Skip to main content

Design, Development, and Characterization of Recombinant Immunotoxins Targeting HER2/neu

  • Chapter
  • First Online:
Book cover Antibody-Drug Conjugates and Immunotoxins

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 2575 Accesses

Abstract

The human epidermal growth factor receptor 2 (Her2), also known as ErbB2, c-erbB2, or Her2/neu, was initially discovered in 1985 by two independent laboratories [1, 2]. Her2/neu is a 185 kDa (1,255 aa) transmembrane receptor encompassing an intracellular tyrosine kinase domain and an extracellular ligand binding component [3–5]. Extensive clinical studies have shown that overexpression of Her2/neu is found in 20–40 % of patients with breast, ovarian, endometrial, gastric, bladder, prostate, and lung cancers. Studies clearly demonstrate that Her2/neu overexpression correlates with the prevalence of metastatic spread of many tumors and is generally considered to be a poor prognostic indicator [6–9].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coussens L, Yang-Feng TL, Liao YC, Chen E, Gray A, McGrath J et al (1985) Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science 230:1132–1139

    Article  PubMed  CAS  Google Scholar 

  2. King CR, Kraus MH, Aaronson SA (1985) Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science 229:974–976

    Article  PubMed  CAS  Google Scholar 

  3. Yamamoto T, Ikawa S, Akiyama T, Semba K, Nomura N, Miyajima N et al (1986) Similarity of protein encoded by the human c-erb-B-2 gene to epidermal growth factor receptor. Nature 319:230–234

    Article  PubMed  CAS  Google Scholar 

  4. Bargmann CI, Hung MC, Weinberg RA (1986) The neu oncogene encodes an epidermal growth factor receptor-related protein. Nature 319:226–230

    Article  PubMed  CAS  Google Scholar 

  5. Barros FF, Powe DG, Ellis IO, Green AR (2010) Understanding the HER family in breast cancer: interaction with ligands, dimerization and treatments. Histopathology 56:560–572

    Article  PubMed  Google Scholar 

  6. Scholl S, Beuzeboc P, Pouillart P (2001) Targeting HER2 in other tumor types. Ann Oncol 12(Suppl 1):S81–S87

    Article  PubMed  Google Scholar 

  7. Tamborini E, Perrone F, Frattini M, Negri T, Aiello A, Gloghini A et al (2008) Genetic markers in sporadic tumors. In: Bronchud MH, Foote M, Giaccone G, Olopade OI, Workman P (eds) Principles of molecular oncology, 3rd edn., pp 43–84

    Chapter  Google Scholar 

  8. Press MF, Pike MC, Hung G, Zhou JY, Ma Y, George J et al (1994) Amplification and overexpression of HER-2/neu in carcinomas of the salivary gland: correlation with poor prognosis. Cancer Res 54:5675–5682

    PubMed  CAS  Google Scholar 

  9. Daniele L, Sapino A (2009) Anti-HER2 treatment and breast cancer: state of the art, recent patents, and new strategies. Recent Pat Anticancer Drug Discov 4:9–18

    Article  PubMed  CAS  Google Scholar 

  10. Pohlmann PR, Mayer IA, Mernaugh R (2009) Resistance to trastuzumab in breast cancer. Clin Cancer Res 15:7479–7491

    Article  PubMed  CAS  Google Scholar 

  11. Murphy CG, Fornier M (2010) HER2-positive breast cancer: beyond trastuzumab. Oncology (Williston Park) 24:410–415

    Google Scholar 

  12. Moulder SL, Arteaga CL (2003) A Phase I/II Trial of trastuzumab and gefitinib in patients with Metastatic Breast Cancer that overexpresses HER2/neu (ErbB-2). Clin Breast Cancer 4:142–145

    Article  PubMed  CAS  Google Scholar 

  13. Jones KL, Buzdar AU (2009) Evolving novel anti-HER2 strategies. Lancet Oncol 10:1179–1187

    Article  PubMed  CAS  Google Scholar 

  14. Wels W, Biburger M, Muller T, Dalken B, Giesubel U, Tonn T et al (2004) Recombinant immunotoxins and retargeted killer cells: employing engineered antibody fragments for tumor-specific targeting of cytotoxic effectors. Cancer Immunol Immunother 53:217–226

    Article  PubMed  CAS  Google Scholar 

  15. Milenic DE (2002) Monoclonal antibody-based therapy strategies: providing options for the cancer patient. Curr Pharm Des 8:1749–1764

    Article  PubMed  CAS  Google Scholar 

  16. Bast RC Jr, Boyer CM, Jacobs I, Xu FJ, Wu S, Wiener J et al (1993) Cell growth regulation in epithelial ovarian cancer. Cancer 71:1597–1601

    Article  PubMed  Google Scholar 

  17. Boyer CM, Pusztai L, Wiener JR, Xu FJ, Dean GS, Bast BS et al (1999) Relative cytotoxic activity of immunotoxins reactive with different epitopes on the extracellular domain of the c-erbB-2 (HER-2/neu) gene product p185. Int J Cancer 82:525–531

    Article  PubMed  CAS  Google Scholar 

  18. Dean GS, Pusztai L, Xu FJ, O’Briant K, DeSombre K, Conaway M et al (1998) Cell surface density of p185(c-erbB-2) determines susceptibility to anti-p185(c-erbB-2)-ricin A chain (RTA) immunotoxin therapy alone and in combination with anti-p170(EGFR)-RTA in ovarian cancer cells. Clin Cancer Res 4:2545–2550

    PubMed  CAS  Google Scholar 

  19. Rodriguez GC, Boente MP, Berchuck A, Whitaker RS, O’Briant KC, Xu F et al (1993) The effect of antibodies and immunotoxins reactive with HER-2/neu on growth of ovarian and breast cancer cell lines. Am J Obstet Gynecol 168:228–232

    PubMed  CAS  Google Scholar 

  20. Xu F, Leadon SA, Yu Y, Boyer CM, O’Briant K, Ward K et al (2000) Synergistic interaction between anti-p185HER-2 ricin A chain immunotoxins and radionuclide conjugates for inhibiting growth of ovarian and breast cancer cells that overexpress HER-2. Clin Cancer Res 6:3334–3341

    PubMed  CAS  Google Scholar 

  21. Xu FJ, Boyer CM, Bae DS, Wu S, Greenwald M, O’Briant K et al (1994) The tyrosine kinase activity of the C-erbB-2 gene product (p185) is required for growth inhibition by anti-p185 antibodies but not for the cytotoxicity of an anti-p185-ricin-A chain immunotoxin. Int J Cancer 59:242–247

    Article  PubMed  CAS  Google Scholar 

  22. Zhou XX, Ji F, Zhao JL, Cheng LF, Xu CF (2010) Anti-cancer activity of anti-p185HER-2 ricin A chain immunotoxin on gastric cancer cells. J Gastroenterol Hepatol 25:1266–1275

    Article  PubMed  CAS  Google Scholar 

  23. Maier LA, Xu FJ, Hester S, Boyer CM, McKenzie S, Bruskin AM et al (1991) Requirements for the internalization of a murine monoclonal antibody directed against the HER-2/neu gene product c-erbB-2. Cancer Res 51:5361–5369

    PubMed  CAS  Google Scholar 

  24. Crews JR, Maier LA, Yu YH, Hester S, O’Briant K, Leslie DS et al (1992) A combination of two immunotoxins exerts synergistic cytotoxic activity against human breast-cancer cell lines. Int J Cancer 51:772–779

    Article  PubMed  CAS  Google Scholar 

  25. Casalini P, Caldera M, Canevari S, Menard S, Mezzanzanica D, Tosi E et al (1993) A critical comparison of three internalization assays applied to the evaluation of a given mAb as a toxin-carrier candidate. Cancer Immunol Immunother 37:54–60

    Article  PubMed  CAS  Google Scholar 

  26. Di LC, Digiesi G, Tecce R, Lotti LV, Torrisi MR, Natali PG (1994) Immunotoxins to the HER-2 oncogene product: functional and ultrastructural analysis of their cytotoxic activity. Cancer Immunol Immunother 39:318–324

    Article  Google Scholar 

  27. Natali PG, Nicotra MR, Digiesi G, Cavaliere R, Bigotti A, Trizio D et al (1994) Expression of gp185HER-2 in human cutaneous melanoma: implications for experimental immunotherapeutics. Int J Cancer 56:341–346

    Article  PubMed  CAS  Google Scholar 

  28. Ricci C, Polito L, Nanni P, Landuzzi L, Astolfi A, Nicoletti G et al (2002) HER/erbB receptors as therapeutic targets of immunotoxins in human rhabdomyosarcoma cells. J Immunother 25:314–323

    Article  PubMed  CAS  Google Scholar 

  29. Tecce R, Digiesi G, Savarese A, Trizio D, Natali PG (1993) Characterization of cytotoxic activity of saporin anti-gp185/HER-2 immunotoxins. Int J Cancer 55:122–127

    Article  PubMed  CAS  Google Scholar 

  30. Rosenblum MG, Shawver LK, Marks JW, Brink J, Cheung L, Langton-Webster B (1999) Recombinant immunotoxins directed against the c-erb-2/HER2/neu oncogene product: in vitro cytotoxicity, pharmacokinetics, and in vivo efficacy studies in xenograft models. Clin Cancer Res 5:865–874

    PubMed  CAS  Google Scholar 

  31. Cao Y, Marks JD, Marks JW, Cheung LH, Kim S, Rosenblum MG (2009) Construction and characterization of novel, recombinant immunotoxins targeting the HER2/neu oncogene product: in vitro and in vivo studies. Cancer Res 69:8987–8995

    Article  PubMed  CAS  Google Scholar 

  32. Cao Y, Marks JD, Huang Q, Rudnick SI, Xiong C, Hittelman WN et al (2012) Single-chain antibody-based immunotoxins targeting HER2/neu: design optimization and impact of affinity on antitumor efficacy and off-target toxicity. Mol Cancer Ther 11:143–153

    Article  PubMed  CAS  Google Scholar 

  33. Stish BJ, Chen H, Shu Y, Panoskaltsis-Mortari A, Vallera DA (2007) Increasing anticarcinoma activity of an anti-erbB2 recombinant immunotoxin by the addition of an anti-EpCAM sFv. Clin Cancer Res 13:3058–3067

    Article  PubMed  CAS  Google Scholar 

  34. Skrepnik N, Zieske AW, Bravo JC, Gillespie AT, Hunt JD (1999) Recombinant oncotoxin AR209 (anti-P185erbB-2) diminishes human prostate carcinoma xenografts. J Urol 161:984–989

    Article  PubMed  CAS  Google Scholar 

  35. Gao J, Kou G, Wang H, Chen H, Li B, Lu Y et al (2009) PE38KDEL-loaded anti-HER2 nanoparticles inhibit breast tumor progression with reduced toxicity and immunogenicity. Breast Cancer Res Treat 115:29–41

    Article  PubMed  CAS  Google Scholar 

  36. Schmidt M, McWatters A, White RA, Groner B, Wels W, Fan Z et al (2001) Synergistic interaction between an anti-p185HER-2 pseudomonas exotoxin fusion protein [scFv(FRP5)-ETA] and ionizing radiation for inhibiting growth of ovarian cancer cells that overexpress HER-2. Gynecol Oncol 80:145–155

    Article  PubMed  CAS  Google Scholar 

  37. Schmidt M, Hynes NE, Groner B, Wels W (1996) A bivalent single-chain antibody-toxin specific for ErbB-2 and the EGF receptor. Int J Cancer 65:538–546

    Article  PubMed  CAS  Google Scholar 

  38. Kuan CT, Pastan I (1996) Recombinant immunotoxin containing a disulfide-stabilized Fv directed at erbB2 that does not require proteolytic activation. Biochemistry 35:2872–2877

    Article  PubMed  CAS  Google Scholar 

  39. Chen H, Gao J, Lu Y, Kou G, Zhang H, Fan L et al (2008) Preparation and characterization of PE38KDEL-loaded anti-HER2 nanoparticles for targeted cancer therapy. J Control Release 128:209–216

    Article  PubMed  CAS  Google Scholar 

  40. Mazor Y, Noy R, Wels WS, Benhar I (2007) chFRP5-ZZ-PE38, a large IgG-toxin immunoconjugate outperforms the corresponding smaller FRP5(Fv)-ETA immunotoxin in eradicating ErbB2-expressing tumor xenografts. Cancer Lett 257:124–135

    Article  PubMed  CAS  Google Scholar 

  41. Bera TK, Onda M, Brinkmann U, Pastan I (1998) A bivalent disulfide-stabilized Fv with improved antigen binding to erbB2. J Mol Biol 281:475–483

    Article  PubMed  CAS  Google Scholar 

  42. Spyridonidis A, Schmidt M, Bernhardt W, Papadimitriou A, Azemar M, Wels W et al (1998) Purging of mammary carcinoma cells during ex vivo culture of CD34+ hematopoietic progenitor cells with recombinant immunotoxins. Blood 91:1820–1827

    PubMed  CAS  Google Scholar 

  43. Shinohara H, Morita S, Kawai M, Miyamoto A, Sonoda T, Pastan I et al (2002) Expression of HER2 in human gastric cancer cells directly correlates with antitumor activity of a recombinant disulfide-stabilized anti-HER2 immunotoxin. J Surg Res 102:169–177

    Article  PubMed  CAS  Google Scholar 

  44. Kuge S, Miura Y, Nakamura Y, Mitomi T, Habu S, Nishimura T (1995) Superantigen-induced human CD4+ helper/killer T cell phenomenon. Selective induction of Th1 helper/killer T cells and application to tumor immunotherapy. J Immunol 154:1777–1785

    PubMed  CAS  Google Scholar 

  45. Gurkan C, Ellar DJ (2003) Expression in Pichia pastoris and purification of a membrane-acting immunotoxin based on a synthetic gene coding for the Bacillus thuringiensis Cyt2Aa1 toxin. Protein Expr Purif 29:103–116

    Article  PubMed  CAS  Google Scholar 

  46. Schmidt M, Wels W (1996) Targeted inhibition of tumour cell growth by a bispecific single-chain toxin containing an antibody domain and TGF alpha. Br J Cancer 74:853–862

    Article  PubMed  CAS  Google Scholar 

  47. Ming-Kai X, Cheng-Gang Z (2006) Gene expression and function study of fusion immunotoxin anti-Her-2-scFv-SEC2 in Escherichia coli. Appl Microbiol Biotechnol 70:78–84

    Article  PubMed  CAS  Google Scholar 

  48. Reiter Y, Brinkmann U, Kreitman RJ, Jung SH, Lee B, Pastan I (1994) Stabilization of the Fv fragments in recombinant immunotoxins by disulfide bonds engineered into conserved framework regions. Biochemistry 33:5451–5459

    Article  PubMed  CAS  Google Scholar 

  49. Reiter Y, Brinkmann U, Jung SH, Lee B, Kasprzyk PG, King CR et al (1994) Improved binding and antitumor activity of a recombinant anti-erbB2 immunotoxin by disulfide stabilization of the Fv fragment. J Biol Chem 269:18327–18331

    PubMed  CAS  Google Scholar 

  50. Jeschke M, Wels W, Dengler W, Imber R, Stocklin E, Groner B (1995) Targeted inhibition of tumor-cell growth by recombinant heregulin-toxin fusion proteins. Int J Cancer 60:730–739

    Article  PubMed  CAS  Google Scholar 

  51. Bera TK, Viner J, Brinkmann E, Pastan I (1999) Pharmacokinetics and antitumor activity of a bivalent disulfide-stabilized Fv immunotoxin with improved antigen binding to erbB2. Cancer Res 59:4018–4022

    PubMed  CAS  Google Scholar 

  52. Barok M, Tanner M, Koninki K, Isola J (2011) Trastuzumab-DM1 causes tumour growth inhibition by mitotic catastrophe in trastuzumab-resistant breast cancer cells in vivo. Breast Cancer Res 13:R46

    Article  PubMed  CAS  Google Scholar 

  53. Barok M, Tanner M, Koninki K, Isola J (2011) Trastuzumab-DM1 is highly effective in preclinical models of HER2-positive gastric cancer. Cancer Lett 306:171–179

    Article  PubMed  CAS  Google Scholar 

  54. Junttila TT, Li G, Parsons K, Phillips GL, Sliwkowski MX (2011) Trastuzumab-DM1 (T-DM1) retains all the mechanisms of action of trastuzumab and efficiently inhibits growth of lapatinib insensitive breast cancer. Breast Cancer Res Treat 128:347–356

    Article  PubMed  CAS  Google Scholar 

  55. Lewis Phillips GD, Li G, Dugger DL, Crocker LM, Parsons KL, Mai E et al (2008) Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res 68:9280–9290

    Article  PubMed  CAS  Google Scholar 

  56. Junutula JR, Flagella KM, Graham RA, Parsons KL, Ha E, Raab H et al (2010) Engineered thio-trastuzumab-DM1 conjugate with an improved therapeutic index to target human epidermal growth factor receptor 2-positive breast cancer. Clin Cancer Res 16:4769–4778

    Article  PubMed  CAS  Google Scholar 

  57. Krop IE, Beeram M, Modi S, Jones SF, Holden SN, Yu W et al (2010) Phase I study of trastuzumab-DM1, an HER2 antibody-drug conjugate, given every 3 weeks to patients with HER2-positive metastatic breast cancer. J Clin Oncol 28:2698–2704

    Article  PubMed  CAS  Google Scholar 

  58. Burris HA III, Rugo HS, Vukelja SJ, Vogel CL, Borson RA, Limentani S et al (2011) Phase II study of the antibody drug conjugate trastuzumab-DM1 for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer after prior HER2-directed therapy. J Clin Oncol 29:398–405

    Article  PubMed  CAS  Google Scholar 

  59. Mandler R, Kobayashi H, Hinson ER, Brechbiel MW, Waldmann TA (2004) Herceptin-geldanamycin immunoconjugates: pharmacokinetics, biodistribution, and enhanced antitumor activity. Cancer Res 64:1460–1467

    Article  PubMed  CAS  Google Scholar 

  60. Mehta RR, Bratescu L, Graves JM, Green A, Mehta RG (2000) Differentiation of human breast carcinoma cells by a novel vitamin D analog: 1alpha-hydroxyvitamin D5. Int J Oncol 16:65–73

    PubMed  CAS  Google Scholar 

  61. Eigenbrot C, Ultsch M, Dubnovitsky A, Abrahmsen L, Hard T (2010) Structural basis for high-affinity HER2 receptor binding by an engineered protein. Proc Natl Acad Sci USA 107:15039–15044

    Article  PubMed  CAS  Google Scholar 

  62. Gundla R, Kazemi R, Sanam R, Muttineni R, Sarma JA, Dayam R et al (2008) Discovery of novel small-molecule inhibitors of human epidermal growth factor receptor-2: combined ligand and target-based approach. J Med Chem 51:3367–3377

    Article  PubMed  CAS  Google Scholar 

  63. Frankel AE, Kreitman RJ, Sausville EA (2000) Targeted toxins. Clin Cancer Res 6:326–334

    PubMed  CAS  Google Scholar 

  64. Pennell CA, Erickson HA (2002) Designing immunotoxins for cancer therapy. Immunol Res 25:177–191

    Article  PubMed  CAS  Google Scholar 

  65. Brinkmann U (2000) Recombinant antibody fragments and immunotoxin fusions for cancer therapy. In Vivo 14:21–27

    PubMed  CAS  Google Scholar 

  66. Ramakrishnan S, Fryxell D, Mohanraj D, Olson M, Li BY (1992) Cytotoxic conjugates containing translational inhibitory proteins. Annu Rev Pharmacol Toxicol 32:579–621

    Article  PubMed  CAS  Google Scholar 

  67. Johannes L, Decaudin D (2005) Protein toxins: intracellular trafficking for targeted therapy. Gene Ther 12:1360–1368

    Article  PubMed  CAS  Google Scholar 

  68. Kawakami K, Nakajima O, Morishita R, Nagai R (2006) Targeted anticancer immunotoxins and cytotoxic agents with direct killing moieties. ScientificWorldJournal 6:781–790

    Article  PubMed  CAS  Google Scholar 

  69. Senter PD (2009) Potent antibody drug conjugates for cancer therapy. Curr Opin Chem Biol 13:235–244

    Article  PubMed  CAS  Google Scholar 

  70. Govindan SV, Griffiths GL, Hansen HJ, Horak ID, Goldenberg DM (2005) Cancer therapy with radiolabeled and drug/toxin-conjugated antibodies. Technol Cancer Res Treat 4:375–391

    PubMed  CAS  Google Scholar 

  71. Chen J, Jaracz S, Zhao X, Chen S, Ojima I (2005) Antibody-cytotoxic agent conjugates for cancer therapy. Expert Opin Drug Deliv 2:873–890

    Article  PubMed  CAS  Google Scholar 

  72. Chari RV (1998) Targeted delivery of chemotherapeutics: tumor-activated prodrug therapy. Adv Drug Deliv Rev 31:89–104

    Article  PubMed  CAS  Google Scholar 

  73. Goyal A, Batra JK (2000) Inclusion of a furin-sensitive spacer enhances the cytotoxicity of ribotoxin restrictocin containing recombinant single-chain immunotoxins. Biochem J 345(Pt 2):247–254

    Article  PubMed  CAS  Google Scholar 

  74. Wang T, Zhao J, Ren JL, Zhang L, Wen WH, Zhang R et al (2007) Recombinant immunoproapoptotic proteins with furin site can translocate and kill HER2-positive cancer cells. Cancer Res 67:11830–11839

    Article  PubMed  CAS  Google Scholar 

  75. Izidoro MA, Gouvea IE, Santos JA, Assis DM, Oliveira V, Judice WA et al (2009) A study of human furin specificity using synthetic peptides derived from natural substrates, and effects of potassium ions. Arch Biochem Biophys 487:105–114

    Article  PubMed  CAS  Google Scholar 

  76. Kibirev VK, Osadchuk TV (2007) Radavskii I [Furin and its biological role]. Ukr Biokhim Zh 79:5–18

    PubMed  CAS  Google Scholar 

  77. Baluna R, Coleman E, Jones C, Ghetie V, Vitetta ES (2000) The effect of a monoclonal antibody coupled to ricin A chain-derived peptides on endothelial cells in vitro: insights into toxin-mediated vascular damage. Exp Cell Res 258:417–424

    Article  PubMed  CAS  Google Scholar 

  78. Vitetta ES (2000) Immunotoxins and vascular leak syndrome. Cancer J 6(Suppl 3):S218–S224

    PubMed  Google Scholar 

  79. Mathew M, Verma RS (2009) Humanized immunotoxins: a new generation of immunotoxins for targeted cancer therapy. Cancer Sci 100:1359–1365

    Article  PubMed  CAS  Google Scholar 

  80. Huhn M, Sasse S, Tur MK, Matthey B, Schinkothe T, Rybak SM et al (2001) Human angiogenin fused to human CD30 ligand (Ang-CD30L) exhibits specific cytotoxicity against CD30-positive lymphoma. Cancer Res 61:8737–8742

    PubMed  CAS  Google Scholar 

  81. Jain M, Chauhan SC, Singh AP, Venkatraman G, Colcher D, Batra SK (2005) Penetratin improves tumor retention of single-chain antibodies: a novel step toward optimization of radioimmunotherapy of solid tumors. Cancer Res 65:7840–7846

    PubMed  CAS  Google Scholar 

  82. Batra SK, Jain M, Wittel UA, Chauhan SC, Colcher D (2002) Pharmacokinetics and biodistribution of genetically engineered antibodies. Curr Opin Biotechnol 13:603–608

    Article  PubMed  CAS  Google Scholar 

  83. Jain RK (2001) Delivery of molecular and cellular medicine to solid tumors. Adv Drug Deliv Rev 46:149–168

    Article  PubMed  CAS  Google Scholar 

  84. Batra JK, Kasprzyk PG, Bird RE, Pastan I, King CR (1992) Recombinant anti-erbB2 immunotoxins containing Pseudomonas exotoxin. Proc Natl Acad Sci USA 89:5867–5871

    Article  PubMed  CAS  Google Scholar 

  85. Carter P, Presta L, Gorman CM, Ridgway JB, Henner D, Wong WL et al (1992) Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci USA 89:4285–4289

    Article  PubMed  CAS  Google Scholar 

  86. Adams GP, Schier R, Marshall K, Wolf EJ, McCall AM, Marks JD et al (1998) Increased affinity leads to improved selective tumor delivery of single-chain Fv antibodies. Cancer Res 58:485–490

    PubMed  CAS  Google Scholar 

  87. Harwerth IM, Wels W, Schlegel J, Muller M, Hynes NE (1993) Monoclonal antibodies directed to the erbB-2 receptor inhibit in vivo tumour cell growth. Br J Cancer 68:1140–1145

    Article  PubMed  CAS  Google Scholar 

  88. De LC, Cozzolino R, Carpentieri A, Pucci P, Laccetti P, D’Alessio G (2005) Biological properties of a human compact anti-ErbB2 antibody. Carcinogenesis 26:1890–1895

    Article  CAS  Google Scholar 

  89. Gelardi T, Damiano V, Rosa R, Bianco R, Cozzolino R, Tortora G et al (2010) Two novel human anti-ErbB2 immunoagents are active on trastuzumab-resistant tumours. Br J Cancer 102:513–519

    Article  PubMed  CAS  Google Scholar 

  90. Schier R, McCall A, Adams GP, Marshall KW, Merritt H, Yim M et al (1996) Isolation of picomolar affinity anti-c-erbB-2 single-chain Fv by molecular evolution of the complementarity determining regions in the center of the antibody binding site. J Mol Biol 263:551–567

    Article  PubMed  CAS  Google Scholar 

  91. Schier R, Marks JD, Wolf EJ, Apell G, Wong C, McCartney JE et al (1995) In vitro and in vivo characterization of a human anti-c-erbB-2 single-chain Fv isolated from a filamentous phage antibody library. Immunotechnology 1:73–81

    Article  PubMed  CAS  Google Scholar 

  92. Rudnick SI, Adams GP (2009) Affinity and avidity in antibody-based tumor targeting. Cancer Biother Radiopharm 24:155–161

    Article  PubMed  CAS  Google Scholar 

  93. Adams GP, Schier R, McCall AM, Simmons HH, Horak EM, Alpaugh RK et al (2001) High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res 61:4750–4755

    PubMed  CAS  Google Scholar 

  94. Zhang Y, Pastan I (2008) High shed antigen levels within tumors: an additional barrier to immunoconjugate therapy. Clin Cancer Res 14:7981–7986

    Article  PubMed  CAS  Google Scholar 

  95. Zhang L, Zhao J, Wang T, Yu CJ, Jia LT, Duan YY et al (2008) HER2-targeting recombinant protein with truncated pseudomonas exotoxin A translocation domain efficiently kills breast cancer cells. Cancer Biol Ther 7:1226–1231

    Article  PubMed  CAS  Google Scholar 

  96. Clemente R, de la Torre JC (2007) Cell-to-cell spread of Borna disease virus proceeds in the absence of the virus primary receptor and furin-mediated processing of the virus surface glycoprotein. J Virol 81:5968–5977

    Article  PubMed  CAS  Google Scholar 

  97. Ackerman ME, Pawlowski D, Wittrup KD (2008) Effect of antigen turnover rate and expression level on antibody penetration into tumor spheroids. Mol Cancer Ther 7:2233–2240

    Article  PubMed  CAS  Google Scholar 

  98. Austin CD, De Maziere AM, Pisacane PI, van Dijk SM, Eigenbrot C, Sliwkowski MX et al (2004) Endocytosis and sorting of ErbB2 and the site of action of cancer therapeutics trastuzumab and geldanamycin. Mol Biol Cell 15:5268–5282

    Article  PubMed  CAS  Google Scholar 

  99. Pirie CM, Hackel BJ, Rosenblum MG, Wittrup KD (2011) Convergent potency of internalized gelonin immunotoxins across varied cell lines, antigens, and targeting moieties. J Biol Chem 286:4165–4172

    Article  PubMed  CAS  Google Scholar 

  100. Sandvig K (2002) van DB. Membrane traffic exploited by protein toxins. Annu Rev Cell Dev Biol 18:1–24

    Article  PubMed  CAS  Google Scholar 

  101. Sandvig K, van DB (2005) Delivery into cells: lessons learned from plant and bacterial toxins. Gene Ther 12:865–872

    Article  PubMed  CAS  Google Scholar 

  102. Potala S, Sahoo SK, Verma RS (2008) Targeted therapy of cancer using diphtheria toxin-derived immunotoxins. Drug Discov Today 13:807–815

    Article  PubMed  CAS  Google Scholar 

  103. Lambert JM, Blattler WA, McIntyre GD, Goldmacher VS, Scott CF Jr (1988) Immunotoxins containing single-chain ribosome-inactivating proteins. Cancer Treat Res 37:175–209

    Article  PubMed  CAS  Google Scholar 

  104. Olsnes S (2004) The history of ricin, abrin and related toxins. Toxicon 44:361–370

    Article  PubMed  CAS  Google Scholar 

  105. Nielsen K, Boston RS (2001) Ribosome-inactivating proteins: a plant perspective. Annu Rev Plant Physiol Plant Mol Biol 52:785–816

    Article  PubMed  CAS  Google Scholar 

  106. Stirpe F, Battelli MG (2006) Ribosome-inactivating proteins: progress and problems. Cell Mol Life Sci 63:1850–1866

    Article  PubMed  CAS  Google Scholar 

  107. Rosenblum MG, Cheung LH, Liu Y, Marks JW III (2003) Design, expression, purification, and characterization, in vitro and in vivo, of an antimelanoma single-chain Fv antibody fused to the toxin gelonin. Cancer Res 63:3995–4002

    PubMed  CAS  Google Scholar 

  108. Zhou H, Marks JW, Hittelman WN, Yagita H, Cheung LH, Rosenblum MG et al (2011) Development and characterization of a potent immunoconjugate targeting the Fn14 receptor on solid tumor cells. Mol Cancer Ther 10:1276–1288

    Article  PubMed  CAS  Google Scholar 

  109. Lyu MA, Cheung LH, Hittelman WN, Marks JW, Aguiar RC, Rosenblum MG (2007) The rGel/BLyS fusion toxin specifically targets malignant B cells expressing the BLyS receptors BAFF-R, TACI, and BCMA. Mol Cancer Ther 6:460–470

    Article  PubMed  CAS  Google Scholar 

  110. Thorburn J, Horita H, Redzic J, Hansen K, Frankel AE, Thorburn A (2009) Autophagy regulates selective HMGB1 release in tumor cells that are destined to die. Cell Death Differ 16:175–183

    Article  PubMed  CAS  Google Scholar 

  111. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8:741–752

    Article  PubMed  CAS  Google Scholar 

  112. Thorburn A (2008) Apoptosis and autophagy: regulatory connections between two supposedly different processes. Apoptosis 13:1–9

    Article  PubMed  CAS  Google Scholar 

  113. Carter PJ, Senter PD (2008) Antibody-drug conjugates for cancer therapy. Cancer J 14:154–169

    Article  PubMed  CAS  Google Scholar 

  114. Pegram MD, Lipton A, Hayes DF, Weber BL, Baselga JM, Tripathy D et al (1998) Phase II study of receptor-enhanced chemosensitivity using recombinant humanized anti-p185HER2/neu monoclonal antibody plus cisplatin in patients with HER2/neu-overexpressing metastatic breast cancer refractory to chemotherapy treatment. J Clin Oncol 16:2659–2671

    PubMed  CAS  Google Scholar 

  115. Pegram M, Hsu S, Lewis G, Pietras R, Beryt M, Sliwkowski M et al (1999) Inhibitory effects of combinations of HER-2/neu antibody and chemotherapeutic agents used for treatment of human breast cancers. Oncogene 18:2241–2251

    Article  PubMed  CAS  Google Scholar 

  116. Baselga J, Tripathy D, Mendelsohn J, Baughman S, Benz CC, Dantis L et al (1996) Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J Clin Oncol 14:737–744

    PubMed  CAS  Google Scholar 

  117. Leary AF, Hanna WM, van de Vijver MJ, Penault-Llorca F, Ruschoff J, Osamura RY et al (2009) Value and limitations of measuring HER-2 extracellular domain in the serum of breast cancer patients. J Clin Oncol 27:1694–1705

    Article  PubMed  CAS  Google Scholar 

  118. Kreitman RJ, Pastan I (2006) Immunotoxins in the treatment of hematologic malignancies. Curr Drug Targets 7:1301–1311

    Article  PubMed  CAS  Google Scholar 

  119. Frankel AE, Kreitman RJ (2005) CLL immunotoxins. Leuk Res 29:985–986

    Article  PubMed  CAS  Google Scholar 

  120. Jain M, Venkatraman G, Batra SK (2007) Optimization of radioimmunotherapy of solid tumors: biological impediments and their modulation. Clin Cancer Res 13:1374–1382

    Article  PubMed  CAS  Google Scholar 

  121. Beckman RA, Weiner LM, Davis HM (2007) Antibody constructs in cancer therapy: protein engineering strategies to improve exposure in solid tumors. Cancer 109:170–179

    Article  PubMed  CAS  Google Scholar 

  122. Wels W, Harwerth IM, Mueller M, Groner B, Hynes NE (1992) Selective inhibition of tumor cell growth by a recombinant single-chain antibody-toxin specific for the erbB-2 receptor. Cancer Res 52:6310–6317

    PubMed  CAS  Google Scholar 

  123. King CR, Fischer PH, Rando RF, Pastan I (1996) The performance of e23(Fv)PEs, recombinant toxins targeting the erbB-2 protein. Semin Cancer Biol 7:79–86

    Article  PubMed  CAS  Google Scholar 

  124. Kihara A, Pastan I (1995) Cytotoxic activity of chimeric toxins containing the epidermal growth factor-like domain of heregulins fused to PE38KDEL, a truncated recombinant form of Pseudomonas exotoxin. Cancer Res 55:71–77

    PubMed  CAS  Google Scholar 

  125. Pai-Scherf LH, Villa J, Pearson D, Watson T, Liu E, Willingham MC et al (1999) Hepatotoxicity in cancer patients receiving erb-38, a recombinant immunotoxin that targets the erbB2 receptor. Clin Cancer Res 5:2311–2315

    PubMed  CAS  Google Scholar 

  126. Maurer-Gebhard M, Schmidt M, Azemar M, Altenschmidt U, Stocklin E, Wels W et al (1998) Systemic treatment with a recombinant erbB-2 receptor-specific tumor toxin efficiently reduces pulmonary metastases in mice injected with genetically modified carcinoma cells. Cancer Res 58:2661–2666

    PubMed  CAS  Google Scholar 

  127. Azemar M, Djahansouzi S, Jager E, Solbach C, Schmidt M, Maurer AB et al (2003) Regression of cutaneous tumor lesions in patients intratumorally injected with a recombinant single-chain antibody-toxin targeted to ErbB2/HER2. Breast Cancer Res Treat 82:155–164

    Article  PubMed  CAS  Google Scholar 

  128. Ghetie MA, Ghetie V, Vitetta ES (1997) Immunotoxins for the treatment of B-cell lymphomas. Mol Med 3:420–427

    PubMed  CAS  Google Scholar 

  129. Bang S, Nagata S, Onda M, Kreitman RJ, Pastan I (2005) HA22 (R490A) is a recombinant immunotoxin with increased antitumor activity without an increase in animal toxicity. Clin Cancer Res 11:1545–1550

    Article  PubMed  CAS  Google Scholar 

  130. Arribas J, Borroto A (2002) Protein ectodomain shedding. Chem Rev 102:4627–4638

    Article  PubMed  CAS  Google Scholar 

  131. Dello SP, Rovida E (2002) Transmodulation of cell surface regulatory molecules via ectodomain shedding. Biol Chem 383:69–83

    Google Scholar 

  132. Wolf P, Alt K, Wetterauer D, Buhler P, Gierschner D, Katzenwadel A et al (2010) Preclinical evaluation of a recombinant anti-prostate specific membrane antigen single-chain immunotoxin against prostate cancer. J Immunother 33:262–271

    Article  PubMed  CAS  Google Scholar 

  133. Morgan AC Jr, Manger R, Pearson JW, Longo D, Abrams P, Sivam G et al (1991) Immunoconjugates of Pseudomonas exotoxin A: evaluation in mice, monkeys, and man. Cancer Detect Prev 15:137–143

    PubMed  Google Scholar 

  134. Baluna R, Vitetta ES (1997) Vascular leak syndrome: a side effect of immunotherapy. Immunopharmacology 37:117–132

    Article  PubMed  CAS  Google Scholar 

  135. Vallera DA, Panoskaltsis-Mortari A, Blazar BR (1997) Renal dysfunction accounts for the dose limiting toxicity of DT390anti-CD3sFv, a potential new recombinant anti-GVHD immunotoxin. Protein Eng 10:1071–1076

    Article  PubMed  CAS  Google Scholar 

  136. Brown J, Rasamoelisolo M, Spearman M, Bosc D, Cizeau J, Entwistle J et al (2009) Preclinical assessment of an anti-EpCAM immunotoxin: locoregional delivery provides a safer alternative to systemic administration. Cancer Biother Radiopharm 24:477–487

    Article  PubMed  CAS  Google Scholar 

  137. Schrama D, Reisfeld RA, Becker JC (2006) Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov 5:147–159

    Article  PubMed  CAS  Google Scholar 

  138. Frankel AE, Tagge EP, Willingham MC (1995) Clinical trials of targeted toxins. Semin Cancer Biol 6:307–317

    Article  PubMed  CAS  Google Scholar 

  139. Brand FX, Ravanel N, Gauchez AS, Pasquier D, Payan R, Fagret D et al (2006) Prospect for anti-HER2 receptor therapy in breast cancer. Anticancer Res 26:715–722

    PubMed  CAS  Google Scholar 

  140. Krauss WC, Park JW, Kirpotin DB, Hong K, Benz CC (2000) Emerging antibody-based HER2 (ErbB-2/neu) therapeutics. Breast Dis 11:113–124

    PubMed  CAS  Google Scholar 

  141. Schaffitzel C, Hanes J, Jermutus L, Pluckthun A (1999) Ribosome display: an in vitro method for selection and evolution of antibodies from libraries. J Immunol Methods 231:119–135

    Article  PubMed  CAS  Google Scholar 

  142. Hanes J, Pluckthun A (1997) In vitro selection and evolution of functional proteins by using ribosome display. Proc Natl Acad Sci USA 94:4937–4942

    Article  PubMed  CAS  Google Scholar 

  143. Hanes J, Schaffitzel C, Knappik A, Pluckthun A (2000) Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display. Nat Biotechnol 18:1287–1292

    Article  PubMed  CAS  Google Scholar 

  144. Jermutus L, Honegger A, Schwesinger F, Hanes J, Pluckthun A (2001) Tailoring in vitro evolution for protein affinity or stability. Proc Natl Acad Sci USA 98:75–80

    Article  PubMed  CAS  Google Scholar 

  145. Frankel AE (2004) Reducing the immune response to immunotoxin. Clin Cancer Res 10:13–15

    Article  PubMed  CAS  Google Scholar 

  146. De Groot AS, Scott DW (2007) Immunogenicity of protein therapeutics. Trends Immunol 28:482–490

    Article  PubMed  CAS  Google Scholar 

  147. Benhar I, Brinkmann U, Webber KO, Pastan I (1994) Mutations of two lysine residues in the CDR loops of a recombinant immunotoxin that reduce its sensitivity to chemical derivatization. Bioconjug Chem 5:321–326

    Article  PubMed  CAS  Google Scholar 

  148. Onda M, Beers R, Xiang L, Nagata S, Wang QC, Pastan I (2008) An immunotoxin with greatly reduced immunogenicity by identification and removal of B cell epitopes. Proc Natl Acad Sci USA 105:11311–11316

    Article  PubMed  CAS  Google Scholar 

  149. Benhar I, Wang QC, FitzGerald D, Pastan I (1994) Pseudomonas exotoxin A mutants. Replacement of surface-exposed residues in domain III with cysteine residues that can be modified with polyethylene glycol in a site-specific manner. J Biol Chem 269:13398–13404

    PubMed  CAS  Google Scholar 

  150. Pasquetto MV, Vecchia L, Covini D, Digilio R, Scotti C (2011) Targeted drug delivery using immunoconjugates: principles and applications. J Immunother 34:611–628

    Article  PubMed  CAS  Google Scholar 

  151. Gao J, Zhong W, He J, Li H, Zhang H, Zhou G et al (2009) Tumor-targeted PE38KDEL delivery via PEGylated anti-HER2 immunoliposomes. Int J Pharm 374:145–152

    Article  PubMed  CAS  Google Scholar 

  152. Liu X, Wu J, Zhang S, Li C, Huang Q (2009) Novel strategies to augment genetically delivered immunotoxin molecular therapy for cancer therapy. Cancer Gene Ther 16:861–872

    Article  PubMed  CAS  Google Scholar 

  153. Vasir JK, Labhasetwar V (2005) Targeted drug delivery in cancer therapy. Technol Cancer Res Treat 4:363–374

    PubMed  CAS  Google Scholar 

  154. Hall PD, Virella G, Willoughby T, Atchley DH, Kreitman RJ, Frankel AE (2001) Antibody response to DT-GM, a novel fusion toxin consisting of a truncated diphtheria toxin (DT) linked to human granulocyte-macrophage colony stimulating factor (GM), during a phase I trial of patients with relapsed or refractory acute myeloid leukemia. Clin Immunol 100:191–197

    Article  PubMed  CAS  Google Scholar 

  155. Hertler AA, Spitler LE, Frankel AE (1987) Humoral immune response to a ricin A chain immunotoxin in patients with metastatic melanoma. Cancer Drug Deliv 4:245–253

    Article  PubMed  CAS  Google Scholar 

  156. Rousalova I, Krepela E (2010) Granzyme B-induced apoptosis in cancer cells and its regulation (review). Int J Oncol 37:1361–1378

    PubMed  CAS  Google Scholar 

  157. Kurschus FC, Jenne DE (2010) Delivery and therapeutic potential of human granzyme B. Immunol Rev 235:159–171

    PubMed  CAS  Google Scholar 

  158. Liu Y, Zhang W, Niu T, Cheung LH, Munshi A, Meyn RE Jr et al (2006) Targeted apoptosis activation with GrB/scFvMEL modulates melanoma growth, metastatic spread, chemosensitivity, and radiosensitivity. Neoplasia 8:125–135

    Article  PubMed  CAS  Google Scholar 

  159. Liu Y, Cheung LH, Hittelman WN, Rosenblum MG (2003) Targeted delivery of human pro-apoptotic enzymes to tumor cells: In vitro studies describing a novel class of recombinant highly cytotoxic agents. Mol Cancer Ther 2:1341–1350

    PubMed  CAS  Google Scholar 

  160. Liu Y, Cheung LH, Thorpe P, Rosenblum MG (2003) Mechanistic studies of a novel human fusion toxin composed of vascular endothelial growth factor (VEGF)121 and the serine protease granzyme B: directed apoptotic events in vascular endothelial cells. Mol Cancer Ther 2:949–959

    PubMed  CAS  Google Scholar 

  161. Dalken B, Giesubel U, Knauer SK, Wels WS (2006) Targeted induction of apoptosis by chimeric granzyme B fusion proteins carrying antibody and growth factor domains for cell recognition. Cell Death Differ 13:576–585

    Article  PubMed  CAS  Google Scholar 

  162. Giesubel U, Dalken B, Mahmud H, Wels WS (2006) Cell binding, internalization and cytotoxic activity of human granzyme B expressed in the yeast Pichia pastoris. Biochem J 394:563–573

    Article  PubMed  CAS  Google Scholar 

  163. Zhao J, Zhang LH, Jia LT, Zhang L, Xu YM, Wang Z et al (2004) Secreted antibody/granzyme B fusion protein stimulates selective killing of HER2-overexpressing tumor cells. J Biol Chem 279:21343–21348

    Article  PubMed  CAS  Google Scholar 

  164. Chang CH, Gupta P, Michel R, Loo M, Wang Y, Cardillo TM et al (2010) Ranpirnase (frog RNase) targeted with a humanized, internalizing, anti-Trop-2 antibody has potent cytotoxicity against diverse epithelial cancer cells. Mol Cancer Ther 9:2276–2286

    Article  PubMed  CAS  Google Scholar 

  165. De LC, D’Alessio G (2008) From immunotoxins to immunoRNases. Curr Pharm Biotechnol 9:210–214

    Article  Google Scholar 

  166. De LC, Arciello A, Cozzolino R, Palmer DB, Laccetti P, Piccoli R et al (2004) A fully human antitumor immunoRNase selective for ErbB-2-positive carcinomas. Cancer Res 64:4870–4874

    Article  Google Scholar 

  167. De LC, D’Alessio G (2009) Human anti-ErbB2 immunoagents—immunoRNases and compact antibodies. FEBS J 276:1527–1535

    Article  CAS  Google Scholar 

  168. De LC, Nigro A, Piccoli R, D’Alessio G (2002) A new RNase-based immunoconjugate selectively cytotoxic for ErbB2-overexpressing cells. FEBS Lett 516:208–212

    Article  Google Scholar 

  169. De LC, Di MC, Cali G, Troise F, Nitsch L, D’Alessio G (2007) Intracellular route and mechanism of action of ERB-hRNase, a human anti-ErbB2 anticancer immunoagent. FEBS Lett 581:296–300

    Article  CAS  Google Scholar 

  170. Di DA, Cafaro V, D’Alessio G (1994) Ribonuclease A can be transformed into a dimeric ribonuclease with antitumor activity. J Biol Chem 269:17394–17396

    Google Scholar 

  171. Riccio G, Borriello M, D’Alessio G, De LC (2008) A novel human antitumor dimeric immunoRNase. J Immunother 31:440–445

    Article  PubMed  CAS  Google Scholar 

  172. Piccoli R, Di GS, De LC, Grauso M, Monaco C, Spalletti-Cernia D et al (1999) A dimeric mutant of human pancreatic ribonuclease with selective cytotoxicity toward malignant cells. Proc Natl Acad Sci USA 96:7768–7773

    Article  PubMed  CAS  Google Scholar 

  173. Di GS, D’alessio G, Piccoli R (2001) Second generation antitumour human RNase: significance of its structural and functional features for the mechanism of antitumour action. Biochem J 358:241–247

    Article  Google Scholar 

  174. Borriello M, Laccetti P, Terrazzano G, D’Alessio G, De LC (2011) A novel fully human antitumour immunoRNase targeting ErbB2-positive tumours. Br J Cancer 104:1716–1723

    Article  PubMed  CAS  Google Scholar 

  175. Jia LT, Zhang LH, Yu CJ, Zhao J, Xu YM, Gui JH et al (2003) Specific tumoricidal activity of a secreted proapoptotic protein consisting of HER2 antibody and constitutively active caspase-3. Cancer Res 63:3257–3262

    PubMed  CAS  Google Scholar 

  176. Zhang DX, Zhao PT, Xia L, Liu LL, Liang J, Zhai HH et al (2010) Potent inhibition of human gastric cancer by HER2-directed induction of apoptosis with anti-HER2 antibody and caspase-3 fusion protein. Gut 59:292–299

    Article  PubMed  CAS  Google Scholar 

  177. Xu YM, Wang LF, Jia LT, Qiu XC, Zhao J, Yu CJ et al (2004) A caspase-6 and anti-human epidermal growth factor receptor-2 (HER2) antibody chimeric molecule suppresses the growth of HER2-overexpressing tumors. J Immunol 173:61–67

    PubMed  CAS  Google Scholar 

  178. Wang LF, Zhou Y, Xu YM, Qiu XC, Zhou BG, Wang F et al (2009) A caspase-6 and anti-HER2 antibody chimeric tumor-targeted proapoptotic molecule decreased metastasis of human osteosarcoma. Cancer Invest 27:774–780

    Article  PubMed  CAS  Google Scholar 

  179. Qiu XC. Single-chain antibody/activated BID chimeric protein effectively suppresses HER2-positive tumor growth. 2008.

    Google Scholar 

  180. Shan LQ, Qiu XC, Xu YM, Ji ZG, Yang TT, Chen X et al (2008) scFv-mediated delivery of truncated BID suppresses HER2-positive osteosarcoma growth and metastasis. Cancer Biol Ther 7:1717–1722

    Article  PubMed  CAS  Google Scholar 

  181. Shan LQ, Ma S, Qiu XC, Wang T, Yu SB, Ma BA et al (2011) A novel recombinant immuno-tBid with a furin site effectively suppresses the growth of HER2-positive osteosarcoma cells in vitro. Oncol Rep 25:325–331

    Article  PubMed  CAS  Google Scholar 

  182. Wang F, Ren J, Qiu XC, Wang LF, Zhu Q, Zhang YQ et al (2010) Selective cytotoxicity to HER2-positive tumor cells by a recombinant e23sFv-TD-tBID protein containing a furin cleavage sequence. Clin Cancer Res 16:2284–2294

    Article  PubMed  CAS  Google Scholar 

  183. Wels W, Beerli R, Hellmann P, Schmidt M, Marte BM, Kornilova ES et al (1995) EGF receptor and p185erbB-2-specific single-chain antibody toxins differ in their cell-killing activity on tumor cells expressing both receptor proteins. Int J Cancer 60:137–144

    Article  PubMed  CAS  Google Scholar 

  184. Wang L, Liu B, Schmidt M, Lu Y, Wels W, Fan Z (2001) Antitumor effect of an HER2-specific antibody-toxin fusion protein on human prostate cancer cells. Prostate 47:21–28

    Article  PubMed  CAS  Google Scholar 

  185. Skrepnik N, Araya JC, Qian Z, Xu H, Hamide J, Mera R et al (1996) Effects of anti-erbB-2 (HER-2/neu) recombinant oncotoxin AR209 on human non-small cell lung carcinoma grown orthotopically in athymic nude mice. Clin Cancer Res 2:1851–1857

    PubMed  CAS  Google Scholar 

  186. Skrepnik N, Zieske AW, Robert E, Bravo JC, Mera R, Hunt JD (1998) Aggressive administration of recombinant oncotoxin AR209 (anti-ErbB-2) in athymic nude mice implanted with orthotopic human non-small cell lung tumours. Eur J Cancer 34:1628–1633

    Article  PubMed  CAS  Google Scholar 

  187. Kasprzyk PG, Sullivan TL, Hunt JD, Gubish CT, Scoppa CA, Oelkuct M et al (1996) Activity of anti-erbB-2 recombinant toxin OLX-209 on lung cancer cell lines in the absence of erbB-2 gene amplification. Clin Cancer Res 2:75–80

    PubMed  CAS  Google Scholar 

  188. Fischer PH, Bird RE, Kasprzyk PG, King CR, Turner NA, Pastan I et al (1994) In vitro and in vivo activity of a recombinant toxin, OLX-209, which targets the erbB-2 oncoprotein. Adv Enzyme Regul 34:119–128

    Article  PubMed  CAS  Google Scholar 

  189. Yang D, Kuan CT, Payne J, Kihara A, Murray A, Wang LM et al (1998) Recombinant heregulin-Pseudomonas exotoxin fusion proteins: interactions with the heregulin receptors and antitumor activity in vivo. Clin Cancer Res 4:993–1004

    PubMed  CAS  Google Scholar 

  190. King CR, Kasprzyk PG, Fischer PH, Bird RE, Turner NA (1996) Preclinical testing of an anti-erbB-2 recombinant toxin. Breast Cancer Res Treat 38:19–25

    Article  PubMed  CAS  Google Scholar 

  191. Altenschmidt U, Schmidt M, Groner B, Wels W (1997) Targeted therapy of schwannoma cells in immunocompetent rats with an erbB2-specific antibody-toxin. Int J Cancer 73:117–124

    Article  PubMed  CAS  Google Scholar 

  192. Chen SY, Yang AG, Chen JD, Kute T, King CR, Collier J et al (1997) Potent antitumour activity of a new class of tumour-specific killer cells. Nature 385:78–80

    Article  PubMed  CAS  Google Scholar 

  193. Mazor Y, Barnea I, Keydar I, Benhar I (2007) Antibody internalization studied using a novel IgG binding toxin fusion. J Immunol Methods 321:41–59

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Rosenblum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cao, Y., Rosenblum, M.G. (2013). Design, Development, and Characterization of Recombinant Immunotoxins Targeting HER2/neu. In: Phillips, G. (eds) Antibody-Drug Conjugates and Immunotoxins. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5456-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5456-4_18

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5455-7

  • Online ISBN: 978-1-4614-5456-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics