Skip to main content

Genome Structure of Jatropha curcas L.

  • Chapter
  • First Online:
Jatropha, Challenges for a New Energy Crop

Abstract

The recent progress in DNA sequencing technology has allowed us to acquire information on the structures of whole genomes of various agronomically important plants in a relatively short period of time. In order to understand the genetic systems carried by Jatropha curcas and to accelerate the process of molecular breeding, comprehensive analyses of genes and the genome of this plant have been conducted using both conventional and advanced technologies, and a large quantity of sequence data has been accumulated. The latest draft sequence of the genome of J. curcas is 297 Mb long, and is presumed to cover 99 % of the gene space, with an average GC content of 33.8 %. By combining with the transcriptome information, a total of 30,203 protein-encoding genes, in addition to the 17,575 transposon-related genes and 2,124 putative pseudogenes, were assigned to the genome. Information on the genomic sequences and genes is available at http://www.kazusa.or.jp/jatropha/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y et al (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052–1056

    Article  CAS  PubMed  Google Scholar 

  • Achten WMJ, Verchot L, Franken YJ, Mathijs E, Singh VP, Aerts R et al (2008) Jatropha bio-diesel production and use. Biomass Bioenergy 32:1063–1084

    Article  CAS  Google Scholar 

  • Alvarez-Buylla ER, Pelaz S, Liljegren SJ, Gold SE, Burgeff C, Ditta GS et al (2000) An ancestral MADS-box duplication occurred before the divergence of plants and animals. Proc Natl Acad Sci USA 97:5328–5333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Bairoch A, Apweiler R (1996) The SWISS-PROT protein sequence data bank and its new supplement TREMBL. Nucl Acids Res 24:21–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho CR, Clarindoa WR, Praça MM, Araújoa FS, Carels N (2008) Genome size, base composition and karyotype of Jatropha curcas L., an important biofuel plant. Plant Sci 174:613–617

    Article  CAS  Google Scholar 

  • Chan AP, Crabtree J, Zhao Q, Lorenzi H, Orvis J, Puiu D et al (2010) Draft genome sequence of the oilseed species Ricinus communis. Nat Biotechnol 28:951–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen MS, Wang GJ, Wang RL, Wang J, Song SQ, Xu ZF (2011) Analysis of expressed sequence tags from biodiesel plant Jatropha curcas embryos at different developmental stages. Plant Sci 181:696–700

    Article  CAS  PubMed  Google Scholar 

  • Costa GG, Cardoso KC, Del Bem LE, Lima AC, Cunha MA, de Campos-Leite L et al (2010) Transcriptome analysis of the oil-rich seed of the bioenergy crop Jatropha curcas L. BMC Genomics 11:462. doi:10.1186/1471-2164-11-462

    Article  PubMed  PubMed Central  Google Scholar 

  • Devappa RK, Makkar HP, Becker K (2010) Jatropha toxicity–a review. J Toxicol Environ Health B Crit Rev 13:476–507

    Article  CAS  PubMed  Google Scholar 

  • Drews GN, Bowman JL, Meyerowitz EM (1991) Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Cell 65:991–1002

    Article  CAS  PubMed  Google Scholar 

  • Eitas TK, Dangl JL (2010) NB-LRR proteins: pairs, pieces, perception, partners, and pathways. Curr Opin Plant Biol 13:472–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujino K, Matsuda Y, Sekiguchi H (2009) Transcriptional activity of rice autonomous transposable element Dart. J Plant Physiol 166:1537–1543

    Article  CAS  PubMed  Google Scholar 

  • Gomes KA, Almeida TC, Gesteira AS, Lôbo IP, Guimarães ACR, de Miranda AB et al (2010) ESTs from seeds to assist the selective breeding of Jatropha curcas L. for oil and active compounds. Genomics Insights 3:29–56

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goto K, Meyerowitz EM (1994) Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev 8:1548–1560

    Article  CAS  PubMed  Google Scholar 

  • Gu K, Chiam H, Tian D, Yin Z (2011) Molecular cloning and expression of heteromeric ACCase subunit genes from Jatropha curcas. Plant Sci 180:642–649

    Article  CAS  PubMed  Google Scholar 

  • Haas W, Sterk H, Mittelbach M (2002) Novel 12-deoxy-16-hydroxy phorbol diesters isolated from the seed oil of J. curcas. J Nat Prod 65:1434–1440

    Article  CAS  PubMed  Google Scholar 

  • Hanada K, Zou C, Lehti-Shiu MD, Shinozaki K, Shiu SH (2008) Importance of lineage-specific expansion of plant tandem duplicates in the adaptive response to environmental stimuli. Plant Physiol 148:993–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmann U, Höhmann S, Nettesheim K, Wisman E, Saedler H, Huijser P (2000) Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis. Plant J 21:351–360

    Article  CAS  PubMed  Google Scholar 

  • Hirakawa H, Tsuchimoto S, Sakai H, Nakayama S, Fujishiro T, Kishida Y et al (2012) Upgraded genomic information of Jatropha curcas L. Plant Biotechnol 129:123–130

    Google Scholar 

  • Huang MX, Hou P, Wei Q, Xu Y, Chen F (2008) A ribosome-inactivating protein (curcin 2) induced from Jatropha curcas can reduce viral and fungal infection in transgenic tobacco. Plant Growth Regul 54:115–123

    Article  CAS  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Itoh Y, Hasebe M, Davies E, Takeda J, Ozeki Y (2003) Survival of Tdc transposable elements of the En/Spm superfamily in the carrot genome. Mol Genet Genomics 269:49–59

    CAS  PubMed  Google Scholar 

  • Izawa T, Oikawa T, Sugiyama N, Tanisaka T, Yano M, Shimamoto K (2002) Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Genes Dev 16:2006–2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jack T, Brockman LL, Meyerowitz EM (1992) The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68:683–697

    Article  CAS  PubMed  Google Scholar 

  • Jiang N, Bao Z, Temnykh S, Cheng Z, Jiang J, Wing RA et al (2002) Dasheng: a recently amplified nonautonomous long terminal repeat element that is a major component of pericentromeric regions in rice. Genetics 161:1293–1305

    CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi C, Mathur P, Khare SK (2011) Degradation of phorbol esters by Pseudomonas aeruginosa PseA during solid-state fermentation of deoiled Jatropha curcas seed cake. Bioresour Technol 102:4815–4819

    Article  CAS  PubMed  Google Scholar 

  • King AJ, Li Y, Graham IA (2011) Profiling the developing Jatropha curcas L. seed transcriptome by pyrosequencing. Bioenerg Res 4:211–221

    Article  Google Scholar 

  • Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286:1960–1962

    Article  CAS  PubMed  Google Scholar 

  • Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T et al (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol 43:1096–1105

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Yoo SJ, Park SH, Hwang I, Lee JS, Ahn JH (2007) Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev 21:397–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Choi SC, An G (2008) Rice SVP-group MADS-box proteins, OsMADS22 and OsMADS55, are negative regulators of brassinosteroid responses. Plant J 54:93–105

    Article  CAS  PubMed  Google Scholar 

  • Leseberg CH, Li A, Kang H, Duvall M, Mao L (2006) Genome-wide analysis of the MADS-box gene family in Populus trichocarpa. Gene 378:84–94

    Article  CAS  PubMed  Google Scholar 

  • Li CY, Devappa RK, Liu JX, Makkar HPS, Becker K (2010) Toxicity of Jatropha curcas phorbol esters in mice. Food Chem Toxicol 48:620–625

    Article  CAS  PubMed  Google Scholar 

  • Lifschitz E, Eviatar T, Rozman A, Shalit A, Goldshmidt A, Amsellem Z et al (2006) The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. Proc Natl Acad Sci USA 103:6398–6403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin J, Yan F, Tang L, Chen F (2003) Antitumor effects of curcin from seeds of Jatropha curcas. Acta Pharmacol Sin 24:241–246

    CAS  PubMed  Google Scholar 

  • Lin Z, Zhong S, Grierson D (2009) Recent advances in ethylene research. J Exp Bot 60:3311–3336

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Jin YJ, Zhou X, Wang JY (2010) Molecular cloning and functional analysis of the gene encoding geranylgeranyl diphosphate synthase from J. curcas. Afr J Biotechnol 9:3342–3351

    CAS  Google Scholar 

  • Luo M, Dennis ES, Berger F, Peacock WJ, Chaudhury A (2005) MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) kinase gene, are regulators of seed size in Arabidopsis. Proc Natl Acad Sci USA 102:17531–17536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo MJ, Yang XY, Liu WX, Xu Y, Huang P, Yan F et al (2006) Expression, purification and anti-tumor activity of curcin. Acta Biochim Biophys Sin 38:663–668

    Article  CAS  PubMed  Google Scholar 

  • Natarajan P, Parani M (2011) De novo assembly and transcriptome analysis of five major tissues of Jatropha curcas L using GS FLX titanium platform of 454 pyrosequencing. BMC Genomics 12:191, 10.1186/1471-2164-12-191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Natarajan P, Kanagasabapathy D, Gunadayalan G, Panchalingam J, Shree N, Sugantham PA et al (2010) Gene discovery from Jatropha curcas by sequencing of ESTs from normalized and full-length enriched cDNA library from developing seeds. BMC Genomics 11:606. doi:10.1186/1471-2164-11-606

    Article  PubMed  PubMed Central  Google Scholar 

  • Noma K, Ohtsubo H, Ohtsubo E (2000) ATLN elements, LINEs from Arabidopsis thaliana: identification and characterization. DNA Res 7:291–303

    Article  CAS  PubMed  Google Scholar 

  • Pradhan S, Naik SN, Khan MA, Sahoo P (2011) Experimental assessment of toxic phytochemicals in Jatropha curcas: oil, cake, bio-diesel and glycerol. J Sci Food Agric 92:511–519. doi:10.1002/jsfa.4599

    Article  PubMed  Google Scholar 

  • Putterill J, Robson F, Lee K, Simon R, Coupland G (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80:847–857

    Article  CAS  PubMed  Google Scholar 

  • Qin W, Ming XH, Ying X, Xin SZ, Fang C (2005) Expression of a ribosome inactivating protein (curcin 2) in Jatropha curcas is induced by stress. J Biosci 30:351–357

    Article  PubMed  Google Scholar 

  • Qin X, Zheng X, Shao C, Gao J, Jiang L, Zhu X (2009) Stress-induced curcin-L promoter in leaves of Jatropha curcas L. and characterization in transgenic tobacco. Planta 230:387–395

    Article  CAS  PubMed  Google Scholar 

  • Saha S, Enugutti B, Rajakumari S, Rajasekharan R (2006) Cytosolic triacylglycerol biosynthetic pathway in oilseeds. Molecular cloning and expression of peanut cytosolic diacylglycerol acyltransferase. Plant Physiol 141:1533–1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF et al (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613–1616

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M et al (2008) Genome structure of the legume, Lotus japonicus. DNA Res 15:227–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato S, Hirakawa H, Isobe S, Fukai E, Watanabe A, Kato M et al (2011) Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L. DNA Res 18:65–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanke M, Steinkamp R, Waack S, Morgenstern B (2004) AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res. 32(Web Server issue):W309-312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stripe F, Pession-Brizzi A, Lorenzoni E, Strocchi P, Montanaro L, Sperti S (1976) Studies on the proteins from the seeds of Croton tiglium and of Jatropha curcas. Toxic properties and inhibition of protein synthesis in vitro. Biochem J 156:1–6

    Article  Google Scholar 

  • The French–Italian Public Consortium for Grapevine Genome Characterization (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  Google Scholar 

  • Tong L, Shu MP, Wu YD, Dan WM, Ying X, Meng X et al (2006) Characterization of a new stearoyl-acyl carrier protein desaturase gene from Jatropha curcas. Biotechnol Lett 28:657–662

    Article  PubMed  Google Scholar 

  • Tränkner C, Lehmann S, Hoenicka H, Hanke MV, Fladung M, Lenhardt D et al (2010) Over-expression of an FT-homologous gene of apple induces early flowering in annual and perennial plants. Planta 232:1309–1324

    Article  Google Scholar 

  • Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr & Gray). Science 15:1596–1604

    Article  Google Scholar 

  • Wang BB, Brendel V (2004) The ASRG database: identification and survey of Arabidopsis thaliana genes involved in pre-mRNA splicing. Genome Biol 5:R102

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang CM, Liu P, Yi C, Gu K, Sun F, Li L et al (2011) A first generation microsatellite- and SNP-based linkage map of Jatropha. PLoS One 6(8):e23632, 10.1371/journal.pone.0023632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM (1992) LEAFY controls floral meristem identity in Arabidopsis. Cell 69:843–859

    Article  CAS  PubMed  Google Scholar 

  • Xiao J, Zhang H, Niu L, Wang X, Lu X (2011) Evaluation of detoxification methods on toxic and antinutritional composition and nutritional quality of proteins in Jatropha curcas meal. J Agric Food Chem 59:4040–4044

    Article  CAS  PubMed  Google Scholar 

  • Yadav HK, Ranjan A, Asif MH, Mantri S, Sawant SV, Tuli R (2011) EST-derived SSR markers in Jatropha curcas L.: development, characterization, polymorphism, and transferability across the species/genera. Tree Genet Genom 7:207–219

    Article  Google Scholar 

  • Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M et al (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA 103:19581–19586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye J, Qu J, Bui HTN, Chua NH (2009) Rapid analysis of Jatropha curcas gene functions by virus-induced gene silencing. Plant Biotechnol J 7:964–976

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Kazusa DNA Research Institute Foundation. PBBL is contributed by SEI CSR Foundation, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Tabata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sato, S. et al. (2013). Genome Structure of Jatropha curcas L.. In: Bahadur, B., Sujatha, M., Carels, N. (eds) Jatropha, Challenges for a New Energy Crop. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4915-7_30

Download citation

Publish with us

Policies and ethics