results seminars. http://www.inescc.pt/urepe/chose/reports/Final_report.pdf

  2. Alizadeh S, Saman W (2002) An experimental study of a forced-flow solar collector/regenerator using liquid desiccants. Solar Energy 73(5):345–362

    Article  Google Scholar 

  3. American Society of Heating, Refrigerating, and Air-Conditioning Engineers (2005) ASHRAE handbook – fundamentals, chapter 36. American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Atlanta

    Google Scholar 

  4. Anyanwu EE (2004) Review of solid adsorption solar refrigeration II: an overview of the principles and theory. Energy Convers Manag 45:1279–1295

    Article  Google Scholar 

  5. Bejan A, Tsatsaronis G, Moran M (1996) Thermal design & optimization. Wiley, New York

    MATH  Google Scholar 

  6. Daniel Keller D, Ochsner E (2008) Absorptionskältemaschinen als Alternative. friscaldo 5:28–30

    Google Scholar 

  7. Eicker U, Pietruschka D (2009) Optimization and economics of solar cooling systems advances in building energy research aber. Earthscan 3(1):45–82

    Google Scholar 

  8. Fan Y, Luo L, Souyri B (2007) Review of solar sorption refrigeration technologies: development and applications. Renew Sustain Energy Rev 11:1758–1775

    Article  Google Scholar 

  9. Florides GA, Tassou SA, Kalogirou SA, Wrobel LC (2002) Review of solar and low energy cooling technologies for buildings. Renew Sustain Energy Rev 6:557–572, Elsevier Science Ltd

    Article  Google Scholar 

  10. Gaderer M (2000) Rauchgaskondensationsanlagen Stand der Technik, Schaltungsvarianten, Entwicklungen. ZAE Bayern, München

    Google Scholar 

  11. Gassel A (2002) Die Adsorptionskältemaschine-Betriebserfahrungen, thermodynam. Model und TRNSYS-simulation. KI Luft- und Kältetechnik 10:479–483

    Google Scholar 

  12. Haider M, Luedeking G (2005) Auslegung und Wirtschaftlichkeit von KWKK-Anlagen Teil 1. KI Luft- und Kältetechnik 7:267–271

    Google Scholar 

  13. Heimrat R, Haller M (2007) The reference heating system, the template solar system. IEA-SHC Task 32 project report. www.iea-shc.org/publications/…/task32-Reference_Heating_System.pdf

  14. Henning H-M (2005) Solar thermal energy for air-conditioning of buildings – advanced technologies adapted to local climatic conditions. IN: Proceedings of the 1st IBME conference, Bahrain, 5–7 Dec 2005

    Google Scholar 

  15. Henning H-M (ed) (2007) Solar assisted air conditioning in buildings – a handbook for planners, 2nd revised edn. Springer-Verlag, Wien New York

    Google Scholar 

  16. Henning H-M (2007) Solar assisted air conditioning of buildings – an overview. Appl Thermal Eng 27:1734–1749

    Article  Google Scholar 

  17. Henning H-M, Pagano T, Mola S, Wiemken E (2005) Micro tri-generation system for indoor air conditioning in the Mediterranean climate. Appl Thermal Eng 27:2188–2194, Elsevier Ltd

    Article  Google Scholar 

  18. Henning H-M, Urbaneck T, Morgenstern A, Nunez T, Wiemke E, Thümmler E, Uhlig U (2009) Kühlen und Klimatisieren mit Wärme. Solarpraxis AG, Berlin

    Google Scholar 

  19. Henning H-M, Urbaneck T et al (2009) Kühlen und klimatisieren mit Wärme. Bine Informationsdienst. FIZ Karlsruhe, Solarpraxis

    Google Scholar 

  20. Höfker G, Eicker U, Lomas K, Eppel H (2001) Desiccant cooling with solar energy. In: Proceedings of the CIBSE conference, London. www.cibse.org/pdfs/desiccant.pdf

  21. Jakob U (2010) Solar cooling. Solar thermal markets in Europe: trends and market statistics 2009, p 14. www.estif.org

  22. Keßling W, Lävemann E, Kapfhammer C (1998) Energy storage for desiccant cooling systems component development. Solar Energy 64(4–6):209–221

    Article  Google Scholar 

  23. Keßling W, Lävemann E, Peltzer M (1998) Energy storage in open cycle liquid desiccant cooling systems. Int J Refrig 21(2):150–156

    Article  Google Scholar 

  24. Krause M, Saman W, Heinzen R, Jordan U, Halawa E, Vajen K (2007) Absorber and regenerator models for liquid desiccant air conditioning systems: validation and comparison using experimental data. In: Proceedings of the international solar energy conference ISES2007, Beijing

    Google Scholar 

  25. Krause M, Saman W, Heinzen R, Jordan U, Halawa E, Vajen K (2007) Validation and comparison of absorber and regenerator models for liquid desiccant air conditioning systems. In: Proceedings of the 2nd international conference solar air-conditioning, Tarragona (ES), 18–19 Oct 2007

    Google Scholar 

  26. Krause M, Saman W, Vajen K (2005) Open cycle liquid desiccant air conditioning systems – theoretical and experimental investigations. In: Proceedings of the 43rd ANZSES conference solar, Dunedin, 28–30 Nov 2005

    Google Scholar 

  27. Krause M, Saman W, Vajen K (2006) Optimisation of a regenerator for open cycle liquid desiccant air conditioning systems. In: Proceedings of the EuroSun 2006, Glasgow, 27–29 June 2006

    Google Scholar 

  28. Kreider JF, Curtiss PS, Rabl A (2005) Heating and cooling of buildings design for efficiency, 2nd edn. McGraw-Hill, Singapore

    Google Scholar 

  29. Kren C (2008) Flue gas fired absorption chillers. Dissertation. Technische Universität München – TUM Physik Department, Lehrstuhl für Physik E19

    Google Scholar 

  30. Löf G (1993) Active solar systems. In: Bankston CA (ed) Solar heat technologies, vol 6. MIT Press, Cambridge, MA

    Google Scholar 

  31. Lowenstein A (2008) Review of liquid desiccant technology for HVAC applications. HVAC&R Res 14(6):819–840. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org)

  32. Lowenstein A, Slayzak S, Kozubal E (2006) A zero carryover liquid-desiccant air conditioner for solar applications. In: Proceedings of the ISEC 2006, Denver, Paper No. ISEC2006-99079

    Book  Google Scholar 

  33. Löwenstein A, Slayzak S, Ryan J, Pesaran A (1998) Advanced commercial liquid-desiccant technology development study, NREL/TP-550-24688. National Technical Information Service (NTIS), U.S. Department of Commerce

    Book  Google Scholar 

  34. Matsunaga K (2002) Comparison of environmental impacts and physical properties of refrigerants. http://www.engineering.columbia.edu/

  35. Medrano M, Bourouis M, Coronas A (2001) Double-lift absorption refrigeration cycles driven by low-temperature heat sources using organic fluid mixtures as working pairs. Appl Energy 68:173–185

    Article  Google Scholar 

  36. Mesquita LCS, Harrison SJ, Thomey D (2006) Modeling of heat and mass transfer in parallel plate liquid-desiccant dehumidifiers. Solar Energy 80(11):1475–1482

    Article  Google Scholar 

  37. Morgenstern A, Bongs C, Wagner C, Henning H-M (2009) Experimental evaluation of a sorptive coated heat exchanger prototype for dehumidification. In: Proceedings of the 3rd international conference on solar air-conditioning, OTTI, Palermo, 30 Sept–02 Oct 2009

    Google Scholar 

  38. Motta M, Henning H-M (2004) An advanced solar assisted sorption cycle for building airconditioning: the ECOS potential and performance assessment. In: Proceedings of the EuroSun 2004, 5th ISES Europe solar congress, Freiburg, 1–4 June 2004

    Google Scholar 

  39. Mouchot A (1987) La chaleur Solaire et ses Applications Industrielles (German translation Die Sonnenwärme und ihre industriellen Anwendungen). Olynthus Verlag, Oberbözberg

    Google Scholar 

  40. Podesser E (2004) Desiccant-Klimatechnik mit Antriebswärme aus Sonne und Biomasse: Prototypanlage “DEC-ÖKOPARK Hartberg”. Joanneum Research, Graz. www.energytech.at/pdf/solares_kuehlen_podesser1.pdf

  41. Reichelt J (2000) Wo steht die Kältetechnik in Deutschland und weltweit? Die Kälte & Klimatechnik 53(10):22–32, www.treffpunkt-kaelte.de

    Google Scholar 

  42. Richter L (2008) Mehrstufige Absorptionskälteanlagen in Energieverbundanlagen. KI Luft- und Kältetechnik 3:131–135

    Google Scholar 

  43. Ross S (1948) On physical adsorption. II. A comparison of methods of estimating surface areas of crystalline solids by gas adsorption. J Am Chem Soc 70(11):3830–3837

    Article  Google Scholar 

  44. SACE, Solar Assisted Air Conditioning in Europe. http://www.solair-project.eu/218.0.html

  45. Simader GR, Rakos C (2005) Klimatisierung, Kühlung und Klimaschutz: Technologien, Wirtschaftlichkeit und CO2-Reduktionspotentiale Materialband Stand der Technologie, Wirtschaftlichkeit, Potenziale, Emissionen und Fallstudien. Austrian Energy Agency, Vienna, www.energyagency.at

  46. Stadler M, Lipman T, Marnay C (2007) Current trends of decentralized CHP integration – The Californian investment subsidy system and its implication for the energy efficiency directive. Office of Electric Transmission and Distribution, Office of Electric Transmission and Distribution, U.S. Department of Energy under Contract No DE-AC02-05CH11231. http://eetd.lbl.gov/

  47. TRNSYS, A transient system simulation program – a program developed at the Solar Energy Laboratory, University of Wisconsin, Madison. http://sel.me.wisc.edu/trnsys

  48. Troll C, Wissmann VH, Creutzburg N, Paffen KH (1982) Alexander Weltatlas Neue Gesamtausgabe. Ernst Klett Verlage GmbH und Co, Stuttgart

    Google Scholar 

  49. von Cube H-L, Steimle F, Lotz H, Kunis J (1997) Lehrbuch der Kältetechnik, Band 2, 4th edn. C. F. Müller Verlag, Heidelberg

    Google Scholar 

  50. www.iea-shc.org

  51. Yattara A, Zhu Y, Mosa AM (2003) Comparison between solar single-effect and single-effect double-lift absorption machines (Part I). Appl Thermal Eng 23(15):1981–1992, Elsevier Ltd

    Article  Google Scholar 

  52. Ziegler F (1997) Sorptionswärmepumpen, Forschungsberichte des DKV Nr. 57. Habilitation, Deutscher Kälte- und Klimatechnischer Verein e.V. (DKV), Stuttgart

    Google Scholar 

  53. Ziegler F (2002) State of the art in sorption heat pumping and cooling technologies. Int J Refrig 25:450–459

    Article  Google Scholar 

Books and Reviews

  • Abdulateef JM, Sopian K, Alghoul MA, Sulaiman MY (2009) Review on solar-driven ejector refrigeration technologies. Renew Sustain Energy Rev 13:1338–1349

    Article  Google Scholar 

  • Adnot J (1999) Energy efficiency of room air-conditioners (EERAC). Study for the Directorate-General for Energy (DGXVII) of the Commission of the EC. Final report

    Google Scholar 

  • Alefeld G, Rademacher R (1994) Heat conversion systems. CRC Press, London

    Google Scholar 

  • Alizadeh S, Saman WY (2002) Modeling and performance of a forced flow solar collector/regenerator using liquid desiccant. Solar Energy 72(2):143–154

    Article  Google Scholar 

  • ASHRAE (2000) Handbook 2000 HVAC systems and equipment, SIth edn. American Society of Heating, Refrigeration and Air-Conditioning, Atlanta

    Google Scholar 

  • ASHRAE (2002) Absorption cooling, heating and refrigeration equipment, chapter 41. In: Handbook 2002 refrigeration, SI edn. American Society of Heating, Refrigeration, and Air-Conditioning, Atlanta

    Google Scholar 

  • Bermejo P, Pino FJ, Rosa F (2010) Solar absorption cooling plant in Seville. Solar Energy 84:1503–1512

    Article  Google Scholar 

  • Chang W-S, Wang C-C, Shieh C-C (2009) Design and performance of a solar-powered heating and cooling system using silica gel/water adsorption chiller. Appl Thermal Eng 29:2100–2105

    Article  Google Scholar 

  • Choudhury B, Chatterjee K, Sarkar JP (2010) Review paper on solar-powered air-conditioning through adsorption route. Renew Sustain Energy Rev 14:2189–2195

    Article  Google Scholar 

  • Collier RKJ (1997) Desiccant dehumidification and cooling systems assessment and analysis. Pacific Northwest National Laboratory, Richland/Washington, DC

    Book  Google Scholar 

  • Dannies JH (1951) Die Absorptionskältemaschine. Brücke Verlag Kurt Schmersow, Hannover

    Google Scholar 

  • Duffie JA, Beckman WA (1991) Solar engineering of thermal processes, 2nd edn. Wiley, New York

    Google Scholar 

  • Eicker U, Pietruschka D (2009) Design and performance of solar powered absorption cooling systems in office buildings. Energy Build 41:81–91

    Article  Google Scholar 

  • European standard: floor heating – systems and components (/EN-1264-1,2,3 1997 and EN-1264-4 2001/)

    Google Scholar 

  • Franzke U (2001) Personal communication, Institut für Luft- und Kältetechnik (ILK), Dresden

    Google Scholar 

  • Lane GA (1986) Phase change materials. In: Solar heat storage: latent heat material, vol II. CRC-Press, Boca Raton

    Google Scholar 

  • Marc O, Lucas F, Sinama F, Monceyron E (2010) Experimental investigation of a solar cooling absorption system operating without any backup system under tropical climate. Energy Build 42:774–782

    Article  Google Scholar 

  • Niebergall W (1981) Handbuch der Kältetechnik Band 7: Sorptionskältemaschinen. Springer, Berlin

    Google Scholar 

  • Pesaran AA, Penney TR, Czanderna AW (1992) Desiccant cooling: state-of-the-art assessment. NREL, Golden

    Google Scholar 

  • Santamouris M, Asimakopoulos D (1996) Passive cooling of buildings. James & James, London

    Google Scholar 

  • Sayigh AAM, McVeigh JC (1992) Solar air conditioning and refrigeration. Pergamon Press, Oxford, UK

    Google Scholar 

  • Schicktanz M, Nunez T (2009) Modelling of an adsorption chiller for dynamic system Simulation. Int J Refrig 32:588–595

    Article  Google Scholar 

  • Wang RZ, Ge TS, Chen CJ, Ma Q, Xiong ZQ (2009) Solar sorption cooling systems for residential applications: options and guidelines. Int J Refrig 32:638–660

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Martin Henning .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Henning, HM. (2013). Solar Cooling Systems . In: Richter, C., Lincot, D., Gueymard, C.A. (eds) Solar Energy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5806-7_690

Download citation

Publish with us

Policies and ethics