Skip to main content

Sugars as Antioxidants in Plants

  • Chapter
  • First Online:
Crop Improvement Under Adverse Conditions

Abstract

Plants as sessile organisms are subjected to various forms of environmental stress. It is generally accepted that stress leads to excess concentrations of reactive oxygen species (ROS). Crop yield and quality are negatively affected by stress leading to oxidative damage. Here in this chapter, we will discuss the participation of carbohydrates in plant stress responses. Soluble carbohydrates (e.g., trehalose, sucrose, raffinose, etc.) are recognized compatible solutes. Sugars can replace water under drought stress. As such, they keep membrane surfaces “hydrated” and prevent membrane fusion by maintaining the space between phospholipid molecules. Small soluble sugars (glucose, fructose, sucrose) can also act as signals. They are now recognized as pivotal integrating regulatory molecules that control gene expression related to plant metabolism, stress resistance, growth and development. Finally, as a new concept, we propose that soluble vacuolar carbohydrates (e.g., fructans) may participate in vacuolar antioxidant processes, intimately linked to the well-known cytosolic antioxidant processes under stress. All these insights might contribute to the development of superior, stress tolerant crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albrecht G, Biemelt S, Baumgartner S (1997) Accumulation of fructans following oxygen deficiency stress in related plant species with different flooding tolerances. New Phytol 136:137–144

    CAS  Google Scholar 

  • Amiard V, Morvan-Bertrand A, Billard JP, Huault C, Keller F, Prud’homme MP (2003) Fructans, but not the sucrosyl-galactosides, raffinose and loliose, are affected by drought stress in perennial ryegrass. Plant Physiol 132:2218–2229

    Article  PubMed  CAS  Google Scholar 

  • Amtmann A (2009) Learning from evolution: Thellungiella generates new knowledge on essential and critical componentsc of abiotic stress tolerances in plant. Mol Plant 2:3–12

    Article  PubMed  CAS  Google Scholar 

  • Baena-Gonzalez E, Rolland F, Thevelein JM, Sheen J (2007) A central integrator of transcription networks in plant stress and energy signalling. Nature 448:938–942

    Article  PubMed  CAS  Google Scholar 

  • Banguela A, Hernández L (2006) Fructans: From natural sources to transgenic plants. Biotecnología Aplicada 23:202–210

    Google Scholar 

  • Banguela A, Arrieta J, Rodriguez R, Trujillo L, Menendez C, Hernández L (2011) High levan accumulation in transgenic tobacco plants expressing the Gluconacetobacter diazotrophicus levansucrase gene. J Biotech 154:93–98

    Article  CAS  Google Scholar 

  • Bhaskar PB, Wu L, Busse JS et al (2010) Suppression of the vacuolar invertase gene prevents cold-induced sweetening in potato. Plant Physiol 154:939–948

    Article  PubMed  CAS  Google Scholar 

  • Blochl A, Peterbauer T, Hofmann J, Richter A (2008) Enzymatic breakdown of raffinose oligosaccharides in pea seeds. Planta 228:99–110

    Article  PubMed  CAS  Google Scholar 

  • Bolouri-Moghaddam MR, Le Roy K, Xiang L, Rolland F, Van den Ende W (2010) Sugar signalling and antioxidant network connections in plant cells. Febs J 277:2022–2037

    Article  PubMed  CAS  Google Scholar 

  • Bonfig KB, Gabler A, Simon UK et al (2010) Post-translational derepression of invertase activity in source leavess via down-regulation of invertase inhibitor expression is part of the plant defense response. Mol Plant 3:1037–48

    Article  PubMed  CAS  Google Scholar 

  • Cairns AJ (2003) Fructan biosynthesis in transgenic plants. J Exp Bot 54:549–567

    Article  PubMed  CAS  Google Scholar 

  • Carter C, Pan SQ, Jan ZH, Avila EL, Girke T, Raikhel NV (2004) The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. Plant Cell 16:3285–3303

    Article  PubMed  CAS  Google Scholar 

  • Cho YH, Yoo SD (2011) Signaling role of fructose mediated by FINS1/FBP in Arabidopsis thaliana. Plos Genet 7:e1001263

    Google Scholar 

  • Davidson DJ, Chevalier PM (1992) Storage and remobilization of water-soluble carbohydrates in stems of spring wheat. Crop Sci 32:186–190

    Article  CAS  Google Scholar 

  • De Coninck B, Le Roy K, Francis I et al (2005) Arabidopsis AtcwINV 3 and 6 are not invertases but are fructan exohydrolases (FEHs) with different substrate specificities. Plant Cell Environ 28:432–443

    Article  Google Scholar 

  • De Gara L, de Pinto MC, Moliterni VMC, D’Egidio MG (2003) Redox regulation and storage processes during maturation in kernels of Triticum durum. J Exp Bot 54:249–258

    Article  PubMed  CAS  Google Scholar 

  • De Roover J, Vandenbranden K, Van Laere A, Van den Ende W (2000) Drought induces fructan synthesis and 1-SST (sucrose: sucrose fructosyltransferase) in roots and leaves of chicory seedlings (Cichorium intybus L.). Planta 210:808–814

    Article  PubMed  Google Scholar 

  • Debnam PM, Fernie AR, Leisse A et al (2004) Altered activity of the P2 isoform of plastidic glucose 6-phosphate dehydrogenase in tobacco (Nicotiana tabacum cv. Samsun) causes changes in carbohydrate metabolism and response to oxidative stress in leaves. Plant J 38:49–59

    Article  PubMed  CAS  Google Scholar 

  • Djilianov D, Ivanov S, Moyankova D et al (2011) Sugar ratios, glutathione redox status and phenols in the resurrection species Haberlea rhodopensis and the closely related non-resurrection species Chirita eberhardtii. Plant Biology 13:767–776

    Google Scholar 

  • Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trehalose: A multifunctional molecule. Glycobiology 13:17R-27R

    Article  PubMed  CAS  Google Scholar 

  • Espinoza C, Degenkolbe T, Caldana C et al (2010) Interaction with diurnal and circadian regulation results in dynamic metabolic and transcriptional changes during cold acclimation in Arabidopsis. Plos One 5:19

    Article  CAS  Google Scholar 

  • Ferreres F, Figueiredo R, Bettencourt S et al (2011) Identification of phenolic compounds in isolated vacuoles of the medicinal plant Catharanthus roseus and their interaction with vacuolar class III peroxidase: An H2O2 affair?. J Exp Bot 62:2841–2854

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100

    Article  PubMed  CAS  Google Scholar 

  • Frank G, Pressman E, Ophir R et al (2009) Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response. J Exp Bot 60:3891–3908

    Article  PubMed  CAS  Google Scholar 

  • Gadegaard G, Didion T, Foiling M, Storgaard M, Andersen CH, Nielsen KK (2008) Improved fructan accumulation in perennial ryegrass transformed with the onion fructosyl transferase genes 1-SST and 6G-FFT. J Plant Physiol 165:1214–1225

    Article  CAS  Google Scholar 

  • Garg AK, Kim JK, Owens TG et al (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc  Natl Acad Sci U S Am 99:15898–15903

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol  Bioch 48:909–930

    Article  CAS  Google Scholar 

  • He XMM, Liu HW (2002) Formation of unusual sugars: Mechanistic studies and biosynthetic applications. Ann Rev Biochem 71:701–754

    Article  PubMed  CAS  Google Scholar 

  • Hellwege EM, Czapla S, Jahnke A, Willmitzer L, Heyer AG (2000) Transgenic potato (Solanum tuberosum) tubers synthesize the full spectrum of inulin molecules naturally occurring in globe artichoke (Cynara scolymus) roots. Proc Natl Acad Sci US Am 97:8699–8704

    Article  CAS  Google Scholar 

  • Hendry GAF (1993) Evolutionary origins and natural functions of fructans—A climatological, biogeographic and mechanistiv appraisal. New Phytol 123:3–14

    Article  CAS  Google Scholar 

  • Hincha DK, Zuther E, Hellwege EM, Heyer AG (2002) Specific effects of fructo- and gluco-oligosaccharides in the preservation of liposomes during drying. Glycobiology 12:103–110

    Article  PubMed  CAS  Google Scholar 

  • Hincha DK, Livingston DP, Premakumar R et al (2007) Fructans from oat and rye: Composition and effects on membrane stability during drying. Biochimica et Biophysica Acta-Biomembranes 1768:1611–1619

    Article  CAS  Google Scholar 

  • Hisano H, Kanazawa A, Kawakami A, Yoshida M, Shimamoto Y, Yamada T (2004) Transgenic perennial ryegrass plants expressing wheat fructosyltransferase genes accumulate increased amounts of fructan and acquire increased tolerance on a cellular level to freezing. Plant Sci 167:861–868

    Article  CAS  Google Scholar 

  • Hodges DM, Andrews CJ, Johnson DA, Hamilton RI (1997) Antioxidant enzyme responses to chilling stress in differentially sensitive inbred maize lines. J  Exp Bot 48:1105–1113

    Article  CAS  Google Scholar 

  • Hothorn M, Van den Ende W, Lammens W, Rybin V, Scheffzek K (2010) Structural insights into the pH-controlled targeting of plant cell-wall invertase by a specific inhibitor protein. Proc Natl Acad Sci US Am 107:17427–17432

    Article  CAS  Google Scholar 

  • Hughes MA, Dunn MA (1996) The molecular biology of plant acclimation to low temperature. J Exp Bot 47:291–305

    CAS  Google Scholar 

  • Iftime D, Hannah MA, Peterbauer T, Heyer AG (2011) Stachyose in the cytosol does not influence freezing tolerance of transgenic Arabidopsis expressing stachyose synthase from adzuki bean. Plant Sci 180:24–30

    Article  PubMed  CAS  Google Scholar 

  • Ji XM, Shiran B, Wan JL et al (2010) Importance of pre-anthesis anther sink strength for maintenance of grain number during reproductive stage water stress in wheat. Plant Cell Environ 33:926–942

    Article  PubMed  CAS  Google Scholar 

  • Jin Y, Ni DA, Ruan YL (2009) Posttranslational elevation of cell wall invertase activity by silencing its inhibitor in tomato delays leaf senescence and increases seed weight and fruit hexose level. Plant Cell 21:2072–2089

    Article  PubMed  CAS  Google Scholar 

  • Joudi M, Ahmadi A, Mohamadi V, Abbasi A, Vergauwen R, Mohamadi H, Van den Ende W (2011) Comparison of fructan dynamics in two wheat cultivars with different capacities of accumulation and remobilization under terminal drought stress. Physiol Plant 144:1–12

    Google Scholar 

  • Kawakami A, Yoshida M, Van den Ende W (2005) Molecular cloning and functional analysis of a novel 6&1-FEH from wheat (Triticum aestivum L.) preferentially degrading small graminans like bifurcose. Gene 358:93–101

    Article  PubMed  CAS  Google Scholar 

  • Kawakami A, Sato Y, Yoshida M (2008) Genetic engineering of rice capable of synthesizing fructans and enhancing chilling tolerance. J Exp Bot 59:793–802

    Article  PubMed  CAS  Google Scholar 

  • Klotke J, Kopka J, Gatzke N, Heyer AG (2004) Impact of soluble sugar concentrations on the acquisition of freezing tolerance in accessions of Arabidopsis thaliana with contrasting cold adaptation—evidence for a role of raffinose in cold acclimation. Plant Cell Environ 27:1395–1404

    Article  CAS  Google Scholar 

  • Koch K (2004) Sucrose metabolism: Regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7:235–246

    Article  PubMed  CAS  Google Scholar 

  • Konstantinova T, Parvanova D, Atanassov A, Djilianov D (2002) Freezing tolerant tobacco, transformed to accumulate osmoprotectants. Plant Sci 163:157–164

    Article  CAS  Google Scholar 

  • Korn M, Gartner T, Erban A, Kopka J, Selbig J, Hincha DK (2010) Predicting Arabidopsis freezing tolerance and heterosis in freezing tolerance from metabolite composition. Mol Plant 3:224–235

    Article  PubMed  CAS  Google Scholar 

  • Lara MEB, Garcia MCG, Fatima T et al (2004) Extracellular invertase is an essential component of cytokinin-mediated delay of senescence. Plant Cell 16:1276–1287

    Article  Google Scholar 

  • LeClere S, Schmelz EA, Chourey PS (2010) Sugar levels regulate tryptophan-dependent auxin biosynthesis in developing maize kernels. Plant Physiol 153:306–318

    Article  PubMed  CAS  Google Scholar 

  • Lenne T, Bryant G, Holcomb R, Koster KL (2007) How much solute is needed to inhibit the fluid to gel membrane phase transition at low hydration? Biochimica et Biophysica Acta-Biomembranes 1768:1019–1022

    Article  CAS  Google Scholar 

  • Levine H, Slade L (1991) Polymer physicochemical characterization of oligosaccharides. Acs Symposium Series 458:219–260

    Google Scholar 

  • Lewis DH (1984) Citation classic—sugar alcohols (polyols) in fungi and green plants. 1. Distribution, physiology and metabolism. Curr Contents Agr Biol Environ Sci 6:16

    Google Scholar 

  • Li HJ, Yang AF, Zhang XC, Gao F, Zhang JR (2007) Improving freezing tolerance of transgenic tobacco expressing-sucrose: sucrose 1-fructosyltransferase gene from Lactuca sativa. Plant Cell Tissue Organ Cult 89:37–48

    Article  CAS  Google Scholar 

  • Li P, Wind JJ, Shi XL et al (2011) Fructose sensitivity is suppressed in Arabidopsis by the transcription factor ANAC089 lacking the membrane-bound domain. Proc Natl Acad Sci US Am 108:3436–3441

    Article  CAS  Google Scholar 

  • Linster CL, Adler LN, Webb K, Christensen KC, Brenner C, Clarke SG (2008) A second GDP-L-galactose phosphorylase in Arabidopsis en route to vitamin C—covalent intermediate and substrate requirements for the conserved reaction. J Biol Chem 283:18483–18492

    Article  PubMed  CAS  Google Scholar 

  • Livingston DP, Tallury SP (2009) Freezing in non-acclimated oats. II: Thermal response and histology of recovery in gradual and rapidly frozen plants. Thermochimica Acta 481:20–27

    Article  CAS  Google Scholar 

  • Lothier J, Lasseur B, Prud’homme MP, Morvan-Bertrand A (2010) Hexokinase-dependent sugar signaling represses fructan exohydrolase activity in Lolium perenne. Funct Plant Biol 37:1151–1160

    Article  CAS  Google Scholar 

  • Lou Y, Gou JY, Xue HW (2007) PIP5K9, an Arabidopsis phosphatidylinositol monophosphate kinase, interacts with a cytosolic invertase to negatively regulate sugar-mediated root growth. Plant Cell 19:163–181

    Article  PubMed  CAS  Google Scholar 

  • Ma YY, Zhang YL, Lu J, Shao HB (2009) Roles of plant soluble sugars and their responses to plant cold stress. Afr J Biotechnol 8:2004–2010

    CAS  Google Scholar 

  • Michiels A, Van Laere A, Van den Ende W, Tucker M (2004) Expression analysis of a chicory fructan 1-exohydrolase gene reveals complex regulation by cold. J Exp Bot 55:1325–1333

    Article  PubMed  CAS  Google Scholar 

  • Moore B, Zhou L, Rolland F et al (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Sci 300:332–336

    Article  CAS  Google Scholar 

  • Moore JP, Westall KL, Ravenscroft N, Farrant JM, Lindsey GG, Brandt WF (2005) The predominant polyphenol in the leaves of the resurrection plant Myrothamnus flabellifolius, 3,4,5 tri-O-galloylquinic acid, protects membranes against desiccation and free radical-induced oxidation. Biochem J 385:301–308

    Article  PubMed  CAS  Google Scholar 

  • Muller B, Pantin F, Genard M et al (2011) Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. J Exp Bot 62:1715–1729

    Article  PubMed  CAS  Google Scholar 

  • Muller J, Boller T, Wiemken A (1995) Trehalose and trehalase in plants: Recent developments. Plant Sci 112:1–9

    Article  Google Scholar 

  • Mundree SG, Baker B, Mowla S et al (2002) Physiological and molecular insights into drought tolerance. Afr J Biotechnol 1:28–38

    CAS  Google Scholar 

  • Nagao M, Oku K, Minami A et al (2006) Accumulation of theanderose in association with development of freezing tolerance in the moss Physcomitrella patens. Phytochemistry 67:702–709

    Article  PubMed  CAS  Google Scholar 

  • Nery DDM, da Silva CG, Mariani D et al (2008) The role of trehalose and its transporter in protection against reactive oxygen species. Biochimica et Biophysica Acta-General Subjects 1780:1408–1411

    Article  CAS  Google Scholar 

  • Nguyen GN, Hailstones DL, Wilkes M, Sutton BG (2010) Role of carbohydrate metabolism in drought-induced male sterility in rice anthers. J Agron Crop Sci 196:346–357

    Article  CAS  Google Scholar 

  • Nishizawa A, Yabuta Y, Shigeoka S (2008) Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol 147:1251–1263

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi S, Miyoshi T, Shirai S (2010) Low temperature stress at different flower developmental stages affects pollen development, pollination, and pod set in soybean. Environ Exp Bot 69:56–62

    Article  Google Scholar 

  • Otto T, Zoitan T, Scott P (2009) Vegetative desiccation tolerance: Is it a goldmine for bioengineering crops? Plant Sci 176:187–199

    Article  CAS  Google Scholar 

  • Pan W, Sunayama Y, Nagata Y et al (2009) Cloning of a cDNA encoding the sucrose: sucrose 1-fructosyltransferase (1-SST) from yacon and its expression in transgenic rice. Biotechnol Equipment 23:1479–1484

    Article  CAS  Google Scholar 

  • Paradiso A, Cecchini C, De Gara L, D’Egidio MG (2006) Functional, antioxidant and rheological properties of meal from immature durum wheat. J Cereal Sci 43:216–222

    Article  CAS  Google Scholar 

  • Parvanova D, Popova A, Zaharieva I et al (2004) Low temperature tolerance of tobacco plants transformed to accumulate proline, fructans, or glycine betaine. Variable chlorophyll fluorescence evidence. Photosynthetica 42:179–185

    Article  CAS  Google Scholar 

  • Pennycooke JC, Jones ML, Stushnoff C (2003) Down-regulating alpha-galactosidase enhances freezing tolerance in transgenic petunia. Plant Physiol 133:901–909

    Article  PubMed  CAS  Google Scholar 

  • Peters S, Keller F (2009) Frost tolerance in excised leaves of the common bugle (Ajuga reptans L.) correlates positively with the concentrations of raffinose family oligosaccharides (RFOs). Plant Cell Environ 32:1099–1107

    Article  PubMed  CAS  Google Scholar 

  • Peters S, Mundree SG, Thomson JA, Farrant JM, Keller F (2007) Protection mechanisms in the resurrection plant Xerophyta viscosa (Baker): Both sucrose and raffinose family oligosaccharides (RFOs) accumulate in leaves in response to water deficit. J Exp Bot 58:1947–1956

    Article  PubMed  CAS  Google Scholar 

  • Plaut Z, Butow BJ, Blumenthal CS, Wrigley CW (2004) Transport of dry matter into developing wheat kernels and its contribution to grain yield under post-anthesis water deficit and elevated temperature. Field Crops Res 86:185–198

    Article  Google Scholar 

  • Pollock CJ, Cairns AJ (1991) Fructan metabolism in grasses and cereals. Annu Rev Plant Physiol Plant Mol Biol 42:77–101

    Article  CAS  Google Scholar 

  • Pollock CJ, Cairns AJ, Gallagher J, Harrison J (1999) The integration of sucrose and fructan metabolism in temperate grasses and cereals. In: Kruger NJ, Hill SA, Ratcliffe RG (eds) Regulation of primary metabolic pathways in plants. pp. 195–226

    Google Scholar 

  • Proels RK, Roitsch T (2009) Extracellular invertase LIN6 of tomato: A pivotal enzyme for integration of metabolic, hormonal, and stress signals is regulated by a diurnal rhythm. J Exp Bot 60:1555–1567

    Article  PubMed  CAS  Google Scholar 

  • Queval G, Jaillard D, Zechmann B, Noctor G (2011) Increased intracellular H2O2 availability preferentially drives glutathione accumulation in vacuoles and chloroplasts. Plant Cell Environ 34:21–32

    Article  PubMed  CAS  Google Scholar 

  • Roberfroid MP (2007) The concept revisited. J Nutrition 137:830S-7S

    CAS  Google Scholar 

  • Roitsch T, Balibrea ME, Hofmann M, Proels R, Sinha AK (2003) Extracellular invertase: Key metabolic enzyme and PR protein. J Exp Bot 54:513–524

    Article  PubMed  CAS  Google Scholar 

  • Roitsch T, Gonzalez MC (2004) Function and regulation of plant invertases: Sweet sensations. Trends Plant Sci 9:606–613

    Article  PubMed  CAS  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: Conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    Article  PubMed  CAS  Google Scholar 

  • Ruan YL, Jin Y, Yang YJ, Li GJ, Boyer JS (2010) Sugar input, metabolism, and signaling mediated by invertase: Roles in development, yield potential, and response to drought and heat. Mol Plant 3:942–955

    Article  PubMed  CAS  Google Scholar 

  • Salerno GL, Curatti L (2003) Origin of sucrose metabolism in higher plants: When, how and why? Trends Plant Sci 8:63–69

    Article  PubMed  CAS  Google Scholar 

  • Sauter JJ, Wisniewski M, Witt W (1996) Interrelationships between ultrastructure, sugar levels, and frost hardiness of ray parenchyma cells during frost acclimation and deacclimation in poplar (Populus x canadensis Moench ‘robusta’) wood. J Plant Physiol 149:451–461

    Article  CAS  Google Scholar 

  • Schneider T, Keller F (2009) Raffinose in chloroplasts is synthesized in the cytosol and transported across the chloroplast envelope. Plant Cell Physiol 50:2174–2182

    Article  PubMed  CAS  Google Scholar 

  • Sevenier R, Hall RD, Van Der Meer IM, Hakkert HJC, van Tunen AJ, Koops AJ (1998) High level fructan accumulation in a transgenic sugar beet. Nat Biotechnol 16:843–846

    Article  PubMed  CAS  Google Scholar 

  • Shen B, Jensen RG, Bohnert HJ (1997) Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiol 113:1177–1183

    Article  PubMed  CAS  Google Scholar 

  • Sinkevich MS, Naraykina NV, Trunova TI (2010) Sugars participate in the antioxidant protection from oxidative stress induced by paraquat in the case of potato transformed with yeast invertase gene. Doklady Akademii Nauk 434:570–573

    Google Scholar 

  • Skirycz A, Vandenbroucke K, Clauw P et al (2011) Survival and growth of Arabidopsis plants given limited water are not equal. Nat Biotechnol 29:212–214

    Article  PubMed  CAS  Google Scholar 

  • Smeekens S, Ma JK, Hanson J, Rolland F (2010) Sugar signals and molecular networks controlling plant growth. Curr Opinion Plant Biol 13:274–279

    Article  CAS  Google Scholar 

  • Stoop JM, Van Arkel J, Hakkert JC, Tyree C, Caimi PG, Koops AJ (2007) Developmental modulation of inulin accumulation in storage organs of transgenic maize and transgenic potato. Plant Sci 173:172–181

    Article  CAS  Google Scholar 

  • Stoyanova S, Geuns J, Hideg E, Van den Ende W (2011) The food additives inulin and stevioside counteract oxidative stress. Int J Food Sci Nutrition 62:207–214

    Article  CAS  Google Scholar 

  • Taji T, Ohsumi C, Iuchi S et al (2002) Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J 29:417–426

    Article  PubMed  CAS  Google Scholar 

  • Tapernoux-Luthi EM, Bohm A, Keller F (2004) Cloning, functional expression, and characterization of the raffinose oligosaccharide chain elongation enzyme, galactan: galactan galactosyltransferase, from common bugle leaves. Plant Physiol 134:1377–1387

    Article  PubMed  CAS  Google Scholar 

  • Tester M, Bacic A (2005) Abiotic stress tolerance in grasses. From model plants to crop plants. Plant Physiol 137:791–793

    Article  PubMed  CAS  Google Scholar 

  • Uemura M, Steponkus PL (1999) Cold acclimation in plants: Relationship between the lipid composition and the cryostability of the plasma membrane. J Plant Res 112:245–254

    Article  Google Scholar 

  • Valluru R, Lammens W, Claupein W, Van den Ende W (2008) Freezing tolerance by vesicle-mediated fructan transport. Trends Plant Sci 13:409–414

    Article  PubMed  CAS  Google Scholar 

  • Valluru R, Van den Ende W (2008) Plant fructans in stress environments: Emerging concepts and future prospects. J Exp Bot 59:2905–2916

    Article  PubMed  CAS  Google Scholar 

  • Van den Ende W, Michiels A, Van Wonterghem D, Clerens SP, De Roover J, Van Laere AJ (2001) Defoliation induces fructan 1-exohydrolase II in witloof chicory roots. Cloning and purification of two isoforms, fructan 1-exohydrolase IIa and fructan 1-exohydrolase IIb. Mass fingerprint of the fructan 1-exohydrolase II enzymes. Plant Physiol 126:1186–1195

    Article  PubMed  CAS  Google Scholar 

  • Van den Ende W, Michiels A, Le Roy K, Van Laere A (2002) Cloning of a vacuolar invertase from Belgian endive leaves (Cichorium intybus). Physiol Plantarum 115:504–512

    Article  CAS  Google Scholar 

  • Van den Ende W, Valluru R (2009) Sucrose, sucrosyl oligosaccharides, and oxidative stress: Scavenging and salvaging? J Exp Bot 60:9–18

    Article  PubMed  CAS  Google Scholar 

  • Van den Ende W, Coopman M, Clerens S et al (2011) Unexpected presence of graminan- and levan-type fructans in the evergreen frost-hardy eudicot Pachysandra terminalis (Buxaceae): Purification, cloning, and functional analysis of a 6-SST/6-SFT enzyme. Plant Physiol 155:603–614

    Article  PubMed  CAS  Google Scholar 

  • Van Laere A, Van den Ende W (2002) Inulin metabolism in dicots: Chicory as a model system. Plant Cell Environ 25:803–813

    Article  Google Scholar 

  • Vanhaecke M, Van den Ende W, Lescrinier E, Dyubankova N (2008) Isolation and characterization of a pentasaccharide from Stellaria media. J Nat Prod 71:1833–1836

    Article  PubMed  CAS  Google Scholar 

  • Vanhaecke M, Dyubankova N, Lescrinier E, Van den Ende W (2010) Metabolism of galactosyl-oligosaccharides in Stellaria media—discovery of stellariose synthase, a novel type of galactosyltransferase. Phytochemistry 71:1095–1103

    Article  PubMed  CAS  Google Scholar 

  • Vereyken IJ, van Kuik JA, Evers TH, Rijken PJ, de Kruijff B (2003) Structural requirements of the fructan-lipid interaction. Bioph J 84:3147–3154

    Article  CAS  Google Scholar 

  • Vergauwen R, Van den Ende W, Van Laere A (2000) The role of fructan in flowering of Campanula rapunculoides. J Exp Bot 51:1261–1266

    Article  Google Scholar 

  • Vijn I, van Dijken A, Sprenger N et al (1997) Fructan of the inulin neoseries is synthesized in transgenic chicory plants (Cichorium intybus L) harbouring onion (Allium cepa L) fructan: fructan 6G-fructosyltransferase. Plant J 11:387–398

    Article  PubMed  CAS  Google Scholar 

  • Weber H, Borisjuk L, Heim U, Buchner P, Wobus U (1995) Seed coat-associated invertases of fava-bean control both unloading and storage functions—cloning of cDNA and cell-type-specific expression. Plant Cell 7:1835–1846

    PubMed  CAS  Google Scholar 

  • Wolfe J, Bryant G (1999) Freezing, drying, and/or vitrification of membrane-solute-water systems. Cryobiology 39:103–129

    Article  PubMed  CAS  Google Scholar 

  • Xiang L, Le Roy K, Bolouri-Moghaddam MR et al (2011) Exploring the neutral invertase—oxidative stress defence connection in Arabidopsis thaliana. J Exp Bot 62:1871–1885

    Google Scholar 

  • Xue GP, McIntyre CL, Jenkins CLD, Glassop D, van Herwaarden AF, Shorter R (2008) Molecular dissection of variation in carbohydrate metabolism related to water-soluble carbohydrate accumulation in stems of wheat. Plant Physiol 146:441–454

    Article  PubMed  CAS  Google Scholar 

  • Yang JC, Zhang JH (2006) Grain filling of cereals under soil drying. New Phytol 169:223–236

    Article  PubMed  CAS  Google Scholar 

  • Zechmann B, Stumpe M, Mauch F (2011) Immunocytochemical determination of the subcellular distribution of ascorbate in plants. Planta 233:1–12

    Article  PubMed  CAS  Google Scholar 

  • Zhang YH, Primavesi LF, Jhurreea D et al (2009) Inhibition of SNF1-related protein kinase1 activity and regulation of metabolic pathways by trehalose-6-phosphate. Plant Physiol 149:1860–1871

    Article  PubMed  CAS  Google Scholar 

  • Zinn KE, Tunc-Ozdemir M, Harper JF (2010) Temperature stress and plant sexual reproduction: Uncovering the weakest links. J Exp Bot 61:1959–1968

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim Van den Ende .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ende, W.V., Peshev, D. (2013). Sugars as Antioxidants in Plants. In: Tuteja, N., Gill, S. (eds) Crop Improvement Under Adverse Conditions. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4633-0_13

Download citation

Publish with us

Policies and ethics