Skip to main content
  • 1236 Accesses

Abstract

Mucosal vaccination has been the common generic name attributed to the oral, intranasal, pulmonary, rectal, and vaginal routes of vaccine administration. Mucosal surfaces, with a combined surface area of about 400 m2 [1], are undoubtedly the major site of entry for most pathogens. Therefore, these vulnerable surfaces are associated with a large and highly specialized innate and adaptive mucosal immune system that protects the surfaces and the body against potential destructive agents and harmless substances from the environment. In a healthy human adult, this local immune system contributes almost 80 % of all immune cells [2]. These immune cells accumulate in a particular mucosa or circulate between various mucosa-associated lymphoid tissues (MALT), which together form the largest mammalian lymphoid organ system [1]. In theory, mucosal surfaces seem to be the more accessible lymphoid organ for the induction of an immune response such as that required for immunization. Nevertheless, one of the more important reasons for the development of mucosal vaccines is the increasing evidence that local mucosal immune responses are important for protection against disease, principally for diseases which start on mucosal surfaces such as the respiratory, gastrointestinal, or urogenital mucosae. On the other hand, mucosal immune responses are most efficiently induced by the administration of vaccines onto mucosal surfaces, while injected vaccines are generally poor inducers of mucosal immunity and are therefore less effective against infection at mucosal surfaces. However, even with the many attractive features of mucosal vaccination described, it has often proven difficult in practice to stimulate strong sIgA immune responses and protection by mucosal antigen administration [2]. As a consequence, no more than half a dozen mucosal vaccines are currently approved for human use and no subunit vaccines are listed among those approved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Goldsby RA (2003) Immunology, 5th edn. W.H. Freeman, New York

    Google Scholar 

  2. Holmgren J, Czerkinsky C (2005) Mucosal immunity and vaccines. Nat Med 11(suppl 4):S45–S53

    Article  PubMed  CAS  Google Scholar 

  3. Czerkinsky C, Prince SJ, Michalek SM, Jackson S, Russell MW, Moldoveanu Z et al (1987) IgA antibody-producing cells in peripheral blood after antigen ingestion: evidence for a common mucosal immune system in humans. Proc Natl Acad Sci USA 84(8):2449–2453

    Article  PubMed  CAS  Google Scholar 

  4. McDermott MR, Bienenstock J (1979) Evidence for a common mucosal immunologic system. I. Migration of B immunoblasts into intestinal, respiratory, and genital tissues. J Immunol 122(5):1892–1898

    PubMed  CAS  Google Scholar 

  5. Kiyono H, Fukuyama S (2004) NALT- versus Peyer’s-patch-mediated mucosal immunity. Nat Rev Immunol 4(9):699–710

    Article  PubMed  CAS  Google Scholar 

  6. Clark MA, Jepson MA, Hirst BH (2001) Exploiting M cells for drug and vaccine delivery. Adv Drug Deliv Rev 50(1–2):81–106

    Article  PubMed  CAS  Google Scholar 

  7. Kuper CF, Koornstra PJ, Hameleers DM, Biewenga J, Spit BJ, Duijvestijn AM et al (1992) The role of nasopharyngeal lymphoid tissue. Immunol Today 13(6):219–224

    Article  PubMed  CAS  Google Scholar 

  8. Davis SS (2001) Nasal vaccines. Adv Drug Deliv Rev 51(1–3):21–42

    Article  PubMed  CAS  Google Scholar 

  9. Illum L, Davis SS (2001) Nasal vaccination: a non-invasive vaccine delivery method that holds great promise for the future. Adv Drug Deliv Rev 51(1–3):1–3

    PubMed  CAS  Google Scholar 

  10. Vajdy M, Baudner B, Del Giudice G, O’Hagan D (2007) A vaccination strategy to enhance mucosal and systemic antibody and T cell responses against influenza. Clin Immunol 123(2):166–175

    Article  PubMed  CAS  Google Scholar 

  11. Porgador A, Staats HF, Itoh Y, Kelsall BL (1998) Intranasal immunization with cytotoxic T-lymphocyte epitope peptide and mucosal adjuvant cholera toxin: selective augmentation of peptide-presenting dendritic cells in nasal mucosa-associated lymphoid tissue. Infect Immun 66(12):5876–5881

    PubMed  CAS  Google Scholar 

  12. Shreedhar VK, Kelsall BL, Neutra MR (2003) Cholera toxin induces migration of dendritic cells from the subepithelial dome region to T- and B-cell areas of Peyer’s patches. Infect Immun 71(1):504–509

    Article  PubMed  CAS  Google Scholar 

  13. Mowat AM (2003) Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol 3(4):331–341

    Article  PubMed  CAS  Google Scholar 

  14. Neutra MR, Kozlowski PA (2006) Mucosal vaccines: the promise and the challenge. Nat Rev Immunol 6(2):148–158

    Article  PubMed  CAS  Google Scholar 

  15. Gewirtz AT, Madara JL (2001) Periscope, up! Monitoring microbes in the intestine. Nat Immunol 2(4):288–290

    Article  PubMed  CAS  Google Scholar 

  16. Shikina T, Hiroi T, Iwatani K, Jang MH, Fukuyama S, Tamura M et al (2004) IgA class switch occurs in the organized nasopharynx- and gut-associated lymphoid tissue, but not in the diffuse lamina propria of airways and gut. J Immunol 172(10):6259–6264

    PubMed  CAS  Google Scholar 

  17. Kunkel EJ, Butcher EC (2003) Plasma-cell homing. Nat Rev Immunol 3(10):822–829

    Article  PubMed  CAS  Google Scholar 

  18. Baudner BC, Morandi M, Giuliani MM, Verhoef JC, Junginger HE, Costantino P et al (2004) Modulation of immune response to group C meningococcal conjugate vaccine given intranasally to mice together with the LTK63 mucosal adjuvant and the trimethyl chitosan delivery system. J Infect Dis 189(5):828–832

    Article  PubMed  CAS  Google Scholar 

  19. Lamm ME (1997) Interaction of antigens and antibodies at mucosal surfaces. Annu Rev Microbiol 51:311–340

    Article  PubMed  CAS  Google Scholar 

  20. Hutchings AB, Helander A, Silvey KJ, Chandran K, Lucas WT, Nibert ML et al (2004) Secretory immunoglobulin A antibodies against the sigma1 outer capsid protein of reovirus type 1 Lang prevent infection of mouse Peyer’s patches. J Virol 78(2):947–957

    Article  PubMed  CAS  Google Scholar 

  21. Mayer L, Shao L (2004) Therapeutic potential of oral tolerance. Nat Rev Immunol 4(6):407–419

    Article  PubMed  CAS  Google Scholar 

  22. Sansonetti PJ, Medzhitov R (2009) Learning tolerance while fighting ignorance. Cell 138(3):416–420

    Article  PubMed  CAS  Google Scholar 

  23. Woodley JF (1994) Enzymatic barriers for GI peptide and protein delivery. Crit Rev Ther Drug Carrier Syst 11(2–3):61–95

    PubMed  CAS  Google Scholar 

  24. Tsukita S, Furuse M, Itoh M (2001) Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol 2(4):285–293

    Article  PubMed  CAS  Google Scholar 

  25. Engel J, Eran Y (2011) Subversion of mucosal barrier polarity by pseudomonas aeruginosa. Front Microbiol 2:114

    PubMed  Google Scholar 

  26. Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G, Bonasio R et al (2001) Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2(4):361–367

    Article  PubMed  CAS  Google Scholar 

  27. Borchard G, Junginger HE (2001) Modern drug delivery applications of chitosan. Adv Drug Deliv Rev 52(2):103

    Article  PubMed  CAS  Google Scholar 

  28. Olmsted SS, Padgett JL, Yudin AI, Whaley KJ, Moench TR, Cone RA (2001) Diffusion of macromolecules and virus-like particles in human cervical mucus. Biophys J 81(4):1930–1937

    Article  PubMed  CAS  Google Scholar 

  29. McGuckin MA, Linden SK, Sutton P, Florin TH (2011) Mucin dynamics and enteric pathogens. Nat Rev Microbiol 9(4):265–278

    Article  PubMed  CAS  Google Scholar 

  30. Hattrup CL, Gendler SJ (2008) Structure and function of the cell surface (tethered) mucins. Annu Rev Physiol 70:431–457

    Article  PubMed  CAS  Google Scholar 

  31. Marchiando AM, Graham WV, Turner JR (2010) Epithelial barriers in homeostasis and disease. Annu Rev Pathol 5:119–144

    Article  PubMed  CAS  Google Scholar 

  32. Atuma C, Strugala V, Allen A, Holm L (2001) The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am J Physiol Gastrointest Liver Physiol 280(5):G922–G929

    PubMed  CAS  Google Scholar 

  33. Kagnoff MF, Eckmann L (1997) Epithelial cells as sensors for microbial infection. J Clin Invest 100(1):6–10

    Article  PubMed  CAS  Google Scholar 

  34. Macpherson AJ, Harris NL (2004) Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol 4(6):478–485

    Article  PubMed  CAS  Google Scholar 

  35. Nagler-Anderson C, Shi HN (2001) Peripheral nonresponsiveness to orally administered soluble protein antigens. Crit Rev Immunol 21(1–3):121–131

    PubMed  CAS  Google Scholar 

  36. Nagler-Anderson C (2001) Man the barrier! Strategic defences in the intestinal mucosa. Nat Rev Immunol 1(1):59–67

    Article  PubMed  CAS  Google Scholar 

  37. Sansonetti PJ (2011) To be or not to be a pathogen: that is the mucosally relevant question. Mucosal Immunol 4(1):8–14

    Article  PubMed  CAS  Google Scholar 

  38. Viney JL, Mowat AM, O’Malley JM, Williamson E, Fanger NA (1998) Expanding dendritic cells in vivo enhances the induction of oral tolerance. J Immunol 160(12):5815–5825

    PubMed  CAS  Google Scholar 

  39. Scheinecker C, McHugh R, Shevach EM, Germain RN (2002) Constitutive presentation of a natural tissue autoantigen exclusively by dendritic cells in the draining lymph node. J Exp Med 196(8):1079–1090

    Article  PubMed  CAS  Google Scholar 

  40. Kunkel D, Kirchhoff D, Nishikawa S, Radbruch A, Scheffold A (2003) Visualization of peptide presentation following oral application of antigen in normal and Peyer’s patches-deficient mice. Eur J Immunol 33(5):1292–1301

    Article  PubMed  CAS  Google Scholar 

  41. Spahn TW, Fontana A, Faria AM, Slavin AJ, Eugster HP, Zhang X et al (2001) Induction of oral tolerance to cellular immune responses in the absence of Peyer’s patches. Eur J Immunol 31(4):1278–1287

    Article  PubMed  CAS  Google Scholar 

  42. Mebius RE, Kraal G (2005) Structure and function of the spleen. Nat Rev Immunol 5(8):606–616

    Article  PubMed  CAS  Google Scholar 

  43. Stertman L, Lundgren E, Sjoholm I (2006) Starch microparticles as a vaccine adjuvant: only uptake in Peyer’s patches decides the profile of the immune response. Vaccine 24(17):3661–3668

    Article  PubMed  CAS  Google Scholar 

  44. Borges O, Lebre F, Bento D, Borchard G, Junginger HE (2010) Mucosal vaccines: recent progress in understanding the natural barriers. Pharm Res 27(2):211–223

    Article  PubMed  CAS  Google Scholar 

  45. Zuo YY, Alolabi H, Shafiei A, Kang N, Policova Z, Cox PN et al (2006) Chitosan enhances the in vitro surface activity of dilute lung surfactant preparations and resists albumin-induced inactivation. Pediatr Res 60(2):125–130

    Article  PubMed  CAS  Google Scholar 

  46. O’Hagan D (2006) Microparticles as vaccine delivery systems. In: Schijins V, O’Hagan D (eds) Immunopotentiators in modern vaccines, 1st edn. Academic, Burlington, pp 123–147

    Chapter  Google Scholar 

  47. Dupuis M, Denis-Mize K, LaBarbara A, Peters W, Charo IF, McDonald DM et al (2001) Immunization with the adjuvant MF59 induces macrophage trafficking and apoptosis. Eur J Immunol 31(10):2910–2918

    Article  PubMed  CAS  Google Scholar 

  48. van der Lubben IM, Kersten G, Fretz MM, Beuvery C, Coos Verhoef J, Junginger HE (2003) Chitosan microparticles for mucosal vaccination against diphtheria: oral and nasal efficacy studies in mice. Vaccine 21(13–14):1400–1408

    Article  PubMed  Google Scholar 

  49. Pearse MJ, Drane D (2005) ISCOMATRIX adjuvant for antigen delivery. Adv Drug Deliv Rev 57(3):465–474

    Article  PubMed  CAS  Google Scholar 

  50. Florindo HF, Pandit S, Goncalves LM, Alpar HO, Almeida AJ (2008) Streptococcus equi antigens adsorbed onto surface modified poly-epsilon-caprolactone microspheres induce humoral and cellular specific immune responses. Vaccine 26(33):4168–4177

    Article  PubMed  CAS  Google Scholar 

  51. O’Hagan DT (1998) Microparticles and polymers for the mucosal delivery of vaccines. Adv Drug Deliv Rev 34(2–3):305–320

    Article  PubMed  Google Scholar 

  52. O’Hagan DT, Singh M (2003) Microparticles as vaccine adjuvants and delivery systems. Expert Rev Vaccines 2(2):269–283

    Article  PubMed  Google Scholar 

  53. O’Hagan DT, Singh M, Ulmer JB (2004) Microparticles for the delivery of DNA vaccines. Immunol Rev 199:191–200

    Article  PubMed  Google Scholar 

  54. Storni T, Kundig TM, Senti G, Johansen P (2005) Immunity in response to particulate antigen-delivery systems. Adv Drug Deliv Rev 57(3):333–355

    Article  PubMed  CAS  Google Scholar 

  55. Tamber H, Johansen P, Merkle HP, Gander B (2005) Formulation aspects of biodegradable polymeric microspheres for antigen delivery. Adv Drug Deliv Rev 57(3):357–376

    Article  PubMed  CAS  Google Scholar 

  56. Jilek S, Merkle HP, Walter E (2005) DNA-loaded biodegradable microparticles as vaccine delivery systems and their interaction with dendritic cells. Adv Drug Deliv Rev 57(3):377–390

    Article  PubMed  CAS  Google Scholar 

  57. Waeckerle-Men Y, Groettrup M (2005) PLGA microspheres for improved antigen delivery to dendritic cells as cellular vaccines. Adv Drug Deliv Rev 57(3):475–482

    Article  PubMed  CAS  Google Scholar 

  58. Florence AT (1997) The oral absorption of micro- and nanoparticulates: neither exceptional nor unusual. Pharm Res 14(3):259–266

    Article  PubMed  CAS  Google Scholar 

  59. Hussain N, Jaitley V, Florence AT (2001) Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics. Adv Drug Deliv Rev 50(1–2):107–142

    Article  PubMed  CAS  Google Scholar 

  60. Jung T, Kamm W, Breitenbach A, Kaiserling E, Xiao JX, Kissel T (2000) Biodegradable nanoparticles for oral delivery of peptides: is there a role for polymers to affect mucosal uptake? Eur J Pharm Biopharm 50(1):147–160

    Article  PubMed  CAS  Google Scholar 

  61. Cano-Cebrian MJ, Zornoza T, Granero L, Polache A (2005) Intestinal absorption enhancement via the paracellular route by fatty acids, chitosans and others: a target for drug delivery. Curr Drug Deliv 2(1):9–22

    Article  PubMed  CAS  Google Scholar 

  62. Aprahamian M, Michel C, Humbert W, Devissaguet JP, Damge C (1987) Transmucosal passage of polyalkylcyanoacrylate nanocapsules as a new drug carrier in the small intestine. Biol Cell 61(1–2):69–76

    Article  PubMed  CAS  Google Scholar 

  63. MacDonald TT (2003) The mucosal immune system. Parasite Immunol 25(5):235–246

    Article  PubMed  CAS  Google Scholar 

  64. Jabbal-Gill I, Lin W, Jenkins P, Watts P, Jimenez M, Illum L et al (1999) Potential of polymeric lamellar substrate particles (PLSP) as adjuvants for vaccines. Vaccine 18(3–4):238–250

    Article  PubMed  CAS  Google Scholar 

  65. Holmgren J, Harandi A, Lebens M, Sun J-B, Anjuère F, Czerkinsky C (2006) Mucosal adjuvants based on cholera toxin and E. coli heat-labile enterotoxin. In: Schijns V, O’Hagan D (eds) Immunopotentiators in modern vaccines, 1st edn. Academic, Burlington, pp 235–252

    Chapter  Google Scholar 

  66. Douce G, Fontana M, Pizza M, Rappuoli R, Dougan G (1997) Intranasal immunogenicity and adjuvanticity of site-directed mutant derivatives of cholera toxin. Infect Immun 65(7):2821–2828

    PubMed  CAS  Google Scholar 

  67. Douce G, Turcotte C, Cropley I, Roberts M, Pizza M, Domenghini M et al (1995) Mutants of Escherichia coli heat-labile toxin lacking ADP-ribosyltransferase activity act as nontoxic, mucosal adjuvants. Proc Natl Acad Sci USA 92(5):1644–1648

    Article  PubMed  CAS  Google Scholar 

  68. Fujihashi K, Koga T, van Ginkel FW, Hagiwara Y, McGhee JR (2002) A dilemma for mucosal vaccination: efficacy versus toxicity using enterotoxin-based adjuvants. Vaccine 20(19–20):2431–2438

    Article  PubMed  CAS  Google Scholar 

  69. Levine MM (2000) Immunization against bacterial diseases of the intestine. J Pediatr Gastroenterol Nutr 31(4):336–355

    Article  PubMed  CAS  Google Scholar 

  70. Malkevitch NV, Robert-Guroff M (2004) A call for replicating vector prime-protein boost strategies in HIV vaccine design. Expert Rev Vaccines 3(suppl 4):S105–S117

    Article  PubMed  Google Scholar 

  71. Cox E, Verdonck F, Vanrompay D, Goddeeris B (2006) Adjuvants modulating mucosal immune responses or directing systemic responses towards the mucosa. Vet Res 37(3):511–539

    Article  PubMed  CAS  Google Scholar 

  72. O’Hagan DT, Valiante NM (2003) Recent advances in the discovery and delivery of vaccine adjuvants. Nat Rev Drug Discov 2(9):727–735

    Article  PubMed  Google Scholar 

  73. McCluskie MJ, Weeratna RD (2006) CpG oligodeoxynucleotides as vaccine adjuvants. In: Schijins V, O’Hagan D (eds) Immunopotentiators in modern vaccines, 1st edn. Academic, Burlington, pp 73–92

    Chapter  Google Scholar 

  74. McSorley SJ, Ehst BD, Yu Y, Gewirtz AT (2002) Bacterial flagellin is an effective adjuvant for CD4+ T cells in vivo. J Immunol 169(7):3914–3919

    PubMed  CAS  Google Scholar 

  75. Chabot S, Brewer A, Lowell G, Plante M, Cyr S, Burt DS et al (2005) A novel intranasal Protollin-based measles vaccine induces mucosal and systemic neutralizing antibody responses and cell-mediated immunity in mice. Vaccine 23(11):1374–1383

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Borges .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Borges, O., Borchard, G. (2013). Mucosal Vaccination: Opportunities and Challenges. In: Singh, M. (eds) Novel Immune Potentiators and Delivery Technologies for Next Generation Vaccines. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5380-2_3

Download citation

Publish with us

Policies and ethics