Skip to main content

Solar Cells : Very High Efficiencies Approaches

  • Reference work entry
  • First Online:
Book cover Solar Energy
  • 5944 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Blackbody (BB) radiation:

Radiation in equilibrium with a perfectly absorbing (black) body at a given temperature T. The spectrum and intensity of the radiation is completely determined by T.

Detailed balance:

principe that imposes a relationship between any forward and backward reaction rates.

Epitaxy:

mode of crystal growth on a cristalline substrate, where crystal orderind is continued in the growing phase.

Impact ionization:

interband electron-electron interaction whereby the excess energy of a carrier is given off to another carrier in a low lying state to promote it in a higher band of states.

Multijunction:

Photovoltaic device composed of several sub cells. Most of the time, these are series connected and have semiconductor with different band gaps to address different parts of the solar spectrum.

Photon cutting:

process by which a given photon gives two photons of lower energies (obeying of course energy conservation).

Recombination:

process by which a (photogenerated) electron-hole pair is anihilated (the excited electron returns to its fundamental state).

Shockley–Queisser limit (SQ limit):

fundamental limit on the photovoltaic conversion efficiency imposed on a single junction solar cell by the laws of physics.

Tandem:

synonyme of multijunction

Thermalization:

processes by which a system returns to thermal equilibrium

Upconversion:

process by which two photons are converted in a photon of higher energy

Bibliography

  1. Andriamiadamanana C, Ferrier A, Lombez L, Joudrier A-L, Naghavi N, Ghenuche P, Bardou N, Pelouard J-L, Collin S, Pellé F, Guillemoles J-F (2012) Plasmonic enhancement of up-conversion in ultrathin layers. SPIE 2012 (in press)

    Book  Google Scholar 

  2. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205

    Article  Google Scholar 

  3. Baluschev S, Miteva T, Yakutkin V, Nelles G, Yasuda A, Wegner G (2006) Up-conversion fluorescence: noncoherent excitation by sunlight. PRL 97:143903

    Google Scholar 

  4. Barnham KWJ, Duggan G (1990) J Appl Phys 67:3490

    Google Scholar 

  5. Becquerel E (1839) Mémoire sur les effets électriques produits sous l’influence des rayons solaires. Comptes Rendus de l’Académie des Sciences, novembre 1839

    Google Scholar 

  6. Berland B (2001) Optical rectenna for direct conversion of sunlight to electricity. In: Proceedings of the national center for photovoltaics program review meeting (NREL 2001), Seattle, p 323

    Google Scholar 

  7. Brown A (2003) Thèse UNSW

    Google Scholar 

  8. Carminati R, Greffet J-J (1999) Phys Rev Lett 82:1660

    Google Scholar 

  9. Cinco RM (1999) J Phys Chem B 102:8248–8256

    Google Scholar 

  10. Clifano M, Zunger A et al (2004) Appl Phys Lett 84

    Google Scholar 

  11. Conibeer GJ, Guillemoles JF et al (2005) In: Proceedings of the 20th EPVSEC, Barcelona

    Google Scholar 

  12. Conibeer G, Konig D, Green MA, Guillemoles JF (2008) Slowing of carrier cooling in hot carrier solar cells. Thin Sol Films 516:6948–6953

    Article  Google Scholar 

  13. Corkish R, Green MA (1993) In: Proceedings of the 23rd IEEE photovoltaic specialists conference, Louisville, p 675

    Google Scholar 

  14. Corkish R, Green MA, Puzzer T (2002) Solar energy collection by antennas. Sol Energy 73:395

    Article  Google Scholar 

  15. Corkish R, Green MA, Humphrey T, Puzzer T (2003) Efficiency of antenna solar collection. Presented at the 3rd world PV conference, Osaka

    Google Scholar 

  16. Coutts TJ (2001) Clean electricity from PV. Imperial College Press, London

    Google Scholar 

  17. Cuadra LR, Marti A, Luque A (2002) Physica E 14

    Google Scholar 

  18. Cuadra L, Martí A, Luque A (2004) IEEE Trans Electron Device 51(6)

    Google Scholar 

  19. De Vos A (1992) Endoreversible thermodynamics of solar energy conversion. Oxford University Press, Oxford

    Google Scholar 

  20. De Vos A et al (1998) Solar Energy Mater Solar Cells 51:413–424

    Google Scholar 

  21. Dini D, Hanack M, Meneghetti M (2005) Nonlinear optical properties of tetrapyrazinoporphyrazinato indium chloride complexes due to excited-state absorption processes. J Phys Chem B

    Google Scholar 

  22. Fortini A (1962) L’Onde Electrique 442:530

    Google Scholar 

  23. Freundlich A (2005) In: Proceedings of the photovotaic solar energy conference, Shanghai

    Google Scholar 

  24. Chen G et al (2004) Superlattices Microstruct 35:161–172

    Google Scholar 

  25. Gibart P, Auzel F, Guillaume JC, Zahraman K (1995) In: Proceedings of the 13th European photovoltaic solar energy conference (13th EU PVSEC), Nice, France, p 85

    Google Scholar 

  26. Gibart P, Auzel F, Guillaume JC, Zahraman K (1996) Below band- gap IR response of substrate-free GaAs solar cells using two-photon up- conversion. Jpn J Appl Phys 35(Part 1):4401–4403. doi:10.1143/JJAP

    Article  Google Scholar 

  27. Goetzberger A, Hebling C, Schock H-W (2003) Mater Sci Eng R 40:1–46

    Google Scholar 

  28. Green MA (2000) In: Proceedings of the 16th EC photovoltaic solar energy conference. James & James, p 51

    Google Scholar 

  29. Green MA (2001) Prog Photovoltaics 9:137

    Google Scholar 

  30. Green M (2002) Physica E 14:65

    Google Scholar 

  31. Green MA (2003) Third generation photovoltaics: advanced solar electricity generation. Springer, Berlin

    Google Scholar 

  32. Guillemoles JF (2003) In: Proceedings of the 3rd workshop on high efficiency solar energy conversion. JRC, Ispra

    Google Scholar 

  33. Güttler G, Queisser H (1970) Impurity photovoltaic effect in silicon. Energy Conver 10:51–55

    Article  Google Scholar 

  34. Harder N (2003) Theoretical limits of thermophotovoltaic solar energy conversion. Semicond Sci Technol 18:S151–S157

    Article  Google Scholar 

  35. Harder N-P, Green MA (2003) Thermophotonics. Semicond Sci Technol 18:S270–S278

    Article  Google Scholar 

  36. Hatsopoulos GN, Kaye J (1958) Measured thermal efficiencies of a diode configuration of a thermo electron engine. J Appl Phys 29:1124–1125

    Article  Google Scholar 

  37. Henry CH (1980) J Appl Phys 51:4494

    Google Scholar 

  38. Hofler H, Wurfel P, Ruppel W (1983) Sol Cells 10:257

    Google Scholar 

  39. Islangulov RR, Kozlov DV, Castellano FN (2005) Low power upconversion using MLCT sensitizers. Chem Commun 30:3776–3778

    Article  Google Scholar 

  40. Kammerer C, Cassabois G, Voisin C, Delalande C, Roussignol P, Gerard JM (2001) Phys Rev Lett 87:207401

    Google Scholar 

  41. Keevers MJ, Green MA (1994) Efficiency improvements of silicon solar cells by the impurity photovoltaic effect. J Appl Phys 75:4022–4031

    Article  Google Scholar 

  42. Keevers MJ, Green MA (1996) Extended infrared response of silicon solar cells and the impurity photovoltaic effect. Solar Energy Mater Solar Cells 41–42:195–204

    Article  Google Scholar 

  43. Kettemann S, Guillemoles JF (1995) In: Proceedings of the 13th photovoltaics solar energy conference, Nice

    Google Scholar 

  44. Kettemann S, Guillemoles JF (2002) Physica E 14

    Google Scholar 

  45. Koeck FAM et al (2004) On the thermionic emission from nitrogen-doped diamond films with respect to energy conversion. Diamond Relat Mater 13:2052–2055

    Article  Google Scholar 

  46. Kolodinski S, Werner J, Wittchen T, Queisser H (1993) Appl Phys Lett 63:2405

    Google Scholar 

  47. Laroche F (2005) Thèse Ecole Centrale Paris

    Google Scholar 

  48. Le Bris A, Guillemoles J-F (2010) Hot carrier solar cells: achievable efficiencies accounting for main thermalization paths. Appl Phys Lett 97:113506

    Google Scholar 

  49. Le Bris A, Lombez L, Laribi S, Boissier G, Christol P, Guillemoles J-F (2012) Thermalization rate study of GaSb-based heterostructures by continuous wave photoluminescence and their potential as hot carrier solar cell absorbers. Energy Environ Sci. doi:10.1039/C2EE02843C

    Google Scholar 

  50. Lewis (2005) Basic needs for solar energy utilisation. Rapport DOE, http://www.sc.doe.gov/bes/reports/files/SEU_rpt.pdf

  51. Li J, Chong M, Zhu J, Li Y, Xu J, Wang P, Shang Z, Yang Z, Zhu R, Cao X (1992) 35% efficient nonconcentrating novel silicon solar cell. Appl Phys Lett 60:2240–2242

    Article  Google Scholar 

  52. Licht S (2005) Solar water splitting to generate hydrogen fuel – a photothermal electrochemical analysis. Int J Hydrogen Energy 30:459–470

    Article  Google Scholar 

  53. Lin GH, Abdu R, Bockris JOM (1996) Investigation of resonance light absorption and rectification by subnanostructures. J Appl Phys 80:565

    Article  Google Scholar 

  54. Luque A (2011) Will we exceed 50% efficiency in photovoltaics? J Appl Phys 110:031301

    Google Scholar 

  55. Luque A, Marti A (1997) Phys Rev Lett 78:5014

    Google Scholar 

  56. Matsuura D (2002) Appl Phys Lett 81:4526

    Google Scholar 

  57. Maruyama T, Kitamura R (2001) Transformations of the wavelength of the light incident upon solar cells. Solar Energy Mater Solar Cells 69:207–216

    Article  Google Scholar 

  58. Nelson J, Barnes J, Ekins-Daukes N, Kluftinger B, Tsui E, Barnham K (1998) J Appl Phys 82:6240

    Google Scholar 

  59. Nield J et al (2000) Nature 7:44–47

    Google Scholar 

  60. Olson JM, Kurtz SR, Kibbler KE (1990) Appl Phys Lett 56:623

    Google Scholar 

  61. Palz W (ed) (2010) Power for the world: the emergence of electricity from the sun. Pan Stanford publishing

    Google Scholar 

  62. Pellé F, Ivanova S, Guillemoles J-F (2011) Improved c-Si solar cell efficiency by upconversion in Er3+ doped fluoride-based materials. EPJ Photovolt 2:20601. http://dx.doi.org/10.1051/epjpv/2011002

  63. Raulot JM, Domain C, Guillemoles JF (2005) Phys Rev B 71:35203

    Google Scholar 

  64. Roosmalen JAM (2004) Molecular-based concepts in PV towards full spectrum utilization. Semiconductors 38(8):970–975

    Article  Google Scholar 

  65. Rosenwaks Y et al (1993) Phys Rev B 48:14675

    Google Scholar 

  66. Ross RT, Nozik AJ (1982) J Appl Phys 53:3813

    Google Scholar 

  67. Sariciftci NS (2004) Mater Today 7:36–40

    Google Scholar 

  68. Schaller RD, Klimov VI (2004) High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys Rev Lett 92:186601

    Google Scholar 

  69. Schwede JW, Bargatin I, Riley DC, Hardin BE, Rosenthal SJ, Sun Y, Schmitt F, Pianetta P, Howe RT, Shen Z-X, Melosh NA (2010) Photon-enhanced thermionic emission for solar concentrator systems. Nat Mat 9:762. doi:10.1038/NMAT2814

    Article  Google Scholar 

  70. Semonin OE, Luther JM, Choi S, Chen H-Y, Gao J, Nozik AJ, Beard MC (2011) Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334:1530

    Article  Google Scholar 

  71. Shalav A, Richards BS, Trupke T, Corkish RP, Krämer KW, Güdel HU, Green MA (2003) Presented at the 3rd world PV conference, Osaka

    Google Scholar 

  72. Sheldon MT, Eisler CN, Atwater HA (2012) GaAs passivation with trioctylphosphine sulfide for enhanced solar cell efficiency and durability. Adv Energy Mater. Article first published online: 7 Feb 2012, doi:10.1002/aenm.201100666

    Google Scholar 

  73. Shockley W, Queisser HJ (1961) J Appl Phys 32:510

    Google Scholar 

  74. Sokolov IM (1998) On the energetics of a nonlinear system rectifying thermal fluctuations. Europhys Lett 44:278

    Article  Google Scholar 

  75. Sommerdijik JL, Bril A, deJager Lumin AWJ (1974) 8,341

    Google Scholar 

  76. Spirkl W et al (1995) Phys Rev B 52:11319

    Google Scholar 

  77. Tablero C, Garcia AJ, Fernandez JJ, Palacios P, Wahnon P (2003) First principles characterization of direct transitions for high efficiency new photovoltaic materials. Comput Mater Sci 27:58

    Article  Google Scholar 

  78. Tables PV (2011) Solar cell efficiency tables (version 38). Prog Photovolt Res Appl 19:565–572

    Article  Google Scholar 

  79. Trupke T, Green MA, Wurfel P (2002) J Appl Phys 92:4117

    Google Scholar 

  80. Ullrich B, Schroeder R (2002) Two-photon-excited green emission and its dichroic shift of oriented thin-film CdS on glass formed by laser deposition. Appl Phys Lett 80:356

    Article  Google Scholar 

  81. VanMaeckelberg D (2003) In: Proceedings of the 3rd workshop on high efficiency solar energy conversion. JRC, Ispra

    Google Scholar 

  82. Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B (2001) Nature 413(6856):597

    Google Scholar 

  83. Wegh RT, Donker H, Donker KD, Meijerink A, Lumin J (1999) 82:93

    Google Scholar 

  84. Wegh RT, Donker H, Oskam KD, Meijerink A (1999) Science 283:663

    Google Scholar 

  85. Wenseleers W et al (2002) J Phys Chem B 106:6853–6863

    Google Scholar 

  86. Werner JH, Kolodinski S, Queisser HJ (1994) Phys Rev Lett 72:3851

    Google Scholar 

  87. Wolf M, Brendel R (1998) J Appl Phys 83:4213

    Article  Google Scholar 

  88. Wurfel P (1982) The chemical potential of radiation. J Phys C: Solid State Phys 15:3967

    Article  Google Scholar 

  89. Wurfel P (1993) Limiting efficiency for solar cells with defects from a three-level model. Solar Energy Mater Solar Cells 29:403–413

    Article  Google Scholar 

  90. Wurfel P (1997) Solar energy conversion with hot electrons from impact ionisation. Solar Energy Mater Solar Cells 46:43–52

    Article  Google Scholar 

  91. Wurfel P (2003) Theoretical limits of thermophotovoltaic solar energy conversion. Semicond Sci Technol 18:S151–S157

    Article  Google Scholar 

  92. Wurfel P et al (2005) Prog Photovolt

    Google Scholar 

  93. Yamaguchi M (2001) Clean electricity from PV. Imperial College Press, London

    Google Scholar 

  94. Yu KM, Walukiewicz W, Wu J, Shan W, Beeman JW, Scarpulla MA, Dubon OD, Becla P (2003) Diluted II–VI oxide semiconductors with multiple band gaps. Phys Rev Lett 91:246403–246411

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Guillemoles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Guillemoles, JF. (2013). Solar Cells : Very High Efficiencies Approaches . In: Richter, C., Lincot, D., Gueymard, C.A. (eds) Solar Energy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5806-7_467

Download citation

Publish with us

Policies and ethics