Skip to main content

Genetic Diversity of Jatropha curcas in Southern Mexico

  • Chapter
  • First Online:
Jatropha, Challenges for a New Energy Crop

Abstract

The importance of the Euphorbiaceous plant Jatropha curcas L. lies in its high-quality seed oil, ideal for the manufacture of biodiesel. As a result, its extensive cultivation has already reached several million hectares in Asia, Africa and Latin America, and implies certain challenges since it is not yet a fully domesticated plant, and with limited information on the agronomic processes and selected varieties for its cultivation. In addition, little is known about the biology, ecology, genetic diversity and geographic origin of its populations. Despite the growing body of knowledge on J. curcas, there are only a few studies on phenotypic and genotypic diversity in populations of Mexico, from where it is probably native. The greatest extension of J. curcas sown in Mexico is located in the state of Chiapas, for that reason this chapter describes diversity of populations of this state and other sites in Southern Mexico. To broadly understand the diversity of populations, our group has used two types of markers: direct adaptive value characteristics, such as floral characters and fatty acids in the seed, and neutral molecular markers such as AFLP and microsatellites. The results of the chemical studies showed that the content of seed oil in accessions ranged from 8.02 % to 54.28 %, with the proportion of unsaturated fatty acids varying from 74.5 % to 83.7 %. A discriminant analysis separated populations according to their geographical origin, which was verified with a Mantel test. Using the Monmonier’s algorithm, two genetic barriers were identified between the populations. The results are discussed according to the putative evolutionary significance of the seeds fatty acid composition for this tropical species. Studies on floral anatomy confirmed a large variation among Mexican J. curcas and revealed the existence of plants exclusively with female inflorescences, which could be useful in the development of future plantations. Molecular studies showed that Mexican J. curcas is moderately structured in subpopulations, but with a high diversity within populations. A conglomerate analysis revealed the highest coefficient of dissimilarity based on accessions reported so far. The existence of genetic barriers isolating some populations was confirmed with molecular data. The results are discussed with reference to the possible ancestry of the populations. Finally, we highlight the relevance of some of our findings in the scientific and productive realms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFLP:

Amplified fragments length polymorphism

AMOVA:

Analysis of molecular variance

SAMOVA:

Spatial analysis of molecular variance

RADPs:

Random amplified DNA polymorphism

ISSRs:

Inter simple sequence repeats

SSRs:

Simple sequence repeats

SCAR:

Sequence characterized amplified regions

RFLP:

Restriction fragment length polymorphism

References

  • Abdulla JM, Janagoudar BS, Biradar DP, Ravikumar RL, Koti RV, Patil SJ (2009) Genetic diversity analysis of elite Jatropha curcas L. genotypes using randomly amplified polymorphic DNA markers. J Agric Sci 22:293–295

    Google Scholar 

  • Abou-Kheira A, Atta N (2009) Response of Jatropha curcas L. to water deficit: yield, water use efficiency and oilseed characteristics. Biomass Bioenergy 33:1343–1350

    Article  CAS  Google Scholar 

  • Achten WMJ, Mathijs E, Verchot L, Singh VP, Aerts R, Muys B (2007) Jatropha biodiesel fueling sustainability? Biofuel Bioprod Bioresour 1:283–291

    Article  CAS  Google Scholar 

  • Achten WMJ, Nielsen LR, Aerts R, Lengkeek AG, Kjær ED, Trabucco A et al (2010) Towards domestication of Jatropha curcas. Biofuels 1:91–107

    Article  CAS  Google Scholar 

  • Aguayo JE, Trápaga R (1996) Geodinámica de México y minerales del mar. Cap. III Tectónica actual de México. Fondo de Cultura Económica. México, 112 pp, Spanish.

    Google Scholar 

  • Ambrosi DG, Galla G, Purelli M, Barbi T, Fabbri A, Lucretti S et al (2010) DNA markers and FCSS analyses shed light on the genetic diversity and reproductive strategy of Jatropha curcas L. Diversity 2:810–836

    Article  CAS  Google Scholar 

  • Anzueto VAA, de MacVean ALE (2000) Los cercos vivos en Guatemala. Rev Univ Valle Guatemala 9:12–18, Spanish

    Google Scholar 

  • Arruda FP, Beltão NE, Andrade AP, Pereira WE, Severino LS (2004) Cultivo de Pinhão manso (Jatropha curcas L.) como alternativa para o semi-árido Nordestino. Rev Brasil Fibros 8:789–799

    Google Scholar 

  • Bahadur B, Ramanujam CGK, Murthy GVS, Goverdhan S, Kalpana T (2000) Comparative analysis of LM and SEM studies of Jatropha L. (Euphorbiaceae). Geophytol 28:67–75

    Google Scholar 

  • Basha S, Sujatha M (2007) Inter and intra-population variability of Jatropha curcas L. characterized by RAPD and ISSR markers and development of population-specific SCAR markers. Euphytica 156:375–386

    Article  CAS  Google Scholar 

  • Basha SD, Sujatha M (2009) Genetic analysis of Jatropha species and interspecific hybrids of Jatropha curcas using nuclear and organelle specific markers. Euphytica 168:197–214

    Article  CAS  Google Scholar 

  • Basha SD, Francis G, Makkar HPS, Becker K, Sujatha M (2009) Comparative study of biochemical traits and molecular markers for assessment of genetic relationships between Jatropha curcas L. germplasm from different countries. Plant Sci 176:812–823

    Article  CAS  Google Scholar 

  • Behera SK, Srivastava P, Tripathi R, Singh JP, Singh N (2010) Evaluation of plant performance of Jatropha curcas L. under different agro-practices for optimizing biomass – a case study. Biomass Bioenergy 34:30–41

    Article  Google Scholar 

  • Bewley JD, Black M (1994) Seeds: physiology of development and germination, 2nd edn. Plenum Press, New York, pp 311–322

    Book  Google Scholar 

  • Bhattacharya A, Datta K, Datta SK (2005) Floral biology, floral resource constraints and pollination limitation in Jatropha curcas L. Pak J Biol Sci 8:456–460

    Article  Google Scholar 

  • Bomfim-Gois IB, Silva R, Boari AJ, Santos-Oliveira A, Fraga AC (2006) Caracterização isoenzimática de accesos de pinhão-manso (Jatropha curcas L.). In: Proceedings of the 2nd Brazilian Congress of Mamona (Ricinus communis). Brazil, Portuguese

    Google Scholar 

  • Bremer K (1992) Ancestral areas: a cladistic reinterpretation of the center of origin concept. Syst Biol 41:436–445

    Article  Google Scholar 

  • Budowski G (1987) Living fences in tropical America, a widespread agroforestry practice. In: Gholz HL (ed) Agroforestry realities, possibilities and potentials. Martinus Nijhoff, Dordrecht, pp 169–178

    Google Scholar 

  • Burkart B (1978) Offset across the Polochic fault of Guatemala and Chiapas Mexico. Geology 6:328–332

    Article  Google Scholar 

  • Cai Y, Sun D, Wu G, Peng J (2010) ISSR-based genetic diversity of Jatropha curcas germplasm in China. Biomass Bioenergy 7:1–12

    Google Scholar 

  • Carels N (2009) Jatropha curcas: a review. Adv Bot Res 50:39–86

    Article  CAS  Google Scholar 

  • CNA (1998) Datos meteorológicos del municipio de Tapachula, Chiapas; Comisión Nacional del Agua, Mexico, Spanish

    Google Scholar 

  • CONABIO (2006) Documento base sobre centros de origen y diversidad en el caso de maíz en México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. México, 33 pp. Spanish

    Google Scholar 

  • Contreras MR, Luna I, Morrone J (2001) Conceptos biogeográficos. Elementos 41:33–37, Spanish

    Google Scholar 

  • Croizat L, Nelson G, Rosen DE (1974) Centers of origin and related concepts. Syst Zool 23:265–287

    Article  Google Scholar 

  • Crossa J, De Los Campos G, Pérez P, Gianola D, Burgueño J, Araus JL et al (2010) Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics 186:713–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dehgan B (1980) Application of epidermal morphology to taxonomic delimitations in the genus Jatropha L. (Euphorbiaceae). Bot J Linn Soc 80:257–278

    Article  Google Scholar 

  • Dehgan B (1982) Comparative anatomy of the petiole and infrageneric relationships in Jatropha (Euphorbiaceae). Am J Bot 69:1283–1295

    Article  Google Scholar 

  • Dehgan B (1984) Phylogenetic significance of interspecific hybridization in Jatropha (Euphorbiaceae). Syst Bot 9:467–478

    Article  Google Scholar 

  • Dehgan B, Craig ME (1978) Types of laticifers and crystals in Jatropha and their taxonomic implications. Am J Bot 65:345–352

    Article  Google Scholar 

  • Dehgan B, Schutzman B (1994) Contributions toward a monograph of neotropical Jatropha: phenetic and phylogenetic analyses. Ann Mo Bot Gard 81:349–367

    Article  Google Scholar 

  • Dehgan B, Webster G (1979) Morphology and infrageneric relationships of the genus Jatropha (Euphorbiaceae). Univ Calif Publ Bot 74:1–73

    Google Scholar 

  • Di-Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2008) InfoStat, versión 2008. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina, Spanish

    Google Scholar 

  • Divakara BN, Upadhyaya HD, Wani SP, Laxmipathi-Gowda CL (2010) Biology and genetic improvement of Jatropha curcas L.: a review. Appl Energ 87:732–742

    Article  CAS  Google Scholar 

  • Elias M, McKey D (2000) The unmanaged reproductive ecology of domesticated plants in traditional agroecosystems: an example involving cassava and a call for data. Acta Oecol 21:223–230

    Article  Google Scholar 

  • Erickson DL, Smith BD, Clarke AC, Sandweiss DH, Tuross N (2005) An Asian origin for a 10,000-year-old domesticated plant in the Americas. Proc Natl Acad Sci USA 102:18315–18320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escobar JC, Lora ES, Venturini OJ, Yáñez EE, Castillo EF, Almazán O (2008) Biofuels: environment, technology and food security. Renew Sustain Energ Rev 13:1275–1287

    Article  CAS  Google Scholar 

  • Fairless D (2007) Biofuel: the little shrub that could – maybe. Nature 449:652–655

    Article  PubMed  Google Scholar 

  • Ford ED (2000) Scientific method for ecological research. Cambridge University Press, Cambridge, p 563

    Book  Google Scholar 

  • Ford-Lloyd B, Painting K (1996) Measuring genetic variation using molecular markers. International Plant Genetic Resource Institute (IPGRI), Rome, 89 p

    Google Scholar 

  • Ganesh-Ram S, Parthiban KT, Senthil-Kumar R, Thiruvengadam V, Paramathma M (2008) Genetic diversity among Jatropha species as revealed by RAPD markers. Genet Resour Crop Evol 55:803–809

    Article  CAS  Google Scholar 

  • García E (1973) Modificaciones al Sistema de Clasificación Climática de Koppen (Para Adaptarlo a las Condiciones de la República Mexicana), 2nd edn. Institute of Geography, National Autonomous University of Mexico, Mexico DF, Spanish

    Google Scholar 

  • Gerrish PJ, Lenski RE (1998) The fate of competing beneficial mutations in an asexual population. Genetica 102–103:127–144

    Article  PubMed  Google Scholar 

  • Ginwal HS, Phartyali SS, Rawat PS, Srivastava RL (2005) Seed source variation in morphology germination and seedling growth of Jatropha curcas Linn. in Central India. Silvae Genet 54:76–80

    Google Scholar 

  • Goddard M (2009) Genomic selection: prediction of accuracy and maximisation of long term response. Genetica 136:245–257

    Article  PubMed  Google Scholar 

  • Gohil RH, Pandya JB (2008) Genetic diversity assessment in physic nut (Jatropha curcas L.). Int J Plant Prod 2:321–326

    Google Scholar 

  • Goloboff P (1999) NONA (NO NAME) ver. 2 Published by the author, Tucumán

    Google Scholar 

  • Granados-Galván IA (2009) Variación genética en accesiones de Jatropha curcas L. de la costa de Chiapas-México, detectada mediante RAPD. Ph.D. dissertation. Pedagogical and Technological University of Colombia. Tunja, 85 p, Spanish

    Google Scholar 

  • Gubitz GM, Mittelbach M, Trabi M (1999) Exploitation of the tropical seed plant Jatropha curcas L. Bioresour Technol 67:73–82

    Article  CAS  Google Scholar 

  • Gupta S, Srivastava M, Mishra GP, Naik PK, Chauhan RS, Tiwari SK et al (2008) Analogy of ISSR and RAPD markers for comparative analysis of genetic diversity among different Jatropha curcas genotypes. Afr J Biotechnol 7:4230–4243

    CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hartmann-Neto I, Alencar J, Diniz F, Souza V, Araujo E, Lima P (2006) Seleção de primers para uso de ISSR na analise de diversidade genética em pinhão-manso (Jatropha curcas L.). In: Proceedings of the 2nd Brazilian Congress of Mamona (Ricinus communis) Brazil, Sergipe, EMBRAPA

    Google Scholar 

  • Heller J (1996) Physic nut Jatropha curcas L. Promoting the conservation and use of underutilized and neglected crops 1, 1st edn. International Plant Genetic Resources Institute, Roma, pp 13–35

    Google Scholar 

  • Henning RK (1997) Combating desertification by integrated utilization of the Jatropha plant – experiences of the Jatropha Project in Mali. UNIDO, Weissensberg

    Google Scholar 

  • Ikbal Boora KS, Dhillon RS (2010) Evaluation of genetic diversity in Jatropha curcas L using RAPD markers. Indian J Biotechnol 9:50–57

    Google Scholar 

  • Jannink JL, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genome 9:166–177

    Article  CAS  Google Scholar 

  • Jarvis DI, Hodgkin T (1999) Wild relatives and crop cultivars: detecting natural introgression and farmer selection of new genetic combinations in agroecosystems. Mol Ecol 8:S159–S173

    Article  Google Scholar 

  • Jones N, Miller JH (1992) Jatropha curcas: a multipurpose species for problematic sites, vol 1, Land resources series. Asia Technical Department, The World Bank, Washington, DC

    Google Scholar 

  • Jongschaap REE, Corré WJ, Bindraban PS, Brandenburg WA (2007) Claims and facts on Jatropha curcas L. Global J. curcas evaluation, breeding and propagation programme. Report 158. Available from: http://library.wur.nl/way/bestanden/clc/1858843.pdf

  • Kaur K, Dhillon GPS, Gill R (2011) Floral biology and breeding system of Jatropha curcas in North-Western India. J Trop For Sci 23:4–9

    Google Scholar 

  • Kaushik N, Kumar K, Kumar S, Kaushik NYS, Roy S (2007) Genetic variability and divergence studies in seed traits and oil content of Jatropha (Jatropha curcas L.) accessions. Biomass Bioenergy 31:497–502

    Article  CAS  Google Scholar 

  • Kumar GP, Yadav SK, Thawale PR, Singh SK, Juwarkar AA (2008) Growth of Jatropha curcas on heavy metal contaminated soil amended with industrial wastes and Azotobacter – a greenhouse study. Bioresour Technol 99:2078–2082

    Article  CAS  PubMed  Google Scholar 

  • Kumar RV, Tripathi YK, Ahlawat SP, Gupta VK (2009) Genetic diversity and relationships among germplasm of Jatropha curcas L. revealed by RAPDs. Trees 23:1075–1079

    Article  CAS  Google Scholar 

  • Leonti M, Sticher O, Heinrich M (2003) Antiquity of medicinal plant usage in two Macro-Mayan ethnic groups (México). J Ethnopharmacol 88:119–124

    Article  PubMed  Google Scholar 

  • Levin DA (1974) The oil content of seeds: an ecological perspective. Am Nat 108:193–206

    Article  Google Scholar 

  • Lin J, Jin Y, Zhou X, Wang J (2010) Molecular Cloning and functional analysis of the gene encoding geranylgeranyl diphosphate synthase from Jatropha curcas. Afr J Biotechnol 9:3342–3351

    CAS  Google Scholar 

  • Linder CR (2000) Adaptive evolution of seed oils in plants: accounting for the biogeographic distribution of saturated and unsaturated fatty acids in seed oils. Am Nat 156:442–458

    Article  Google Scholar 

  • Lindig-Cisneros R, Dirzo R, Espinosa-García FJ (2002) Effects of domestication and agronomic selection on phytoalexin antifungal defense in Phaseolus beans. Ecol Res 17:315–321

    Article  CAS  Google Scholar 

  • Maes W, Achten W, Reubens B, Raes D, Samson R, Muys B (2009) Plant–water relationships and growth strategies of Jatropha curcas L. seedlings under different levels of drought stress. J Arid Environ 73:877–884

    Article  Google Scholar 

  • Makkar H, Aderibigbe A, Becker K (1998) Comparative evaluation of non-toxic and toxic varieties of Jatropha curcas for chemical composition, digestibility, protein degradability and toxic factors. Food Chem 62:207–215

    Article  CAS  Google Scholar 

  • Mangkoedihardjo S, Ratnawati R, Alfianti N (2008) Phytoremediation of hexavalent chromium polluted soil using Pterocarpus indicus and Jatropha curcas L. World Appl Sci J 4:338–342

    Google Scholar 

  • Martin G, Mayeux A (1984) Réflexions sur les cultures oléagineuses énergétiques. II. – Le Pourghère (Jatropha curcas L.): un carburant possible. Oléagineux 39:283–287, French

    Google Scholar 

  • Martínez GM, Jiménez J, Cruz D, Juárez A, García R, Cervantes A et al (2002) Los géneros de la familia Euphorbiaceae en México. Anales Inst Biol UNAM Ser Bot 73:155–281, Spanish

    Google Scholar 

  • Martínez-Herrera J (2007) El Piñón Mexicano: una alternativa bioenergética para México. Rev Digit Univ. 8. Available from: http://www.revista.unam.mx/vol.8/num12/art88/int88.htm, Spanish

  • Martínez-Herrera J, Martínez-Ayala AL, Makkar H, Francis G, Becker K (2010) Agroclimatic conditions, chemical and nutritional characterization of different provenances of Jatropha curcas L. from Mexico. Eur J Sci Res 39:396–407

    Google Scholar 

  • Martinez-Herrera J, Jimenez-Martinez C, Martinez-Ayala A, Garduño-Siciliano L, Mora-Escobedo R, Davila-Ortiz G et al (2012) Evaluation of the nutritional quality of non-toxic kernel flour from Jatropha curcas L. in rats. J Food Qual 35:152–158

    Article  CAS  Google Scholar 

  • Mayo O (1987) The theory of plant breeding, 2nd edn. Oxford University Press, Oxford, p 334

    Google Scholar 

  • McKey D, Elias M, Pujol B, Duputié A (2010) The evolutionary ecology of clonally propagated domesticated plants. New Phytol 186:318–332

    Article  PubMed  Google Scholar 

  • Melo JC, Brander W, Campos R, Pacheco J, Schuler A, Stragevitch L (2006) Avaliação Preliminar do Potencial do Pinhão Manso para a Produção de Biodiesel. In: Proceedings of the I Congresso da Rede Brasileira de Tecnologia do Biodiesel. ABIPTI, Brasilia, pp 198–203, Portuguese

    Google Scholar 

  • Mishra DK (2009) Selection of candidate plus phenotypes of Jatropha curcas L. using method of paired comparisons. Biomass Bioenergy 33:542–545

    Article  Google Scholar 

  • Morrone JJ (2002) El espectro del dispersalismo: de los centros de origen a las áreas ancestrales. Rev Soc Entomol Argent 61(3–4):1–14, Spanish

    Google Scholar 

  • Morrone JJ, Espinosa D, Llorente J (1996) Manual de Biogeografía Histórica. National Autonomous University of Mexico, Mexico, Spanish

    Google Scholar 

  • Nixon KC (2002) WinClada ver. 1.00.08 Published by the author, Ithaca

    Google Scholar 

  • Obeso JR (2002) The costs of reproduction in plants. New Phytol 155:321–348

    Article  Google Scholar 

  • Oliveira AS, Silva-Mann R, Santos MF, Gois IB, Carvalho SV, Boari AJ et al (2006) Prospecção e caracterização de acessos de Jatropha sp. In: Proceedings of the 2°. Congreso Brasileiro de Mamona, Brazil

    Google Scholar 

  • Olsen KM, Schaal BA (1999) Evidence on the origin of cassava: phylogeography of Manihot esculenta. Proc Natl Acad Sci USA 96:5586–5591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Openshaw K (2000) A review of Jatropha curcas: an oil plant of unfulfilled promise. Biomass Bioenergy 19:1–15

    Article  Google Scholar 

  • Ovando I, Adriano ML, Salvador M, Ruiz S, Vázquez A (2009) Piñón (Jatropha curcas): bioenergía para el desarrollo de Chiapas. Biotechnol Agrop Biodivers 2:1–24, Spanish

    Google Scholar 

  • Ovando-Medina I, Espinosa GF, Núñez FJ, Salvador FM (2011a) Genetic variation in Mexican Jatropha curcas L. estimated with seed oil fatty acids. J Oleo Sci 60:301–311

    Article  CAS  PubMed  Google Scholar 

  • Ovando-Medina I, Espinosa GFJ, Núñez FJS, Salvador FM (2011b) State of the art of genetic diversity research in Jatropha curcas. Sci Res Essays 6:1709–1719

    Google Scholar 

  • Ovando-Medina I, Sánchez-Gutiérrez A, Adriano-Anaya L, Espinosa-García F, Núñez-Farfán J, Salvador-Figueroa M (2011c) Genetic diversity in Jatropha curcas populations in the State of Chiapas, Mexico. Diversity 3:641–659

    Article  Google Scholar 

  • Pamidiamarri DV, Mastan SG, Rahman H, Reddy MP (2010) Molecular characterization and genetic diversity analysis of Jatropha curcas L. in India using RAPD and AFLP analysis. Mol Biol Rep 37:2249–2257

    Article  CAS  Google Scholar 

  • Pant KS, Khosla V, Kumar D, Gairola S (2006) Seed oil content variation in Jatropha curcas Linn. in different altitudinal ranges and site conditions in H.P. India. Lyonia 11:31–34

    Google Scholar 

  • Parawira W (2010) Biodiesel production from Jatropha curcas: a review. Sci Res Essays 5:1796–1808

    Google Scholar 

  • Pecina-Quintero V, Anaya JL, Zamarripa A, Montes N, Núnez C, Solis J et al (2011) Molecular characterisation of Jatropha curcas L. genetic resources from Chiapas, México through AFLP markers. Biomass Bioenergy 35:1897–1905

    Article  CAS  Google Scholar 

  • Pinto-Juhász AC, Pimenta S, Oliveira-Soares B, Batista-Morais D, Oliveira Rabello H (2009) Floral biology and artificial polinization in physic nut in the North of Minas Gerais state, Brazil. Pesq Agropec Bras 44:1073–1077

    Article  Google Scholar 

  • Poncet V, Lamy F, Enjalbert J, Joly H, Sarr A, Robert T (1998) Genetic analysis of the domestication syndrome in pearl millet (Pennisetum glaucum L., Poaceae): inheritance of the major characters. Heredity 81:648–658

    Article  Google Scholar 

  • Popluechai S, Breviario D, Sujatha M, Makkar HPS, Raorane M, Reddy AR et al (2009) Narrow genetic and apparent phenetic diversity in Jatropha curcas: initial success with generating low phorbol ester interspecific hybrids. Nat Preced. hdl:10101/npre.2009.27 82.1

    Google Scholar 

  • Pramanik K (2003) Properties and use of Jatropha curcas oil and diesel fuel blends in compression ignition engine. Renew Energ 28:239–248

    Article  CAS  Google Scholar 

  • Pujar A, Jaiswal P, Kellog EA, Ilic K, Vincent L, Avraham S et al (2006) Whole-plant growth stage ontology for angiosperms and its application in plant biology. Plant Physiol 142:414–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pujol B, Mühlen G, Garwood N, Horoszowski Y, Douzery EJP, McKey D (2005) Evolution under domestication: contrasting functional morphology of seedlings in domesticated cassava and its closest wild relatives. New Phytol 166:305–318

    Article  PubMed  Google Scholar 

  • Raju AJS, Ezradanam V (2002) Pollination ecology and fruiting behavior in a monoecious species, Jatropha curcas L. (Euphorbiaceae). Curr Sci 83:1395–1398

    Google Scholar 

  • Ranade SA, Srivastava AP, Rana TS, Srivastava J, Tuli R (2008) Easy assessment of diversity in Jatropha curcas L. plants using two single-primer amplification reaction (SPAR) methods. Biomass Bioenergy 32:533–540

    Article  CAS  Google Scholar 

  • Renner A, Zelt T (2008) Global market study on Jatropha round table on sustainable biofuels. GEXSI LLP, Brussels, 30

    Google Scholar 

  • Ricci A, Chekhovskiy K, Azhaguvel P, Albertini E, Falcinelli M, Saha M (2012) Molecular characterization of Jatropha curcas resources and identification of population-specific markers. Bioenerg Res 5:215–224

    Article  Google Scholar 

  • Rosado TB, Laviola BG, Faria DA, Pappas MR, Bhering LL, Quirino B et al (2010) Molecular markers reveal limited genetic diversity in a large germplasm collection of the biofuel crop Jatropha curcas L. in Brazil. Crop Sci 50:2372–2382

    Article  CAS  Google Scholar 

  • Rosen DE (1978) Vicariant patterns and historical explanation in biogeography. Syst Zool 27:159–188

    Article  Google Scholar 

  • Saikia SP, Bhau BS, Rabha A, Dutta SP, Choudhari SP, Chetia M et al (2009) Study of accession source variation in morpho-physiological parameters and growth performance of Jatropha curcas Linn. Curr Sci 96:1631–1636

    Google Scholar 

  • Sato S, Hirakawa H, Isobe S, Fukai E, Watanabe A, Kato M et al (2011) Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L. DNA Res 18:65–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen JL, Jia XN, Ni HQ, Sun PG, Niu SH, Chen XG (2010) AFLP analysis of genetic diversity of Jatropha curcas grown in Hainan, China. Trees 24:455–462

    Article  Google Scholar 

  • Steinmann VW (2002) Diversidad y endemismo de la familia Euphorbiaceae en México. Acta Bot Mex 61:61–93

    Google Scholar 

  • Subramanyam K, Muralidhararao D, Devanna N (2009) Genetic diversity assessment of wild and cultivated varieties of Jatropha curcas L. in India by RAPD analysis. Afr J Biotechnol 8:1900–1910

    CAS  Google Scholar 

  • Sudheer PDVN, Rahman H, Mastan SG, Reddy MP (2010) Isolation of novel microsatellites using FIASCO by dual probe enrichment from Jatropha curcas L. and study on genetic equilibrium and diversity of Indian population revealed by isolated microsatellites. Mol Biol Rep 37:3785–3793

    Article  CAS  PubMed  Google Scholar 

  • Sudheer-Pamidiamarri DVN, Pandya N, Reddy MP, Radhakrishnan T (2009) Comparative study of interspecific genetic divergence and phylogenic analysis of genus Jatropha by RAPD and AFLP. Mol Biol Rep 36:901–907

    Article  CAS  PubMed  Google Scholar 

  • Sudheer-Pamidimarri DV, Chattopadhyay B, Reddy MP (2009) Genetic divergence and phylogenetic analysis of genus Jatropha based on nuclear ribosomal DNA ITS sequence. Mol Biol Rep 36:1929–1935

    Article  CAS  PubMed  Google Scholar 

  • Sujatha M, Prabakaran AJ (2003) New ornamental Jatropha hybrids through interspecific hybridization. Genet Resour Crop Evol 50:75–82

    Article  CAS  Google Scholar 

  • Sujatha M, Makkar HPS, Becker K (2005) Shoot bud proliferation from axillary nodes and leaf sections of non-toxic Jatropha curcas L. Plant Growth Regul 47:83–90

    Article  CAS  Google Scholar 

  • Sun QB, Li LF, Li Y, Wu GJ, Ge XJ (2008) SSR and AFLP markers reveal low genetic diversity in the biofuel plant Jatropha curcas in China. Crop Sci 48:1865–1871

    Article  CAS  Google Scholar 

  • Tatikonda L, Wani SP, Kannan S, Beerelli N, Sreedevi TK, Hoisington DA et al (2009) AFLP-based molecular characterization of an elite germplasm collection of Jatropha curcas L., a biofuel plant. Plant Sci 176:505–513

    Article  CAS  PubMed  Google Scholar 

  • Toral OC, Iglesias JM, Montes de Oca S, Sotolongo JA, García S, Torsti M (2008) Jatropha curcas L., una especie arbórea con potencial energético en Cuba. Pastos y Forrajes 31:191–207, Spanish

    Google Scholar 

  • Umamaheswari D, Paramathma M, Manivannan N (2010) Molecular genetic diversity analysis in seed sources of Jatropha (Jatropha curcas L.,) using ISSR markers. Electron J Plant Breed 1:268–278

    Google Scholar 

  • Van-Loo EN, Jongschaap REE, Montes OLR, Arzudia C (2008) Jatropha curcas L.: genetic diversity and breeding. Temasek Life Sciences Laboratory. Jatropha International Congress, Singapore, 17–18 Dec 2008

    Google Scholar 

  • Wang ZY, Lin JM, Xu ZF (2008) Oil contents and fatty acid composition in Jatropha curcas seeds collected from different regions. Nan Fang Vi Ke Da Xue Xue Bao J South Med Univ 28:1045–1046

    CAS  Google Scholar 

  • Wen M, Wang H, Xia Z, Zou M, Lu C, Wang W (2010) Development of EST-SSR and genomic-SSR markers to assess genetic diversity in Jatropha curcas L. BMC Res Notes 3:42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu J, Liu Y, Tang L, Zhang F, Chen F (2011) A study on structural features in early flower development of Jatropha curcas L. and the classification of its inflorescences. Afr J Agric Res 6:275–284

    Google Scholar 

  • Wurdack KJ, Hoffmann P, Chase MW (2005) Molecular phylogenetic analysis of uniovulate Euphorbiaceae (Euphorbiaceae sensu stricto) using plastid RBCL and TRNL-F DNA sequences. Am J Bot 92:1397–1420

    Article  CAS  PubMed  Google Scholar 

  • Xiang ZY, Song SQ, Wang GJ, Chen MS, Yang CY, Long CL (2007) Genetic diversity of Jatropha curcas (Euphorbiaceae) collected from Southern Yunnan, detected by inter-simple sequence repeat (ISSR). Acta Bot Yunnan 29:619–624

    CAS  Google Scholar 

  • Yadav HK, Ranjan A, Asif MH, Mantri S, Sawant SV, Tuli R (2011) EST-derived SSR markers in Jatropha curcas L.: development, characterization, polymorphism, and transferability across the species/genera. Tree Genet Genome 7:207–219

    Article  Google Scholar 

  • Yi C, Zhang S, Liu X, Bui TH, Hong Y (2010) Does epigenetic polymorphism contribute to phenotypic variances in Jatropha curcas L.? BMC Plant Biol 10:259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang F, Niu B, Wang Y, Chen F, Wang S, Xu Y et al (2008) A novel betaine aldehyde dehydrogenase gene from Jatropha curcas, encoding an enzyme implicated in adaptation to environmental stress. Plant Sci 174:510–518

    Article  CAS  Google Scholar 

  • Zhang Z, Guo X, Liu B, Tang L, Chen F (2011) Genetic diversity and genetic relationship of Jatropha curcas between China and Southeast Asian revealed by amplified fragment length polymorphisms. Afr J Biotechnol 10:2825–2832

    Article  CAS  Google Scholar 

  • Zubieta CG, Ghiselli L, Benedettelli S, Palchetti E (2009) Development of novel SSR markers from a genomic microsatellite library in Jatropha curcas L. In: Proceedings of the 53rd Italian Society of Agricultural Genetics Annual Congress, Torino

    Google Scholar 

Download references

Acknowledgements

We thank our undergraduate and graduate students (Julio Magaña Ramos, Adriana Sánchez Gutiérrez, Ingrid Alejandra Granados Galván, Jalsen Iván Teco Bravo, Edilma Pérez Castillo, Laura Isabel Vargas López and José Alejandro Gómez Pérez) of the Center for Biosciences-University of Chiapas, Mexico, who generated most of the data outlined here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isidro Ovando-Medina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ovando-Medina, I., Adriano-Anaya, L., Vázquez-Ovando, A., Ruiz-González, S., Rincón-Rabanales, M., Salvador-Figueroa, M. (2013). Genetic Diversity of Jatropha curcas in Southern Mexico. In: Bahadur, B., Sujatha, M., Carels, N. (eds) Jatropha, Challenges for a New Energy Crop. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4915-7_12

Download citation

Publish with us

Policies and ethics