Skip to main content
Book cover

Solar Energy pp 584–607Cite as

Solar Radiation for Solar Energy Utilization

  • Reference work entry
  • First Online:

Definition of the Subject and Its Importance

Present-day concerns of looming energy shortages and drastic climate change resulting from human activities have stimulated deployment of renewable energy systems , including systems to convert solar energy directly into heat or electricity and to substitute sunlight for artificial light.

Solar radiation provides the energy driving the ecosystems and climate of planet Earth. This radiation spans the electromagnetic spectrum from the highly energetic X-ray region through the ultraviolet, visible, and infrared to the far infrared and radio regions. The radiation interacts with the Earth’s electromagnetic and atmospheric envelope, resulting in large variations in the magnitude of solar radiation available for conversion into other forms of useful energy. Most conversion systems utilize only part of the solar spectrum. For daylighting, the energy in the human visual response range (wavelengths of 380–850 nm) is important. Crystal silicon...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Aerosol optical depth:

A dimensionless parameter for the extinction of solar radiation by scattering and absorption by aerosol particles between the point of observation and the top of the atmosphere.

Air mass:

The length of the path from an observer’s location to the top of the atmosphere, which passes through the center of the sun, relative to the zenith (perpendicular to the local horizontal = air mass 1).

Broadband radiation:

Photons in a wide electromagnetic spectral wavelength range, typically several hundred nanometers (nm) wide.

Diffuse hemispherical radiation:

Photons scattered in the atmosphere, excluding those from the solar disk, arriving on a horizontal surface originating from the 2π steradian hemisphere of the sky dome.

Direct normal radiation:

Nearly parallel rays of photons arriving on a surface perpendicular to the line from the observer to the center of the solar disk originating from within the 0.5° solid angle centered on the solar disk. Experimentally, this also includes additional sky radiation within 2.5°–3° of the center of the solar disk.

Extinction:

Gradual loss of amplitude in a signal propagating though an absorbing or scattering medium.

Extraterrestrial solar radiation:

Direct normal radiation at the top of the Earth’s atmosphere. Acronym: ETR.

Global hemispherical radiation:

The combination of photons from the sky dome and solar disk (diffuse hemispherical and projection of the direct normal radiation) received on a horizontal surface.

Incidence angle:

The angle between the center of the solar disk and the foot of the normal (perpendicular) of a receiving surface.

Pyranometer:

A radiometer with a 2π steradian (hemispherical) field of view used to measure global hemispherical or diffuse hemispherical radiation.

Pyrheliometer:

A radiometer with a restricted field of view (typically 5°–6°) used to measure direct normal radiation.

Responsivity:

The ratio of the output signal of a radiometer to the optical power intercepted by the sensor.

Solar radiation:

Electromagnetic emissions from the sun between at least 250 and 2,500 nm.

Zenith angle:

The angle between the local vertical and the center of the solar disk; complement of the solar elevation angle (angle from the center of the solar disk to the horizon).

Bibliography

Primary Literature

  1. Cox AN (1999) Allen’s astrophysical quantities, 4th edn. AIP/Springer, New York

    Google Scholar 

  2. Frohlich CJ (1998) Total solar irradiance variations: the construction of a composite and its comparison with models. In: International Astronomical Union Symposium 185: New eyes to see inside the sun and stars. Kluwer Academic, Dortrect

    Google Scholar 

  3. Whipple RS (1915) Instruments for the measurement of solar radiation. Trans Opt Soc Lond 15(1):106–182

    Article  Google Scholar 

  4. Coulson KL (1975) Solar and terrestrial radiation. Academic, New York

    Google Scholar 

  5. Hufbauer K (1991) Exploring the sun: solar science since Galileo (Series in NASA history). Johns Hopkins University Press, Baltimore

    Google Scholar 

  6. Krupp EC (1978) In search of ancient astronomers. Doubleday, New York

    Google Scholar 

  7. Brecher K, Feirtag M (1979) Astronomy of the ancients. MIT Press, Cambridge

    Google Scholar 

  8. Langley SP (1883) The selective absorption of solar energy. Am J Sci Ser 3(25):169–196

    Article  Google Scholar 

  9. Callendar HL, Fowler A (1906) The horizontal bolometer. Proc Phys Soc Lond A 77:15–16

    Google Scholar 

  10. Abbot CG, Aldrich LB (1932) An improved water-flow pyrheliometer and the standard scale of solar radiation. Smithson Misc Coll 87(15)

    Google Scholar 

  11. Abbot CG (1911) The silver disk pyrheliometer. Smithson Misc Coll 56(11)

    Google Scholar 

  12. Angstrom K (1899) The absolute determination of the radiation of heat with the electric compensation pyrheliometer with examples of application of this instrument. Astrophysical J 9:332–346

    Google Scholar 

  13. Angstrom AK (1919) A new instrument for measuring sky radiation. Q J R Meteorol Soc 50:124–126

    Google Scholar 

  14. Aldrich LB, Abbot CG (1948) Smithsonian pyrheliometry and the standard scale of solar radiation. Smithson Misc Coll 110(5)

    Google Scholar 

  15. Abbot CG, Aldrich LB (1916) The pyranometer – an instrument for measuring sky radiation. Smithson Misc Coll 66(7):9

    Google Scholar 

  16. Robitzsh M (1932) Uber den bimetallaktinographen reuss-robitzsh. Gerlands Beitr Geophys 35:387–394

    Google Scholar 

  17. Dirmhirn I (1958) Untersuchengen an sternpyranometern. Arch Meteorol Geophysik Bioklimat B 7:124–128

    Article  Google Scholar 

  18. Yanishevski YD (1957) Actinometric instruments and methods of observation. Hydrometeorological Publishing House, Leningrad

    Google Scholar 

  19. Kendall JM, Berdahl CM (1970) Two blackbody radiometers of high accuracy. Appl Opt 9(5):1082–1091

    Article  Google Scholar 

  20. Willson RC (1973) Active cavity radiometer. Appl Opt 12(4):810–817

    Article  Google Scholar 

  21. Crommelynck D, Hall JB (1982) Fundamentals of absolute pyrheliometry and objective characterization. NASA CP-2239. National Aeronautics and Space Administration

    Google Scholar 

  22. Brusa RW, Frohlich C (1980) The PMO-6 radiometer and its characterization. World Radiation Center, Davos

    Google Scholar 

  23. Hickey JR, Drummond AJ, Thekaekara MP (1973) A satellite experiment to establish the principal extraterrestrial solar energetic fluxes and their variances. The Extraterrestrial Solar Spectrum, Institute of Environmental Sciences, Mount Prospect

    Google Scholar 

  24. Smith WL, Hickey J, Howell HB, Jacobowitz H, Hilleary DT, Drummond AJ (1973) Nimbus-6 earth radiation budget experiment. Appl Opt 13(3):306–318

    Google Scholar 

  25. Frohlich C (1978) World radiometric reference. WMO/CIMO Final Report WMO No. 490. World Meteorological Organization, Geneva, pp 108–112

    Google Scholar 

  26. WMO (1983) OMM No. 8 guide to meteorological instruments and methods of observation, 5th edn, vol 8. Secretariat of the World Meteorological Organization, Geneva

    Google Scholar 

  27. Frohlich C (1991) History of solar radiometry and the world radiation reference. Metrologia 28:111–115

    Article  Google Scholar 

  28. Romero J, Fox NP, Frohlich C (1996) Improved comparison of the world radiometric reference and the SI radiometric scale. Metrologia 32(6):523–524

    Article  Google Scholar 

  29. Ruedi I (2001) International pyrheliometer comparison IPC IX. Meteoswiss Working Report No. 197. Davos, Zurich, http://www.pmodwrc.ch/pdf/ipc9-final.pdf

  30. Reda I, Stoffel T, Myers D (1996) Calibration of a solar absolute cavity radiometer with traceability to the World Radiometric Reference. NREL/TP-463-20619. National Renewable Energy Laboratory, Golden. http://www.nrel.gov/docs/legosti/fy96/20619.pdf

  31. ASTM E816-05 (2005) Standard test method for calibration of pyrheliometers by comparison to reference pyrheliometers. ASTM International, West Conshocken

    Google Scholar 

  32. ISO (1990) Standard 9050: solar energy – calibration of field pyrheliometers by comparison to a reference pyrheliometer. American National Standards Institute, New York

    Google Scholar 

  33. ASTM G167-05 (2005) Standard test method for calibration of a pyranometer using a pyrheliometer. ASTM International, West Conshocken

    Google Scholar 

  34. ISO (1990) Standard 9060: solar energy – specification and classification of instruments for measuring hemispherical solar and direct solar radiation. American National Standards Institute, New York

    Google Scholar 

  35. Reda I, Myers D (1999) Calculating the diffuse responsivity of solar pyranometers. NREL/TP-560-26483, National Renewable Energy Laboratory, Golden

    Google Scholar 

  36. Reda I, Stoffel T, Myers D (2003) A method to calibrate a solar pyranometer for measuring reference diffuse irradiance. Sol Energy 74:103–112

    Article  Google Scholar 

  37. BIPM (1995) Guide to the expression of uncertainty in measurement. BIPM, http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf

  38. Myers DR, Emery KA, Stoffel TL (1989) Uncertainty estimates of global solar irradiance measurements used to evaluate PV device performance. Sol Cells 27:455–464

    Article  Google Scholar 

  39. Taylor BN, Kuyatt CE (1993) Guidelines for evaluation and expressing the uncertainty of NIST measurement results, NIST Technical Note 1297. National Institute of Standards and Technology, Gaithersburg

    Google Scholar 

  40. Ohmura A, Dutton E, Forgan B, Fröhlich C, Gilgen H, Hegner H, Heimo A, König-Langlo G, McArthur B, Muller G, Phillapona R, Pinker R, Whitlock C, Dehne K, Wild M (1998) Baseline Surface Radiation Network (BSRN/WCRP): New precision radiometry for climate change research. Bull Am Meteorol Soc 79(10):2115–2136

    Article  Google Scholar 

  41. Gulbrandsen A (1978) On the use of pyranometers in the study of spectral solar radiation and atmospheric aerosols. J Appl Meteorol 17:899–904

    Article  Google Scholar 

  42. Haeffelin M, Smith AM, Mahan JR, Rutledge CK, Kato S (1999) Surface shortwave radiation measurements: experimental tests and numerical simulations of pyranometers. Ninth ARM Science Team Meeting, U.S. Department of Energy, San Antonio

    Google Scholar 

  43. Haeffelin M, Kato S, Smith AM, Rutledge CK, Charlock TP, Mahan JR (2001) Determination of the thermal offset of the Eppley precision spectral pyranometer. Appl Opt 40(4):472–484

    Article  Google Scholar 

  44. Dutton EG, Michalsky JJ, Stoffel T, Forgan BW, Hickey J, Alberta TL, Reda I (2001) Measurement of broadband diffuse solar irradiance using current commercial instrumentation with a correction for thermal offset errors. J Atmos Oceanic Technol 18(3):297–314

    Article  Google Scholar 

  45. Philipona R (2002) Underestimation of solar global and diffuse radiation measured at the Earth’s surface. J Geophys Res 107(D22):ACL 15-1-ACL 15-8

    Google Scholar 

  46. Reda I (1998) Improving the accuracy of using pyranometers to measure clear sky global irradiance. NREL/TP-560-24833, National Renewable Energy Laboratory, Golden

    Google Scholar 

  47. Reda I, Myers D, Stoffel T (2009) Uncertainty estimate for the outdoor calibration of solar pyranometers: a metrologist perspective. J Meas 3(4):58–66 NCSL International, Boulder

    Google Scholar 

  48. Vignola F, Reda I (1998) Responsivity of an Eppley NIP as a function of time and temperature. In: Proceedings of the 1998 American Solar Energy Conference, Albuquerque. American Solar Energy Society, Boulder

    Google Scholar 

  49. Perez R, Stewart R (1986) Solar irradiance conversion models. Sol Cells 18:213–222

    Article  Google Scholar 

  50. Muneer T, Younes S, Munnawar S (2007) Discourses on solar radiation modeling. Renewable Sustainable Energy Rev 11:551–602

    Article  Google Scholar 

  51. Muneer T (2004) Solar radiation and daylight models. Elsevier.Butterworth and Heinemann, Oxford

    Google Scholar 

  52. Iqbal M (1983) An introduction to solar radiation. Academic, New York

    Google Scholar 

  53. Badescu V (2008) Modeling solar radiation at the earth surface. Springer, Berlin

    Book  Google Scholar 

  54. Bird RE, Hulstrom RL (1981) Review, evaluation, and improvement of direct irradiance models. J Sol Energy Eng Am Soc Mech Eng 103:182–192

    Article  Google Scholar 

  55. Gueymard C (2008) REST2: high performance solar radiation model for cloudless-sky irradiance, illuminance, and photosynthetically active radiation-validation with a benchmark data set. Sol Energy 82:272–285

    Article  Google Scholar 

  56. Ineichen P (2006) Comparison of eight clear sky broadband models against 16 independent data banks. Sol Energy 80:468–478

    Article  Google Scholar 

  57. Wong LT, Chow WK (2001) Solar radiation model. Appl Energy 69:191–224

    Article  Google Scholar 

  58. Muneer T, Gul MS, Kubie J (2000) Models for estimating solar radiation and illuminance from meteorological parameters. J Sol Energy Eng Am Soc Mech Eng 122:146–153

    Article  Google Scholar 

  59. Gueymard C (2003) Direct solar transmittance and irradiance predictions with broadband models. Part I: detailed theoretical performance assessment. Sol Energy 74:355–379

    Article  Google Scholar 

  60. Kasten F, Czeplak G (1980) Solar and terrestrial radiation dependent on the amount and type of cloud. Sol Energy 24:177–189

    Article  Google Scholar 

  61. Cano D, Monget JM, Albuisson M, Guillard H, Regas N, Wald L (1986) A method for the determination of the global solar radiation from meteorological satellites data. Sol Energy 37:31–39

    Article  Google Scholar 

  62. Diabaté L, Moussu G, Wald L (1989) Description of an operational tool for determining global solar radiation at ground using geostationary satellite images. Sol Energy 42:201–207

    Article  Google Scholar 

  63. Perez R, Ineichen P, Moore K, Kmiecik M, Chain C, George R, Vignola F (2002) A new operational model for satellite derived irradiances: description and validation. Sol Energy 73(5):307–317

    Article  Google Scholar 

  64. Šúri M, Huld T, Dunlop ED, Albuisson M, Lefèvre M, Wald L (2007) Uncertainties in photovoltaic electricity yield prediction from fluctuation of solar radiation. In: Proceedings of the 22nd European Photovoltaic Solar Energy Conference, Milano

    Google Scholar 

  65. Gueymard C, Wilcox S (2009) Spatial and temporal variability in the solar resource: assessing the value of short term measurements at potential solar power plant sites. In: Proceedings of Solar 2009, Buffalo, May 11–16, 2009. American Solar Energy Society, Boulder

    Google Scholar 

  66. Maxwell EL (1998) METSTAT – The solar radiation model used in the production of the National Solar Radiation Data Base (NSRDB). Sol Energy 62(4):263–279

    Article  MathSciNet  Google Scholar 

  67. Gueymard C (2009) Direct and indirect uncertainties in the prediction of tilted irradiance for solar engineering applications. Sol Energy 83:432–444

    Article  Google Scholar 

  68. Perez R, Seals R, Ineichen P, Stewart R, Menicucci D (1987) A new simplified version of the Perez diffuse irradiance model for tilted surfaces. Sol Energy 39(3):221–231

    Article  Google Scholar 

  69. Maxwell E (1987) A quasi-physical model for converting hourly global horizontal to direct normal insolation. SERI/TR-215-3087, Solar Energy Research Institute, Golden

    Google Scholar 

  70. Liu BYH, Jordan RC (1960) The interrelationship and characteristic distribution of direct diffuse and total solar radiation. Sol Energy 3:1–19

    Article  Google Scholar 

  71. Perez R, Seals R, Zelenka A, Ineichen P (1990) Climatic evaluation of models that predict hourly direct irradiance from hourly global irradiance: prospects for performance improvements. Sol Energy 44(2):99–108

    Article  Google Scholar 

  72. Orgill JF, Hollands KG (1977) Correlation equation for hourly diffuse radiation on a horizontal surface. Sol Energy 19(4):357–359

    Article  Google Scholar 

  73. Erbs DG, Klein SA, Duffie JA (1982) Estimation of the diffuse radiation fraction for hourly, daily, and monthly average solar radiation. Sol Energy 28(4):293–304

    Article  Google Scholar 

  74. Spencer JW (1982) A comparison of methods for estimating hourly diffuse solar radiation from global solar radiation. Sol Energy 29(1):19–32

    Article  Google Scholar 

Books and Reviews

  • Bohren CF (1989) Selected papers on scattering in the atmosphere. SPIE Milestone Series vol MS 7, SPIE Optical Engineering Press. Bellingham, WA

    Google Scholar 

  • Chandrasekhar S (1960) Radiative transfer. Dover, New York

    MATH  Google Scholar 

  • Deick RH (1992) Measurement uncertainty methods and applications. Instrument Society of America, Research Triangle Park

    Google Scholar 

  • Dogniaux R (1994) Prediction of solar radiation in areas with a specific microclimate. Commission of the European Communities. Kluwer Academic, Dordrecht

    Google Scholar 

  • Duffie JA, Beckman WA (1975) Solar energy thermal processes. Wiley, New York

    Google Scholar 

  • Farmer WM (2001) The atmospheric filter, vol 1. Sources. JCD, Winter Park

    Google Scholar 

  • Farmer WM (2001) The atmospheric filter, vol 2. Effects. JCD, Winter Park

    Google Scholar 

  • Fleagle RG, Businger JA (1980) An introduction to atmospheric physics, 2nd edn. International Geophysics Series Vol 25, Academic, New York

    Google Scholar 

  • Hulstrom RL (1989) Solar resources. MIT Press, Cambridge

    Google Scholar 

  • Kondratyev KY (1965) Radiation in the atmosphere. International Geophysics Series Vol 12, Academic, New York

    Google Scholar 

  • Kreith F, Kreider JF (1978) Principles of solar engineering. McGraw Hill, Hemisphere

    Google Scholar 

  • Kyle TG (1991) Atmospheric transmission. Pergamon, Oxford

    Google Scholar 

  • Liou K (1980) An introduction to atmospheric radiation. International Geophysics Series Vol 26, Academic, New York

    Google Scholar 

  • Martin CL, Goswami DY (2005) Solar energy pocket reference. James and James, Earthscan

    Google Scholar 

  • McCluney R (1994) Introduction to radiometry and photometry. Artech House, Boston

    Google Scholar 

  • Marshak A, Davis AB (2005) 3 D radiative transfer in cloudy atmospheres. Springer, Berlin

    Book  Google Scholar 

  • Osborn DE (1993) Selected papers on solar radiation and solar thermal systems. SPIE Milestones Series Vol MS 34 SPIE Optical Engineering Press. Bellingham, WA

    Google Scholar 

  • Paltridge GW, Platt CMR (1976) Radiative processes in meteorology and climatology. Elsevier, Amsterdam

    Google Scholar 

  • Sayigh AAM (1977) Solar energy engineering. Academic, New York

    Google Scholar 

  • Sen Z (2008) Solar energy fundamentals and modeling techniques: atmosphere, environment, climate change and renewable energy. Springer, Berlin

    Google Scholar 

  • Spiro IJ (1990) Selected papers on radiometry. SPIE Milestones Series Vol MS 14, SPIE Optical Engineering Press. Bellingham, WA

    Google Scholar 

  • Thomas GE, Stamnes K (1999) Radiative transfer in the atmosphere and ocean. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • White OR (1977) The solar output and its variation. Colorado Associated University Press, Boulder

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daryl R. Myers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Myers, D.R. (2013). Solar Radiation for Solar Energy Utilization . In: Richter, C., Lincot, D., Gueymard, C.A. (eds) Solar Energy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5806-7_450

Download citation

Publish with us

Policies and ethics