Skip to main content

Neural Tissue Engineering

  • Chapter
  • First Online:
Neural Engineering

Abstract

Injury to the nervous system leads to several debilitating long-term disabilities that can severely impair quality of life. Regenerative failure following injury is the primary cause of disability and is mainly attributed to the localized upregulation of nerve inhibitory molecules in the case of central nervous system (CNS) injuries, and the presence of inhibitory molecules along with the absence of structural support in the case of peripheral nervous system (PNS) injuries. While treatments using autografts and allografts do result in appreciable nerve regeneration in the case of peripheral nerve gaps, the same is not true of CNS injuries which are difficult to treat.

This chapter discusses innate differences and challenges in treating CNS and PNS injuries, and the current methodologies being employed to enhance the endogenous regenerative potential and plasticity. The state-of-the-art in facilitating repair and rehabilitation by means of biochemical and cellular therapies as well as by electrical stimulation of neuromuscular tissue are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7(1):41–53

    Article  Google Scholar 

  2. Sofroniew MV (2005) Reactive astrocytes in neural repair and protection. Neuroscientist 11(5):400–407

    Article  Google Scholar 

  3. Eddleston M, Mucke L (1993) Molecular profile of reactive astrocytes–implications for their role in neurologic disease. Neuroscience 54(1):15–36

    Article  Google Scholar 

  4. Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5(2):146–156

    Article  Google Scholar 

  5. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308(5726):1314–1318

    Article  Google Scholar 

  6. Giulian D (1987) Ameboid microglia as effectors of inflammation in the central nervous system. J Neurosci Res 18(1):155–171, 132–153

    Article  Google Scholar 

  7. Streit WJ, Graeber MB, Kreutzberg GW (1988) Functional plasticity of microglia: a review. Glia 1(5):301–307

    Article  Google Scholar 

  8. Aloisi F (2001) Immune function of microglia. Glia 36(2):165–179

    Article  Google Scholar 

  9. Bunge RP, Bunge MB, Rish (1960) Electron microscopic study of demyelination in an experimentally induced lesion in adult cat spinal cord. J Biophys Biochem Cytol 7:685–696

    Article  Google Scholar 

  10. Ffrench-Constant C, Camara J (2007) Lessons from oligodendrocyte biology on promoting repair in multiple sclerosis. J Neurol 254:15–22

    Article  Google Scholar 

  11. Bradl M, Lassmann H (2010) Oligodendrocytes: biology and pathology. Acta Neuropathol 119(1):37–53

    Article  Google Scholar 

  12. Glezer I, Lapointe A, Rivest S (2006) Innate immunity triggers oligodendrocyte progenitor reactivity and confines damages to brain injuries. FASEB J 20(6):750–752

    Google Scholar 

  13. Rich MM, Lichtman JW (1989) In vivo visualization of pre- and postsynaptic changes during synapse elimination in reinnervated mouse muscle. J Neurosci 9(5):1781–1805

    Google Scholar 

  14. Birchmeier C, Nave KA (2008) Neuregulin-1, a key axonal signal that drives Schwann cell growth and differentiation. Glia 56(14):1491–1497

    Article  Google Scholar 

  15. Son YJ, Thompson WJ (1995) Schwann cell processes guide regeneration of peripheral axons. Neuron 14(1):125–132

    Article  Google Scholar 

  16. Abercrombie M, Johnson ML (1942) The outwandering of cells in tissue cultures of nerves undergoing Wallarian degeneration. J Exp Biol 19:266–283

    Google Scholar 

  17. Politis MJ, Ederle K, Spencer PS (1982) Tropism in nerve regeneration in vivo. Attraction of regenerating axons by diffusible factors derived from cells in distal nerve stumps of transected peripheral nerves. Brain Res 253(1–2):1–12

    Article  Google Scholar 

  18. Ide C, Tohyama K, Yokota R, Nitatori T, Onodera S (1983) Schwann cell basal lamina and nerve regeneration. Brain Res 288(1–2):61–75

    Article  Google Scholar 

  19. Acosta JA, Yang JC, Winchell RJ, Simons RK, Fortlage DA, Hollingsworth-Fridlund P, Hoyt DB (1998) Lethal injuries and time to death in a level I trauma center. J Am Coll Surg 186(5):528–533

    Article  Google Scholar 

  20. CDC (2010) Spinal cord injury (SCI): fact sheet. In: Injury prevention and control: traumatic brain injury. http://www.cdc.gov/traumaticbraininjury/scifacts.html

  21. Werner C, Engelhard K (2007) Pathophysiology of traumatic brain injury. Br J Anaesth 99(1):4–9

    Article  Google Scholar 

  22. Rowland JW, Hawryluk GW, Kwon B, Fehlings MG (2008) Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon. Neurosurg Focus 25(5):E2

    Article  Google Scholar 

  23. Filbin MT (2003) Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat Rev Neurosci 4(9):703–713

    Article  Google Scholar 

  24. He Z, Koprivica V (2004) The Nogo signaling pathway for regeneration block. Annu Rev Neurosci 27:341–368

    Article  Google Scholar 

  25. Ramón y Cajal S (1928) Degeneration and regeneration of the nervous system. Oxford University Press, London

    Google Scholar 

  26. David S, Aguayo AJ (1981) Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science 214(4523):931–933

    Article  Google Scholar 

  27. Tom VJ, Steinmetz MP, Miller JH, Doller CM, Silver J (2004) Studies on the development and behavior of the dystrophic growth cone, the hallmark of regeneration failure, in an in vitro model of the glial scar and after spinal cord injury. J Neurosci 24(29):6531–6539

    Article  Google Scholar 

  28. Noble J, Munro CA, Prasad VS, Midha R (1998) Analysis of upper and lower extremity peripheral nerve injuries in a population of patients with multiple injuries. J Trauma 45(1):116–122

    Article  Google Scholar 

  29. Burnett MG, Zager EL (2004) Pathophysiology of peripheral nerve injury: a brief review. Neurosurg Focus 16(5):E1

    Article  Google Scholar 

  30. Kouyoumdjian JA (2006) Peripheral nerve injuries: a retrospective survey of 456 cases. Muscle Nerve 34(6):785–788

    Article  Google Scholar 

  31. Malik B, Stillman M (2008) Chemotherapy-induced peripheral neuropathy. Current Pain Headache Rep 12(3):165–174

    Article  Google Scholar 

  32. Hartemann A, Attal N, Bouhassira D, Dumont I, Gin H, Jeanne S, Said G, Richard JL (2011) Painful diabetic neuropathy: diagnosis and management. Diabetes Metab 37(5):377–388

    Article  Google Scholar 

  33. Seddon HJ (1943) Three types of brain injury. Brain 66:237–288

    Article  Google Scholar 

  34. Mukhatyar V, Karumbaiah L, Yeh J, Bellamkonda R (2009) Tissue engineering strategies designed to facilitate the endogenous regenerative potential of peripheral nerves. Adv Mater 21(46):4670–4679

    Google Scholar 

  35. Salzer JL, Bunge RP (1980) Studies of Schwann cell proliferation. I. An analysis in tissue culture of proliferation during development, Wallerian degeneration, and direct injury. J Cell Biol 84(3):739–752

    Article  Google Scholar 

  36. Bunge RP (1993) Expanding roles for the Schwann cell: ensheathment, myelination, trophism and regeneration. Curr Opin Neurobiol 3(5):805–809

    Article  Google Scholar 

  37. Zhong Y, Bellamkonda RV (2008) Biomaterials for the central nervous system. J R Soc Interface 5(26):957–975

    Article  Google Scholar 

  38. Jain A, Kim YT, McKeon RJ, Bellamkonda RV (2006) In situ gelling hydrogels for conformal repair of spinal cord defects, and local delivery of BDNF after spinal cord injury. Biomaterials 27(3):497–504

    Article  Google Scholar 

  39. Thompson JM, Pelto DJ (1982) Attachment, survival and neurite extension of chick embryo retinal neurons on various culture substrates. Dev Neurosci 5(5–6):447–457

    Article  Google Scholar 

  40. Carbonetto S, Gruver MM, Turner DC (1983) Nerve fiber growth in culture on fibronectin, collagen, and glycosaminoglycan substrates. J Neurosci 3(11):2324–2335

    Google Scholar 

  41. Joosten EA, Bar PR, Gispen WH (1995) Collagen implants and cortico-spinal axonal growth after mid-thoracic spinal cord lesion in the adult rat. J Neurosci Res 41(4):481–490

    Article  Google Scholar 

  42. Houweling DA, Lankhorst AJ, Gispen WH, Bar PR, Joosten EA (1998) Collagen containing neurotrophin-3 (NT-3) attracts regrowing injured corticospinal axons in the adult rat spinal cord and promotes partial functional recovery. Exp Neurol 153(1):49–59

    Article  Google Scholar 

  43. Houweling DA, van Asseldonk JT, Lankhorst AJ, Hamers FP, Martin D, Bar PR, Joosten EA (1998) Local application of collagen containing brain-derived neurotrophic factor decreases the loss of function after spinal cord injury in the adult rat. Neurosci Lett 251(3):193–196

    Article  Google Scholar 

  44. Jimenez Hamann MC, Tator CH, Shoichet MS (2005) Injectable intrathecal delivery system for localized administration of EGF and FGF-2 to the injured rat spinal cord. Exp Neurol 194(1):106–119

    Article  Google Scholar 

  45. Gupta D, Tator CH, Shoichet MS (2006) Fast-gelling injectable blend of hyaluronan and methylcellulose for intrathecal, localized delivery to the injured spinal cord. Biomaterials 27(11):2370–2379

    Article  Google Scholar 

  46. Tian WM, Hou SP, Ma J, Zhang CL, Xu QY, Lee IS, Li HD, Spector M, Cui FZ (2005) Hyaluronic acid-poly-D-lysine-based three-dimensional hydrogel for traumatic brain injury. Tissue Eng 11(3–4):513–525

    Article  Google Scholar 

  47. Bellamkonda R, Ranieri JP, Aebischer P (1995) Laminin oligopeptide derivatized agarose gels allow three-dimensional neurite extension in vitro. J Neurosci Res 41(4):501–509

    Article  Google Scholar 

  48. Bellamkonda R, Ranieri JP, Bouche N, Aebischer P (1995) Hydrogel-based three-dimensional matrix for neural cells. J Biomed Mater Res 29(5):663–671

    Article  Google Scholar 

  49. Yu X, Dillon GP, Bellamkonda RB (1999) A laminin and nerve growth factor-laden three-dimensional scaffold for enhanced neurite extension. Tissue Eng 5(4):291–304

    Article  Google Scholar 

  50. Lee H, McKeon RJ, Bellamkonda RV (2010) Sustained delivery of thermostabilized chABC enhances axonal sprouting and functional recovery after spinal cord injury. Proc Natl Acad Sci USA 107(8):3340–3345

    Article  Google Scholar 

  51. Jain A, McKeon RJ, Brady-Kalnay SM, Bellamkonda RV (2010) Sustained delivery of activated Rho GTPases and BDNF promotes axon growth in CSPG-rich regions following spinal cord injury. PLoS One 6(1):e16135

    Article  Google Scholar 

  52. Hausheer FH, Schilsky RL, Bain S, Berghorn EJ, Lieberman F (2006) Diagnosis, management, and evaluation of chemotherapy-induced peripheral neuropathy. Semin Oncol 33(1):15–49

    Article  Google Scholar 

  53. Koutsopoulos S, Unsworth LD, Nagai Y, Zhang S (2009) Controlled release of functional proteins through designer self-assembling peptide nanofiber hydrogel scaffold. Proc Natl Acad Sci USA 106(12):4623–4628

    Article  Google Scholar 

  54. Cao H, Liu T, Chew SY (2009) The application of nanofibrous scaffolds in neural tissue engineering. Adv Drug Deliv Rev 61(12):1055–1064

    Article  Google Scholar 

  55. Wurmser AE, Nakashima K, Summers RG, Toni N, D’Amour KA, Lie DC, Gage FH (2004) Cell fusion-independent differentiation of neural stem cells to the endothelial lineage. Nature 430(6997):350–356

    Article  Google Scholar 

  56. Ziv Y, Avidan H, Pluchino S, Martino G, Schwartz M (2006) Synergy between immune cells and adult neural stem/progenitor cells promotes functional recovery from spinal cord injury. Proc Natl Acad Sci USA 103(35):13174–13179

    Article  Google Scholar 

  57. Frim DM, Wullner U, Beal MF, Isacson O (1994) Implanted NGF-producing fibroblasts induce catalase and modify ATP levels but do not affect glutamate receptor binding or NMDA receptor expression in the rat striatum. Exp Neurol 128(2):172–180

    Article  Google Scholar 

  58. Guo J, Su H, Zeng Y, Liang YX, Wong WM, Ellis-Behnke RG, So KF, Wu W (2007) Reknitting the injured spinal cord by self-assembling peptide nanofiber scaffold. Nanomedicine 3(4):311–321

    Article  Google Scholar 

  59. Tysseling-Mattiace VM, Sahni V, Niece KL, Birch D, Czeisler C, Fehlings MG, Stupp SI, Kessler JA (2008) Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury. J Neurosci 28(14):3814–3823

    Article  Google Scholar 

  60. Tsai EC, Dalton PD, Shoichet MS, Tator CH (2004) Synthetic hydrogel guidance channels facilitate regeneration of adult rat brainstem motor axons after complete spinal cord transection. J Neurotrauma 21(6):789–804

    Article  Google Scholar 

  61. Katayama Y, Montenegro R, Freier T, Midha R, Belkas JS, Shoichet MS (2006) Coil-reinforced hydrogel tubes promote nerve regeneration equivalent to that of nerve autografts. Biomaterials 27(3):505–518

    Article  Google Scholar 

  62. Woerly S, Pinet E, De Robertis L, Bousmina M, Laroche G, Roitback T, Vargova L, Sykova E (1998) Heterogeneous PHPMA hydrogels for tissue repair and axonal regeneration in the injured spinal cord. J Biomater Sci Polym Ed 9(7):681–711

    Article  Google Scholar 

  63. Woerly S, Pinet E, de Robertis L, Van Diep D, Bousmina M (2001) Spinal cord repair with PHPMA hydrogel containing RGD peptides (NeuroGel). Biomaterials 22(10):1095–1111

    Article  Google Scholar 

  64. Cui FZ, Tian WM, Fan YW, Hou SP, Xu QY, Lee IS (2003) Cerebrum repair with PHPMA hydrogel immobilized with neurite-promoting peptides in traumatic brain injury of adult rat model. J Bioact Compat Polym 18:413–432

    Article  Google Scholar 

  65. Mortisen D, Peroglio M, Alini M, Eglin D (2010) Tailoring thermoreversible hyaluronan hydrogels by “click” chemistry and RAFT polymerization for cell and drug therapy. Biomacromolecules 11(5):1261–1272

    Article  Google Scholar 

  66. Comolli N, Neuhuber B, Fischer I, Lowman A (2009) In vitro analysis of PNIPAAm-PEG, a novel, injectable scaffold for spinal cord repair. Acta Biomater 5(4):1046–1055

    Article  Google Scholar 

  67. Lundborg G, Gelberman RH, Longo FM, Powell HC, Varon S (1982) In vivo regeneration of cut nerves encased in silicone tubes: growth across a six-millimeter gap. J Neuropathol Exp Neurol 41(4):412–422

    Article  Google Scholar 

  68. Shen ZL, Lassner F, Becker M, Walter GF, Bader A, Berger A (1999) Viability of cultured nerve grafts: an assessment of proliferation of Schwann cells and fibroblasts. Microsurgery 19(8):356–363

    Article  Google Scholar 

  69. Chamberlain LJ, Yannas IV, Hsu HP, Strichartz G, Spector M (1998) Collagen-GAG substrate enhances the quality of nerve regeneration through collagen tubes up to level of autograft. Exp Neurol 154(2):315–329

    Article  Google Scholar 

  70. Chamberlain LJ, Yannas IV, Arrizabalaga A, Hsu HP, Norregaard TV, Spector M (1998) Early peripheral nerve healing in collagen and silicone tube implants: myofibroblasts and the cellular response. Biomaterials 19(15):1393–1403

    Article  Google Scholar 

  71. Li ST, Archibald SJ, Krarup C, Madison RD (1992) Peripheral nerve repair with collagen conduits. Clin Mater 9(3–4):195–200

    Article  Google Scholar 

  72. Bozkurt A, Deumens R, Beckmann C, Olde Damink L, Schugner F, Heschel I, Sellhaus B, Weis J, Jahnen-Dechent W, Brook GA, Pallua N (2009) In vitro cell alignment obtained with a Schwann cell enriched microstructured nerve guide with longitudinal guidance channels. Biomaterials 30(2):169–179

    Article  Google Scholar 

  73. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Ramakrishna S (2008) Electrospun poly(epsilon-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials 29(34):4532–4539

    Article  Google Scholar 

  74. Prabhakaran MP, Venugopal JR, Chyan TT, Hai LB, Chan CK, Lim AY, Ramakrishna S (2008) Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering. Tissue Eng Part A 14(11):1787–1797

    Article  Google Scholar 

  75. Galla TJ, Vedecnik SV, Halbgewachs J, Steinmann S, Friedrich C, Stark GB (2004) Fibrin/Schwann cell matrix in poly-epsilon-caprolactone conduits enhances guided nerve regeneration. Int J Artif Organs 27(2):127–136

    Google Scholar 

  76. Kalbermatten DF, Kingham PJ, Mahay D, Mantovani C, Pettersson J, Raffoul W, Balcin H, Pierer G, Terenghi G (2008) Fibrin matrix for suspension of regenerative cells in an artificial nerve conduit. J Plast Reconstr Aesthet Surg 61(6):669–675

    Article  Google Scholar 

  77. Kalbermatten DF, Pettersson J, Kingham PJ, Pierer G, Wiberg M, Terenghi G (2009) New fibrin conduit for peripheral nerve repair. J Reconstr Microsurg 25(1):27–33

    Article  Google Scholar 

  78. Dodla MC, Bellamkonda RV (2008) Differences between the effect of anisotropic and isotropic laminin and nerve growth factor presenting scaffolds on nerve regeneration across long peripheral nerve gaps. Biomaterials 29(1):33–46

    Article  Google Scholar 

  79. Balgude AP, Yu X, Szymanski A, Bellamkonda RV (2001) Agarose gel stiffness determines rate of DRG neurite extension in 3D cultures. Biomaterials 22(10):1077–1084

    Article  Google Scholar 

  80. Dillon GP, Yu X, Sridharan A, Ranieri JP, Bellamkonda RV (1998) The influence of physical structure and charge on neurite extension in a 3D hydrogel scaffold. J Biomater Sci Polym Ed 9(10):1049–1069

    Article  Google Scholar 

  81. Labrador RO, Buti M, Navarro X (1995) Peripheral nerve repair: role of agarose matrix density on functional recovery. Neuroreport 6(15):2022–2026

    Article  Google Scholar 

  82. Amado S, Simoes MJ, Armada da Silva PA, Luis AL, Shirosaki Y, Lopes MA, Santos JD, Fregnan F, Gambarotta G, Raimondo S, Fornaro M, Veloso AP, Varejao AS, Mauricio AC, Geuna S (2008) Use of hybrid chitosan membranes and N1E-115 cells for promoting nerve regeneration in an axonotmesis rat model. Biomaterials 29(33):4409–4419

    Article  Google Scholar 

  83. Chavez-Delgado ME, Mora-Galindo J, Gomez-Pinedo U, Feria-Velasco A, Castro-Castaneda S, Lopez-Dellamary Toral FA, Luquin-De Anda S, Garcia-Segura LM, Garcia-Estrada J (2003) Facial nerve regeneration through progesterone-loaded chitosan prosthesis. A preliminary report. J Biomed Mater Res B Appl Biomater 67(2):702–711

    Article  Google Scholar 

  84. Patel M, Mao L, Wu B, VandeVord P (2009) GDNF blended chitosan nerve guides: an in vivo study. J Biomed Mater Res A 90(1):154–165

    Google Scholar 

  85. Mosahebi A, Simon M, Wiberg M, Terenghi G (2001) A novel use of alginate hydrogel as Schwann cell matrix. Tissue Eng 7(5):525–534

    Article  Google Scholar 

  86. Mosahebi A, Wiberg M, Terenghi G (2003) Addition of fibronectin to alginate matrix improves peripheral nerve regeneration in tissue-engineered conduits. Tissue Eng 9(2):209–218

    Article  Google Scholar 

  87. Sakai Y, Matsuyama Y, Takahashi K, Sato T, Hattori T, Nakashima S, Ishiguro N (2007) New artificial nerve conduits made with photocrosslinked hyaluronic acid for peripheral nerve regeneration. Biomed Mater Eng 17(3):191–197

    Google Scholar 

  88. Seckel BR, Jones D, Hekimian KJ, Wang KK, Chakalis DP, Costas PD (1995) Hyaluronic acid through a new injectable nerve guide delivery system enhances peripheral nerve regeneration in the rat. J Neurosci Res 40(3):318–324

    Article  Google Scholar 

  89. Atzet S, Curtin S, Trinh P, Bryant S, Ratner B (2008) Degradable poly(2-hydroxyethyl methacrylate)-co-polycaprolactone hydrogels for tissue engineering scaffolds. Biomacromolecules 9(12):3370–3377

    Article  Google Scholar 

  90. Aebischer P, Guenard V, Winn SR, Valentini RF, Galletti PM (1988) Blind-ended semipermeable guidance channels support peripheral nerve regeneration in the absence of a distal nerve stump. Brain Res 454(1–2):179–187

    Article  Google Scholar 

  91. Kim YT, Haftel VK, Kumar S, Bellamkonda RV (2008) The role of aligned polymer fiber-based constructs in the bridging of long peripheral nerve gaps. Biomaterials 29(21):3117–3127

    Article  Google Scholar 

  92. Clements IP, Kim YT, English AW, Lu X, Chung A, Bellamkonda RV (2009) Thin-film enhanced nerve guidance channels for peripheral nerve repair. Biomaterials 30(23–24):3834–3846

    Article  Google Scholar 

  93. Thompson DM, Buettner HM (2004) Oriented Schwann cell monolayers for directed neurite outgrowth. Ann Biomed Eng 32(8):1120–1130

    Article  Google Scholar 

  94. Molander H, Olsson Y, Engkvist O, Bowald S, Eriksson I (1982) Regeneration of peripheral nerve through a polyglactin tube. Muscle Nerve 5(1):54–57

    Article  Google Scholar 

  95. Den Dunnen WF, Van der Lei B, Schakenraad JM, Blaauw EH, Stokroos I, Pennings AJ, Robinson PH (1993) Long-term evaluation of nerve regeneration in a biodegradable nerve guide. Microsurgery 14(8):508–515

    Article  Google Scholar 

  96. Evans GR, Brandt K, Widmer MS, Lu L, Meszlenyi RK, Gupta PK, Mikos AG, Hodges J, Williams J, Gurlek A, Nabawi A, Lohman R, Patrick CW Jr (1999) In vivo evaluation of poly(L-lactic acid) porous conduits for peripheral nerve regeneration. Biomaterials 20(12):1109–1115

    Article  Google Scholar 

  97. Bryan DJ, Tang JB, Holway AH, Rieger-Christ KM, Trantolo DJ, Wise DL, Summerhayes IC (2003) Enhanced peripheral nerve regeneration elicited by cell-mediated events delivered via a bioresorbable PLGA guide. J Reconstr Microsurg 19(2):125–134

    Article  Google Scholar 

  98. Valero-Cabre A, Tsironis K, Skouras E, Perego G, Navarro X, Neiss WF (2001) Superior muscle reinnervation after autologous nerve graft or poly-L-lactide-epsilon-caprolactone (PLC) tube implantation in comparison to silicone tube repair. J Neurosci Res 63(2):214–223

    Article  Google Scholar 

  99. Pankajakshan D, Philipose LP, Palakkal M, Krishnan K, Krishnan LK (2008) Development of a fibrin composite-coated poly(epsilon-caprolactone) scaffold for potential vascular tissue engineering applications. J Biomed Mater Res B Appl Biomater 87(2):570–579

    Google Scholar 

  100. Valmikinathan CM, Tian J, Wang J, Yu X (2008) Novel nanofibrous spiral scaffolds for neural tissue engineering. J Neural Eng 5(4):422–432

    Article  Google Scholar 

  101. Ekaputra AK, Prestwich GD, Cool SM, Hutmacher DW (2008) Combining electrospun scaffolds with electrosprayed hydrogels leads to three-dimensional cellularization of hybrid constructs. Biomacromolecules 9(8):2097–2103

    Article  Google Scholar 

  102. Panseri S, Cunha C, Lowery J, Del Carro U, Taraballi F, Amadio S, Vescovi A, Gelain F (2008) Electrospun micro- and nanofiber tubes for functional nervous regeneration in sciatic nerve transections. BMC Biotechnol 8:39

    Article  Google Scholar 

  103. Whitlock EL, Tuffaha SH, Luciano JP, Yan Y, Hunter DA, Magill CK, Moore AM, Tong AY, Mackinnon SE, Borschel GH (2009) Processed allografts and type I collagen conduits for repair of peripheral nerve gaps. Muscle Nerve 39(6):787–799

    Article  Google Scholar 

  104. Jesuraj NJ, Santosa KB, Newton P, Liu Z, Hunter DA, Mackinnon SE, Sakiyama-Elbert SE, Johnson PJ (2011) A systematic evaluation of Schwann cell injection into acellular cold-preserved nerve grafts. J Neurosci Methods 197(2):209–215

    Article  Google Scholar 

  105. Jones LL, Oudega M, Bunge MB, Tuszynski MH (2001) Neurotrophic factors, cellular bridges and gene therapy for spinal cord injury. J Physiol 533(Pt 1):83–89

    Article  Google Scholar 

  106. Schmidt CE, Leach JB (2003) Neural tissue engineering: strategies for repair and regeneration. Annu Rev Biomed Eng 5:293–347

    Article  Google Scholar 

  107. Heumann R, Lindholm D, Bandtlow C, Meyer M, Radeke MJ, Misko TP, Shooter E, Thoenen H (1987) Differential regulation of mRNA encoding nerve growth factor and its receptor in rat sciatic nerve during development, degeneration, and regeneration: role of macrophages. Proc Natl Acad Sci USA 84(23):8735–8739

    Article  Google Scholar 

  108. Murakami Y, Furukawa S, Nitta A, Furukawa Y (2002) Accumulation of nerve growth factor protein at both rostral and caudal stumps in the transected rat spinal cord. J Neurol Sci 198(1–2):63–69

    Article  Google Scholar 

  109. Oudega M, Hagg T (1996) Nerve growth factor promotes regeneration of sensory axons into adult rat spinal cord. Exp Neurol 140(2):218–229

    Article  Google Scholar 

  110. Bloch J, Fine EG, Bouche N, Zurn AD, Aebischer P (2001) Nerve growth factor- and neurotrophin-3-releasing guidance channels promote regeneration of the transected rat dorsal root. Exp Neurol 172(2):425–432

    Article  Google Scholar 

  111. Ramer MS, Priestley JV, McMahon SB (2000) Functional regeneration of sensory axons into the adult spinal cord. Nature 403(6767):312–316

    Article  Google Scholar 

  112. Whitworth IH, Brown RA, Dore CJ, Anand P, Green CJ, Terenghi G (1996) Nerve growth factor enhances nerve regeneration through fibronectin grafts. J Hand Surg Br 21(4):514–522

    Article  Google Scholar 

  113. Fine EG, Decosterd I, Papaloizos M, Zurn AD, Aebischer P (2002) GDNF and NGF released by synthetic guidance channels support sciatic nerve regeneration across a long gap. Eur J Neurosci 15(4):589–601

    Article  Google Scholar 

  114. Krenz NR, Meakin SO, Krassioukov AV, Weaver LC (1999) Neutralizing intraspinal nerve growth factor blocks autonomic dysreflexia caused by spinal cord injury. J Neurosci 19(17):7405–7414

    Google Scholar 

  115. Romero MI, Rangappa N, Garry MG, Smith GM (2001) Functional regeneration of chronically injured sensory afferents into adult spinal cord after neurotrophin gene therapy. J Neurosci 21(21):8408–8416

    Google Scholar 

  116. Braun S, Croizat B, Lagrange MC, Warter JM, Poindron P (1996) Neurotrophins increase motoneurons’ ability to innervate skeletal muscle fibers in rat spinal cord–human muscle cocultures. J Neurol Sci 136(1–2):17–23

    Article  Google Scholar 

  117. Henderson CE, Camu W, Mettling C, Gouin A, Poulsen K, Karihaloo M, Rullamas J, Evans T, McMahon SB, Armanini MP et al (1993) Neurotrophins promote motor neuron survival and are present in embryonic limb bud. Nature 363(6426):266–270

    Article  Google Scholar 

  118. Grill R, Murai K, Blesch A, Gage FH, Tuszynski MH (1997) Cellular delivery of neurotrophin-3 promotes corticospinal axonal growth and partial functional recovery after spinal cord injury. J Neurosci 17(14):5560–5572

    Google Scholar 

  119. Giehl KM, Tetzlaff W (1996) BDNF and NT-3, but not NGF, prevent axotomy-induced death of rat corticospinal neurons in vivo. Eur J Neurosci 8(6):1167–1175

    Article  Google Scholar 

  120. Yin Q, Kemp GJ, Yu LG, Wagstaff SC, Frostick SP (2001) Neurotrophin-4 delivered by fibrin glue promotes peripheral nerve regeneration. Muscle Nerve 24(3):345–351

    Article  Google Scholar 

  121. Sendtner M, Carroll P, Holtmann B, Hughes RA, Thoenen H (1994) Ciliary neurotrophic factor. J Neurobiol 25(11):1436–1453

    Article  Google Scholar 

  122. Oyesiku NM, Wilcox JN, Wigston DJ (1997) Changes in expression of ciliary neurotrophic factor (CNTF) and CNTF-receptor alpha after spinal cord injury. J Neurobiol 32(3):251–261

    Article  Google Scholar 

  123. Ye JH, Houle JD (1997) Treatment of the chronically injured spinal cord with neurotrophic factors can promote axonal regeneration from supraspinal neurons. Exp Neurol 143(1):70–81

    Article  Google Scholar 

  124. Newman JP, Verity AN, Hawatmeh S, Fee WE Jr, Terris DJ (1996) Ciliary neurotrophic factors enhances peripheral nerve regeneration. Arch Otolaryngol Head Neck Surg 122(4):399–403

    Article  Google Scholar 

  125. Sendtner M, Kreutzberg GW, Thoenen H (1990) Ciliary neurotrophic factor prevents the degeneration of motor neurons after axotomy. Nature 345(6274):440–441

    Article  Google Scholar 

  126. Winter CG, Saotome Y, Levison SW, Hirsh D (1995) A role for ciliary neurotrophic factor as an inducer of reactive gliosis, the glial response to central nervous system injury. Proc Natl Acad Sci USA 92(13):5865–5869

    Article  Google Scholar 

  127. Levison SW, Ducceschi MH, Young GM, Wood TL (1996) Acute exposure to CNTF in vivo induces multiple components of reactive gliosis. Exp Neurol 141(2):256–268

    Article  Google Scholar 

  128. Priestley JV, Ramer MS, King VR, McMahon SB, Brown RA (2002) Stimulating regeneration in the damaged spinal cord. J Physiol Paris 96(1–2):123–133

    Article  Google Scholar 

  129. Buj-Bello A, Buchman VL, Horton A, Rosenthal A, Davies AM (1995) GDNF is an age-specific survival factor for sensory and autonomic neurons. Neuron 15(4):821–828

    Article  Google Scholar 

  130. Henderson CE, Phillips HS, Pollock RA, Davies AM, Lemeulle C, Armanini M, Simmons L, Moffet B, Vandlen RA, Simpson LC et al (1994) GDNF: a potent survival factor for motoneurons present in peripheral nerve and muscle. Science 266(5187):1062–1064

    Article  Google Scholar 

  131. Berry M, Barrett L, Seymour L, Baird A, Logan A (2001) Gene therapy for central nervous system repair. Curr Opin Mol Ther 3(4):338–349

    Google Scholar 

  132. Barry MA, Dower WJ, Johnston SA (1996) Toward cell-targeting gene therapy vectors: selection of cell-binding peptides from random peptide-presenting phage libraries. Nat Med 2(3):299–305

    Article  Google Scholar 

  133. Berry M, Gonzalez AM, Clarke W, Greenlees L, Barrett L, Tsang W, Seymour L, Bonadio J, Logan A, Baird A (2001) Sustained effects of gene-activated matrices after CNS injury. Mol Cell Neurosci 17(4):706–716

    Article  Google Scholar 

  134. Dijkhuizen PA, Hermens WT, Teunis MA, Verhaagen J (1997) Adenoviral vector-directed expression of neurotrophin-3 in rat dorsal root ganglion explants results in a robust neurite outgrowth response. J Neurobiol 33(2):172–184

    Article  Google Scholar 

  135. Gravel C, Gotz R, Lorrain A, Sendtner M (1997) Adenoviral gene transfer of ciliary neurotrophic factor and brain-derived neurotrophic factor leads to long-term survival of axotomized motor neurons. Nat Med 3(7):765–770

    Article  Google Scholar 

  136. Hermens WT, Giger RJ, Holtmaat AJ, Dijkhuizen PA, Houweling DA, Verhaagen J (1997) Transient gene transfer to neurons and glia: analysis of adenoviral vector performance in the CNS and PNS. J Neurosci Methods 71(1):85–98

    Article  Google Scholar 

  137. Federoff HJ, Geschwind MD, Geller AI, Kessler JA (1992) Expression of nerve growth factor in vivo from a defective herpes simplex virus 1 vector prevents effects of axotomy on sympathetic ganglia. Proc Natl Acad Sci USA 89(5):1636–1640

    Article  Google Scholar 

  138. Yamada M, Natsume A, Mata M, Oligino T, Goss J, Glorioso J, Fink DJ (2001) Herpes simplex virus vector-mediated expression of Bcl-2 protects spinal motor neurons from degeneration following root avulsion. Exp Neurol 168(2):225–230

    Article  Google Scholar 

  139. Robbins PD, Ghivizzani SC (1998) Viral vectors for gene therapy. Pharmacol Ther 80(1):35–47

    Article  Google Scholar 

  140. Shimamura M, Morishita R, Endoh M, Oshima K, Aoki M, Waguri S, Uchiyama Y, Kaneda Y (2003) HVJ-envelope vector for gene transfer into central nervous system. Biochem Biophys Res Commun 300(2):464–471

    Article  Google Scholar 

  141. Naldini L, Blomer U, Gage FH, Trono D, Verma IM (1996) Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci USA 93(21):11382–11388

    Article  Google Scholar 

  142. Kordower JH, Bloch J, Ma SY, Chu Y, Palfi S, Roitberg BZ, Emborg M, Hantraye P, Deglon N, Aebischer P (1999) Lentiviral gene transfer to the nonhuman primate brain. Exp Neurol 160(1):1–16

    Article  Google Scholar 

  143. Wang YC, Wu YT, Huang HY, Lin HI, Lo LW, Tzeng SF, Yang CS (2008) Sustained intraspinal delivery of neurotrophic factor encapsulated in biodegradable nanoparticles following contusive spinal cord injury. Biomaterials 29(34):4546–4553

    Article  Google Scholar 

  144. Blesch A, Lu P, Tuszynski MH (2002) Neurotrophic factors, gene therapy, and neural stem cells for spinal cord repair. Brain Res Bull 57(6):833–838

    Article  Google Scholar 

  145. Grill RJ, Blesch A, Tuszynski MH (1997) Robust growth of chronically injured spinal cord axons induced by grafts of genetically modified NGF-secreting cells. Exp Neurol 148(2):444–452

    Article  Google Scholar 

  146. Tuszynski MH, Gabriel K, Gage FH, Suhr S, Meyer S, Rosetti A (1996) Nerve growth factor delivery by gene transfer induces differential outgrowth of sensory, motor, and noradrenergic neurites after adult spinal cord injury. Exp Neurol 137(1):157–173

    Article  Google Scholar 

  147. Tuszynski MH, Peterson DA, Ray J, Baird A, Nakahara Y, Gage FH (1994) Fibroblasts genetically modified to produce nerve growth factor induce robust neuritic ingrowth after grafting to the spinal cord. Exp Neurol 126(1):1–14

    Article  Google Scholar 

  148. Lu P, Blesch A, Tuszynski MH (2001) Neurotrophism without neurotropism: BDNF promotes survival but not growth of lesioned corticospinal neurons. J Comp Neurol 436(4):456–470

    Article  Google Scholar 

  149. Jakeman LB, Wei P, Guan Z, Stokes BT (1998) Brain-derived neurotrophic factor stimulates hindlimb stepping and sprouting of cholinergic fibers after spinal cord injury. Exp Neurol 154(1):170–184

    Article  Google Scholar 

  150. McTigue DM, Horner PJ, Stokes BT, Gage FH (1998) Neurotrophin-3 and brain-derived neurotrophic factor induce oligodendrocyte proliferation and myelination of regenerating axons in the contused adult rat spinal cord. J Neurosci 18(14):5354–5365

    Google Scholar 

  151. Menei P, Montero-Menei C, Whittemore SR, Bunge RP, Bunge MB (1998) Schwann cells genetically modified to secrete human BDNF promote enhanced axonal regrowth across transected adult rat spinal cord. Eur J Neurosci 10(2):607–621

    Article  Google Scholar 

  152. Tobias CA, Shumsky JS, Shibata M, Tuszynski MH, Fischer I, Tessler A, Murray M (2003) Delayed grafting of BDNF and NT-3 producing fibroblasts into the injured spinal cord stimulates sprouting, partially rescues axotomized red nucleus neurons from loss and atrophy, and provides limited regeneration. Exp Neurol 184(1):97–113

    Article  Google Scholar 

  153. Frim DM, Uhler TA, Galpern WR, Beal MF, Breakefield XO, Isacson O (1994) Implanted fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevent 1-methyl-4-phenylpyridinium toxicity to dopaminergic neurons in the rat. Proc Natl Acad Sci USA 91(11):5104–5108

    Article  Google Scholar 

  154. Shumsky JS, Tobias CA, Tumolo M, Long WD, Giszter SF, Murray M (2003) Delayed transplantation of fibroblasts genetically modified to secrete BDNF and NT-3 into a spinal cord injury site is associated with limited recovery of function. Exp Neurol 184(1):114–130

    Article  Google Scholar 

  155. Blesch A, Diergardt N, Tuszynski MH (1998) 28th Annual Meeting of the American Society For Neuroscience, Cellularly delivered GDNF has robust chemotropic effects in the non-injured and injured adult rat spinal cord (Los Angeles, CA, USA), p 555

    Google Scholar 

  156. Blesch A, Tuszynski MH (2001) GDNF gene delivery to injured adult CNS motor neurons promotes axonal growth, expression of the trophic neuropeptide CGRP, and cellular protection. J Comp Neurol 436(4):399–410

    Article  Google Scholar 

  157. Hofmann A, Nolan GP, Blau HM (1996) Rapid retroviral delivery of tetracycline-inducible genes in a single autoregulatory cassette. Proc Natl Acad Sci USA 93(11):5185–5190

    Article  Google Scholar 

  158. Blesch A, Conner JM, Tuszynski MH (2001) Modulation of neuronal survival and axonal growth in vivo by tetracycline-regulated neurotrophin expression. Gene Ther 8(12):954–960

    Article  Google Scholar 

  159. Blesch A, Tuszynski MH (2007) Transient growth factor delivery sustains regenerated axons after spinal cord injury. J Neurosci 27(39):10535–10545

    Article  Google Scholar 

  160. Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124(3):319–335

    Article  Google Scholar 

  161. Altman J (1969) Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol 137(4):433–457

    Article  Google Scholar 

  162. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255(5052):1707–1710

    Article  Google Scholar 

  163. Richards LJ, Kilpatrick TJ, Bartlett PF (1992) De novo generation of neuronal cells from the adult mouse brain. Proc Natl Acad Sci USA 89(18):8591–8595

    Article  Google Scholar 

  164. Emsley JG, Mitchell BD, Magavi SS, Arlotta P, Macklis JD (2004) The repair of complex neuronal circuitry by transplanted and endogenous precursors. NeuroRx 1(4):452–471

    Article  Google Scholar 

  165. McDonald JW, Liu XZ, Qu Y, Liu S, Mickey SK, Turetsky D, Gottlieb DI, Choi DW (1999) Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat Med 5(12):1410–1412

    Article  Google Scholar 

  166. Erdo F, Buhrle C, Blunk J, Hoehn M, Xia Y, Fleischmann B, Focking M, Kustermann E, Kolossov E, Hescheler J, Hossmann KA, Trapp T (2003) Host-dependent tumorigenesis of embryonic stem cell transplantation in experimental stroke. J Cereb Blood Flow Metab 23(7):780–785

    Article  Google Scholar 

  167. Cao Q, Benton RL, Whittemore SR (2002) Stem cell repair of central nervous system injury. J Neurosci Res 68(5):501–510

    Article  Google Scholar 

  168. Romero-Ramos M, Vourc’h P, Young HE, Lucas PA, Wu Y, Chivatakarn O, Zaman R, Dunkelman N, el-Kalay MA, Chesselet MF (2002) Neuronal differentiation of stem cells isolated from adult muscle. J Neurosci Res 69(6):894–907

    Article  Google Scholar 

  169. Sanchez-Ramos JR (2002) Neural cells derived from adult bone marrow and umbilical cord blood. J Neurosci Res 69(6):880–893

    Article  Google Scholar 

  170. Galli R, Gritti A, Bonfanti L, Vescovi AL (2003) Neural stem cells: an overview. Circ Res 92(6):598–608

    Article  Google Scholar 

  171. Dong MM, Yi TH (2010) Stem cell and peripheral nerve injury and repair. Facial Plast Surg 26(5):421–427

    Article  MathSciNet  Google Scholar 

  172. Keirstead HS, Ben-Hur T, Rogister B, O’Leary MT, Dubois-Dalcq M, Blakemore WF (1999) Polysialylated neural cell adhesion molecule-positive CNS precursors generate both oligodendrocytes and Schwann cells to remyelinate the CNS after transplantation. J Neurosci 19(17):7529–7536

    Google Scholar 

  173. Yan J, Xu L, Welsh AM, Hatfield G, Hazel T, Johe K, Koliatsos VE (2007) Extensive neuronal differentiation of human neural stem cell grafts in adult rat spinal cord. PLoS Med 4(2):e39

    Article  Google Scholar 

  174. Teng YD, Lavik EB, Qu X, Park KI, Ourednik J, Zurakowski D, Langer R, Snyder EY (2002) Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci USA 99(5):3024–3029

    Article  Google Scholar 

  175. Ohtaki H, Ylostalo JH, Foraker JE, Robinson AP, Reger RL, Shioda S, Prockop DJ (2008) Stem/progenitor cells from bone marrow decrease neuronal death in global ischemia by modulation of inflammatory/immune responses. Proc Natl Acad Sci USA 105(38):14638–14643

    Article  Google Scholar 

  176. Gordon T, Udina E, Verge VM, de Chaves EI (2009) Brief electrical stimulation accelerates axon regeneration in the peripheral nervous system and promotes sensory axon regeneration in the central nervous system. Motor Control 13(4):412–441

    Google Scholar 

  177. Geremia NM, Gordon T, Brushart TM, Al-Majed AA, Verge VM (2007) Electrical stimulation promotes sensory neuron regeneration and growth-associated gene expression. Exp Neurol 205(2):347–359

    Article  Google Scholar 

  178. Steward O, Schuman EM (2001) Protein synthesis at synaptic sites on dendrites. Annu Rev Neurosci 24:299–325

    Article  Google Scholar 

  179. Grill WM, Craggs MD, Foreman RD, Ludlow CL, Buller JL (2001) Emerging clinical applications of electrical stimulation: opportunities for restoration of function. J Rehabil Res Dev 38(6):641–653

    Google Scholar 

  180. Grill WM, McDonald JW, Peckham PH, Heetderks W, Kocsis J, Weinrich M (2001) At the interface: convergence of neural regeneration and neural prostheses for restoration of function. J Rehabil Res Dev 38(6):633–639

    Google Scholar 

  181. McCaig CD, Rajnicek AM, Song B, Zhao M (2005) Controlling cell behavior electrically: current views and future potential. Physiol Rev 85(3):943–978

    Article  Google Scholar 

  182. Borgens RB (1999) Electrically mediated regeneration and guidance of adult mammalian spinal axons into polymeric channels. Neuroscience 91(1):251–264

    Article  Google Scholar 

  183. Agnew WF, McCreery DB (1990) Neural prostheses: fundamental studies. Prentice-Hall, Inc., Englewood Cliffs, NJ

    Google Scholar 

  184. Roman GC, Strahlendorf HK, Coates PW, Rowley BA (1987) Stimulation of sciatic nerve regeneration in the adult rat by low-intensity electric current. Exp Neurol 98(2):222–232

    Article  Google Scholar 

  185. Nix WA, Hopf HC (1983) Electrical stimulation of regenerating nerve and its effect on motor recovery. Brain Res 272(1):21–25

    Article  Google Scholar 

  186. Pockett S, Gavin RM (1985) Acceleration of peripheral nerve regeneration after crush injury in rat. Neurosci Lett 59(2):221–224

    Article  Google Scholar 

  187. Gordon T, Brushart TM, Chan KM (2008) Augmenting nerve regeneration with electrical stimulation. Neurol Res 30(10):1012–1022

    Article  Google Scholar 

  188. Brushart TM (1993) Motor axons preferentially reinnervate motor pathways. J Neurosci 13(6):2730–2738

    Google Scholar 

  189. Becker D, Gary DS, Rosenzweig ES, Grill WM, McDonald JW (2010) Functional electrical stimulation helps replenish progenitor cells in the injured spinal cord of adult rats. Exp Neurol 222(2):211–218

    Article  Google Scholar 

  190. Sato T, Fujikado T, Lee TS, Tano Y (2008) Direct effect of electrical stimulation on induction of brain-derived neurotrophic factor from cultured retinal Muller cells. Investig Ophthalmol Vis Sci 49(10):4641–4646

    Article  Google Scholar 

  191. Sato T, Fujikado T, Morimoto T, Matsushita K, Harada T, Tano Y (2008) Effect of electrical stimulation on IGF-1 transcription by L-type calcium channels in cultured retinal Muller cells. Jpn J Ophthalmol 52(3):217–223

    Article  Google Scholar 

  192. Goldberg JL, Espinosa JS, Xu Y, Davidson N, Kovacs GT, Barres BA (2002) Retinal ganglion cells do not extend axons by default: promotion by neurotrophic signaling and electrical activity. Neuron 33(5):689–702

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Bellamkonda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Karumbaiah, L., Bellamkonda, R. (2013). Neural Tissue Engineering. In: He, B. (eds) Neural Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5227-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5227-0_19

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-5226-3

  • Online ISBN: 978-1-4614-5227-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics