Skip to main content

The Role of Mitochondria in the Metabolic Syndrome and Insulin Resistance

  • Chapter
  • First Online:
Mitochondria and Their Role in Cardiovascular Disease
  • 1779 Accesses

Abstract

Recent studies indicate that mitochondrial function is altered in the insulin-resistant myocardium, and this contributes to complex metabolic problems, such as obesity and diabetes mellitus, factors of significant cardiovascular mortality. Mitochondrial dysfunction and uncoupling are induced by fatty acids leading to reduction of cardiac efficiency by limiting ATP production and increasing myocardial oxygen consumption. Insulin resistance is a major factor in the pathogenesis of type 2 diabetes in the elderly and age-related changes associated with increased fat accumulation and reduction in mitochondrial oxidative phosphorylation activity, indicating that an age-associated decline in mitochondrial function contributes to insulin resistance in the elderly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DeFronzo RA, Tripathy D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care. 2009;32 Suppl 2:S157–63.

    Article  PubMed  CAS  Google Scholar 

  2. Wilson PW, D’Agostino RB, Parise H, Sullivan L, Meigs JB. Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation. 2005;112(20):3066–72.

    Article  PubMed  CAS  Google Scholar 

  3. Haffner SM. Epidemiology of insulin resistance and its relation to coronary artery disease. Am J Cardiol. 1999;84(1A):11J–4.

    Article  PubMed  CAS  Google Scholar 

  4. Zavaroni I, Bonora E, Pagliara M, et al. Risk factors for coronary artery disease in healthy persons with hyperinsulinemia and normal glucose tolerance. N Engl J Med. 1989;320(11):702–6.

    Article  PubMed  CAS  Google Scholar 

  5. Zimmet P, Magliano D, Matsuzawa Y, Alberti G, Shaw J. The metabolic syndrome: a global public health problem and a new definition. J Atheroscler Thromb. 2005;12(6):295–300.

    Article  PubMed  CAS  Google Scholar 

  6. Bonora E, Kiechl S, Willeit J, et al. Metabolic syndrome: epidemiology and more extensive phenotypic description. Cross-sectional data from the Bruneck Study. Int J Obes Relat Metab Disord. 2003;27(10):1283–9.

    Article  PubMed  CAS  Google Scholar 

  7. Hirabara SM, Curi R, Maechler P. Saturated fatty acid-induced insulin resistance is associated with mitochondrial dysfunction in skeletal muscle cells. J Cell Physiol. 2010;222(1):187–94.

    Article  PubMed  CAS  Google Scholar 

  8. Nisoli E, Clementi E, Carruba MO, Moncada S. Defective mitochondrial biogenesis: a hallmark of the high cardiovascular risk in the metabolic syndrome? Circ Res. 2007;100(6):795–806.

    Article  PubMed  CAS  Google Scholar 

  9. Deng JY, Huang JP, Lu LS, Hung LM. Impairment of cardiac insulin signaling and myocardial contractile performance in high-cholesterol/fructose-fed rats. Am J Physiol Heart Circ Physiol. 2007;293(2):H978–87.

    Article  PubMed  CAS  Google Scholar 

  10. Belke DD, Larsen TS, Gibbs EM, Severson DL. Altered metabolism causes cardiac dysfunction in perfused hearts from diabetic (db/db) mice. Am J Physiol Endocrinol Metab. 2000;279(5): E1104–13.

    PubMed  CAS  Google Scholar 

  11. Duncan JG, Fong JL, Medeiros DM, Finck BN, Kelly DP. Insulin-resistant heart exhibits a mitochondrial biogenic response driven by the peroxisome proliferator-activated receptor-alpha/PGC-1alpha gene regulatory pathway. Circulation. 2007;115(7): 909–17.

    Article  PubMed  CAS  Google Scholar 

  12. Zhou YT, Grayburn P, Karim A, et al. Lipotoxic heart disease in obese rats: implications for human obesity. Proc Natl Acad Sci USA. 2000;97(4):1784–9.

    Article  PubMed  CAS  Google Scholar 

  13. Ye G, Metreveli NS, Ren J, Epstein PN. Metallothionein prevents diabetes-induced deficits in cardiomyocytes by inhibiting reactive oxygen species production. Diabetes. 2003;52(3):777–83.

    Article  PubMed  CAS  Google Scholar 

  14. Mellor KM, Bell JR, Young MJ, Ritchie RH, Delbridge LM. Myocardial autophagy activation and suppressed survival signaling is associated with insulin resistance in fructose-fed mice. J Mol Cell Cardiol. 2011;50(6):1035–43.

    Article  PubMed  CAS  Google Scholar 

  15. Yonezawa K, Ando A, Kaburagi Y, et al. Signal transduction pathways from insulin receptors to Ras. Analysis by mutant insulin receptors. J Biol Chem. 1994;269(6):4634–40.

    PubMed  CAS  Google Scholar 

  16. Nystrom FH, Quon MJ. Insulin signalling: metabolic pathways and mechanisms for specificity. Cell Signal. 1999;11(8):563–74.

    Article  PubMed  CAS  Google Scholar 

  17. Morino K, Petersen KF, Shulman GI. Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes. 2006;55 Suppl 2:S9–15.

    Article  PubMed  CAS  Google Scholar 

  18. Zick Y. Ser/Thr phosphorylation of IRS proteins: a molecular basis for insulin resistance. Sci STKE. 2005;2005(268):pe4.

    Article  PubMed  Google Scholar 

  19. Morino K, Petersen KF, Dufour S, et al. Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. J Clin Invest. 2005;115(12):3587–93.

    Article  PubMed  CAS  Google Scholar 

  20. Nishikawa T, Araki E. Impact of mitochondrial ROS production in the pathogenesis of diabetes mellitus and its complications. Antioxid Redox Signal. 2007;9(3):343–53.

    Article  PubMed  CAS  Google Scholar 

  21. Itani SI, Ruderman NB, Schmieder F, Boden G. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes. 2002;51(7):2005–11.

    Article  PubMed  CAS  Google Scholar 

  22. Griffin ME, Marcucci MJ, Cline GW, et al. Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes. 1999;48(6):1270–4.

    Article  PubMed  CAS  Google Scholar 

  23. Yu C, Chen Y, Cline GW, et al. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem. 2002;277(52):50230–6.

    Article  PubMed  CAS  Google Scholar 

  24. Kim JK, Fillmore JJ, Sunshine MJ, et al. PKC-theta knockout mice are protected from fat-induced insulin resistance. J Clin Invest. 2004;114(6):823–7.

    PubMed  CAS  Google Scholar 

  25. Whaley-Connell A, Govindarajan G, Habibi J, et al. Angiotensin II-mediated oxidative stress promotes myocardial tissue remodeling in the transgenic (mRen2) 27 Ren2 rat. Am J Physiol Endocrinol Metab. 2007;293(1):E355–63.

    Article  PubMed  CAS  Google Scholar 

  26. Cooper SA, Whaley-Connell A, Habibi J, et al. Renin-angiotensin-aldosterone system and oxidative stress in cardiovascular insulin resistance. Am J Physiol Heart Circ Physiol. 2007;293(4): H2009–23.

    Article  PubMed  CAS  Google Scholar 

  27. Stas S, Whaley-Connell A, Habibi J, et al. Mineralocorticoid receptor blockade attenuates chronic overexpression of the renin-angiotensin-aldosterone system stimulation of reduced nicotinamide adenine dinucleotide phosphate oxidase and cardiac remodeling. Endocrinology. 2007;148(8):3773–80.

    Article  PubMed  CAS  Google Scholar 

  28. Whaley-Connell A, Habibi J, Cooper SA, et al. Effect of renin inhibition and AT1R blockade on myocardial remodeling in the transgenic Ren2 rat. Am J Physiol Endocrinol Metab. 2008;295(1):E103–9.

    Article  PubMed  CAS  Google Scholar 

  29. Brandes RP. Triggering mitochondrial radical release: a new function for NADPH oxidases. Hypertension. 2005;45(5):847–8.

    Article  PubMed  CAS  Google Scholar 

  30. Wei Y, Whaley-Connell AT, Habibi J, et al. Mineralocorticoid receptor antagonism attenuates vascular apoptosis and injury via rescuing protein kinase B activation. Hypertension. 2009;53(2):158–65.

    Article  PubMed  CAS  Google Scholar 

  31. Kim JA, Wei Y, Sowers JR. Role of mitochondrial dysfunction in insulin resistance. Circ Res. 2008;102(4):401–14.

    Article  PubMed  CAS  Google Scholar 

  32. Dong F, Li Q, Sreejayan N, Nunn JM, Ren J. Metallothionein prevents high-fat diet induced cardiac contractile dysfunction: role of peroxisome proliferator activated receptor gamma coactivator 1alpha and mitochondrial biogenesis. Diabetes. 2007;56(9): 2201–12.

    Article  PubMed  CAS  Google Scholar 

  33. Shigenaga MK, Hagen TM, Ames BN. Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci USA. 1994;91(23):10771–8.

    Article  PubMed  CAS  Google Scholar 

  34. Kelley DE, He J, Menshikova EV, Ritov VB. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes. 2002;51(10):2944–50.

    Article  PubMed  CAS  Google Scholar 

  35. Yechoor VK, Patti ME, Saccone R, Kahn CR. Coordinated patterns of gene expression for substrate and energy metabolism in skeletal muscle of diabetic mice. Proc Natl Acad Sci USA. 2002;99(16):10587–92.

    Article  PubMed  CAS  Google Scholar 

  36. Patti ME, Butte AJ, Crunkhorn S, et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc Natl Acad Sci USA. 2003;100(14):8466–71.

    Article  PubMed  CAS  Google Scholar 

  37. Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med. 2004;350(7):664–71.

    Article  PubMed  CAS  Google Scholar 

  38. Shen X, Zheng S, Thongboonkerd V, et al. Cardiac mitochondrial damage and biogenesis in a chronic model of type 1 diabetes. Am J Physiol Endocrinol Metab. 2004;287(5):E896–905.

    Article  PubMed  CAS  Google Scholar 

  39. How OJ, Aasum E, Severson DL, Chan WY, Essop MF, Larsen TS. Increased myocardial oxygen consumption reduces cardiac efficiency in diabetic mice. Diabetes. 2006;55(2):466–73.

    Article  PubMed  CAS  Google Scholar 

  40. Buchanan J, Mazumder PK, Hu P, et al. Reduced cardiac efficiency and altered substrate metabolism precedes the onset of hyperglycemia and contractile dysfunction in two mouse models of insulin resistance and obesity. Endocrinology. 2005;146(12):5341–9.

    Article  PubMed  CAS  Google Scholar 

  41. Nisoli E, Clementi E, Paolucci C, et al. Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science. 2003;299(5608):896–9.

    Article  PubMed  CAS  Google Scholar 

  42. Le Gouill E, Jimenez M, Binnert C, et al. Endothelial nitric oxide synthase (eNOS) knockout mice have defective mitochondrial beta-oxidation. Diabetes. 2007;56(11):2690–6.

    Article  PubMed  CAS  Google Scholar 

  43. Nisoli E, Tonello C, Cardile A, et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science. 2005;310(5746):314–7.

    Article  PubMed  CAS  Google Scholar 

  44. Bergeron R, Ren JM, Cadman KS, et al. Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis. Am J Physiol Endocrinol Metab. 2001;281(6):E1340–6.

    PubMed  CAS  Google Scholar 

  45. Winder WW, Holmes BF, Rubink DS, Jensen EB, Chen M, Holloszy JO. Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle. J Appl Physiol. 2000;88(6):2219–26.

    PubMed  CAS  Google Scholar 

  46. Reznick RM, Shulman GI. The role of AMP-activated protein kinase in mitochondrial biogenesis. J Physiol. 2006;574(Pt 1): 33–9.

    Article  PubMed  CAS  Google Scholar 

  47. Jager S, Handschin C, St-Pierre J, Spiegelman BM. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci USA. 2007;104(29):12017–22.

    Article  PubMed  CAS  Google Scholar 

  48. Hayashi T, Hirshman MF, Kurth EJ, Winder WW, Goodyear LJ. Evidence for 5′ AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes. 1998;47(8):1369–73.

    Article  PubMed  CAS  Google Scholar 

  49. Wu Z, Puigserver P, Andersson U, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 1999;98(1):115–24.

    Article  PubMed  CAS  Google Scholar 

  50. Mootha VK, Lindgren CM, Eriksson KF, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34(3):267–73.

    Article  PubMed  CAS  Google Scholar 

  51. Butler J, Rodondi N, Zhu Y, et al. Metabolic syndrome and the risk of cardiovascular disease in older adults. J Am Coll Cardiol. 2006;47(8):1595–602.

    Article  PubMed  Google Scholar 

  52. Goldberg AP, Coon PJ. Non-insulin-dependent diabetes mellitus in the elderly. Influence of obesity and physical inactivity. Endocrinol Metab Clin North Am. 1987;16(4):843–65.

    PubMed  CAS  Google Scholar 

  53. Scheen AJ. Diabetes mellitus in the elderly: insulin resistance and/or impaired insulin secretion? Diabetes Metab. 2005;31(Spec No 2):5S27–34.

    Article  PubMed  CAS  Google Scholar 

  54. Barazzoni R. Skeletal muscle mitochondrial protein metabolism and function in ageing and type 2 diabetes. Curr Opin Clin Nutr Metab Care. 2004;7(1):97–102.

    Article  PubMed  CAS  Google Scholar 

  55. Haidet GC. Effect of age on cardiovascular responses to static muscular contraction in beagles. J Appl Physiol. 1992;73(6):2320–7.

    PubMed  CAS  Google Scholar 

  56. Petersen KF, Befroy D, Dufour S, et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science. 2003;300(5622):1140–2.

    Article  PubMed  CAS  Google Scholar 

  57. Bhashyam S, Parikh P, Bolukoglu H, et al. Aging is associated with myocardial insulin resistance and mitochondrial dysfunction. Am J Physiol Heart Circ Physiol. 2007;293(5):H3063–71.

    Article  PubMed  CAS  Google Scholar 

  58. Li QX, Zhang QJ, Zhang HF, et al. Exercise improves aging-associated myocardial insulin resistance by enhancing mitochondrial function in an eNOS dependent mechanism. Circulation. 2007;116:II_346.

    Google Scholar 

  59. Shulman GI. Cellular mechanisms of insulin resistance. J Clin Invest. 2000;106(2):171–6.

    Article  PubMed  CAS  Google Scholar 

  60. Mogensen M, Sahlin K, Fernstrom M, et al. Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes. 2007;56(6):1592–9.

    Article  PubMed  CAS  Google Scholar 

  61. Conley KE, Jubrias SA, Esselman PC. Oxidative capacity and ageing in human muscle. J Physiol. 2000;526(Pt 1):203–10.

    Article  PubMed  CAS  Google Scholar 

  62. Michikawa Y, Mazzucchelli F, Bresolin N, Scarlato G, Attardi G. Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science. 1999;286(5440):774–9.

    Article  PubMed  CAS  Google Scholar 

  63. Ling C, Poulsen P, Carlsson E, et al. Multiple environmental and genetic factors influence skeletal muscle PGC-1alpha and PGC-1beta gene expression in twins. J Clin Invest. 2004;114(10):1518–26.

    PubMed  CAS  Google Scholar 

  64. Lee CK, Klopp RG, Weindruch R, Prolla TA. Gene expression profile of aging and its retardation by caloric restriction. Science. 1999;285(5432):1390–3.

    Article  PubMed  CAS  Google Scholar 

  65. Hyyti OM, Ledee D, Ning XH, Ge M, Portman MA. Aging impairs myocardial fatty acid and ketone oxidation and modifies cardiac functional and metabolic responses to insulin in mice. Am J Physiol Heart Circ Physiol. 2010;299(3):H868–75.

    Article  PubMed  CAS  Google Scholar 

  66. Remes AM, Majamaa K, Herva R, Hassinen IE. Adult-onset diabetes mellitus and neurosensory hearing loss in maternal relatives of MELAS patients in a family with the tRNA(Leu(UUR)) mutation. Neurology. 1993;43(5):1015–20.

    Article  PubMed  CAS  Google Scholar 

  67. Gerbitz KD, Paprotta A, Jaksch M, Zierz S, Drechsel J. Diabetes mellitus is one of the heterogeneous phenotypic features of a mitochondrial DNA point mutation within the tRNALeu(UUR) gene. FEBS Lett. 1993;321(2–3):194–6.

    Article  PubMed  CAS  Google Scholar 

  68. Gerbitz KD, van den Ouweland JM, Maassen JA, Jaksch M. Mitochondrial diabetes mellitus: a review. Biochim Biophys Acta. 1995;1271(1):253–60.

    Article  PubMed  Google Scholar 

  69. Chinnery PF, Taylor DJ, Brown DT, Manners D, Styles P, Lodi R. Very low levels of the mtDNA A3243G mutation associated with mitochondrial dysfunction in vivo. Ann Neurol. 2000;47(3): 381–4.

    Article  PubMed  CAS  Google Scholar 

  70. Sasarman F, Antonicka H, Shoubridge EA. The A3243G tRNALeu(UUR) MELAS mutation causes amino acid misincorporation and a combined respiratory chain assembly defect partially suppressed by overexpression of EFTu and EFG2. Hum Mol Genet. 2008;17(23):3697–707.

    Article  PubMed  CAS  Google Scholar 

  71. Fornuskova D, Brantova O, Tesarova M, et al. The impact of mitochondrial tRNA mutations on the amount of ATP synthase differs in the brain compared to other tissues. Biochim Biophys Acta. 2008;1782(5):317–25.

    Article  PubMed  CAS  Google Scholar 

  72. Hayashi J, Ohta S, Takai D, et al. Accumulation of mtDNA with a mutation at position 3271 in tRNA(Leu)(UUR) gene introduced from a MELAS patient to HeLa cells lacking mtDNA results in progressive inhibition of mitochondrial respiratory function. Biochem Biophys Res Commun. 1993;197(3):1049–55.

    Article  PubMed  CAS  Google Scholar 

  73. Swalwell H, Blakely EL, Sutton R, et al. A homoplasmic mtDNA variant can influence the phenotype of the pathogenic m.7472Cins MTTS1 mutation: are two mutations better than one? Eur J Hum Genet. 2008;16(10):1265–74.

    Article  PubMed  CAS  Google Scholar 

  74. Lynn S, Wardell T, Johnson MA, et al. Mitochondrial diabetes: investigation and identification of a novel mutation. Diabetes. 1998;47(11):1800–2.

    Article  PubMed  CAS  Google Scholar 

  75. Akita Y, Koga Y, Iwanaga R, et al. Fatal hypertrophic cardiomyopathy associated with an A8296G mutation in the mitochondrial tRNA(Lys) gene. Hum Mutat. 2000;15(4):382.

    Article  PubMed  CAS  Google Scholar 

  76. Hao H, Bonilla E, Manfredi G, DiMauro S, Moraes CT. Segregation patterns of a novel mutation in the mitochondrial tRNA glutamic acid gene associated with myopathy and diabetes mellitus. Am J Hum Genet. 1995;56(5):1017–25.

    PubMed  CAS  Google Scholar 

  77. Linnane AW, Marzuki S, Ozawa T, Tanaka M. Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancet. 1989;1(8639):642–5.

    Article  PubMed  CAS  Google Scholar 

  78. Gerbitz KD. Does the mitochondrial DNA play a role in the pathogenesis of diabetes? Diabetologia. 1992;35(12):1181–6.

    Article  PubMed  CAS  Google Scholar 

  79. Hayakawa M, Torii K, Sugiyama S, Tanaka M, Ozawa T. Age-associated accumulation of 8-hydroxydeoxyguanosine in mitochondrial DNA of human diaphragm. Biochem Biophys Res Commun. 1991;179(2):1023–9.

    Article  PubMed  CAS  Google Scholar 

  80. Hayakawa M, Hattori K, Sugiyama S, Ozawa T. Age-associated oxygen damage and mutations in mitochondrial DNA in human hearts. Biochem Biophys Res Commun. 1992;189(2):979–85.

    Article  PubMed  CAS  Google Scholar 

  81. Mecocci P, MacGarvey U, Kaufman AE, et al. Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain. Ann Neurol. 1993;34(4):609–16.

    Article  PubMed  CAS  Google Scholar 

  82. Harman D. The biologic clock: the mitochondria? J Am Geriatr Soc. 1972;20(4):145–7.

    PubMed  CAS  Google Scholar 

  83. Skov V, Glintborg D, Knudsen S, et al. Reduced expression of nuclear-encoded genes involved in mitochondrial oxidative metabolism in skeletal muscle of insulin-resistant women with polycystic ovary syndrome. Diabetes. 2007;56(9):2349–55.

    Article  PubMed  CAS  Google Scholar 

  84. De Filippis E, Alvarez G, Berria R, et al. Insulin-resistant muscle is exercise resistant: evidence for reduced response of nuclear-encoded mitochondrial genes to exercise. Am J Physiol Endocrinol Metab. 2008;294(3):E607–14.

    Article  PubMed  CAS  Google Scholar 

  85. Muller YL, Bogardus C, Pedersen O, Baier L. A Gly482Ser missense mutation in the peroxisome proliferator-activated receptor gamma coactivator-1 is associated with altered lipid oxidation and early insulin secretion in Pima Indians. Diabetes. 2003;52(3):895–8.

    Article  PubMed  Google Scholar 

  86. He M, Rutledge SL, Kelly DR, et al. A new genetic disorder in mitochondrial fatty acid beta-oxidation: ACAD9 deficiency. Am J Hum Genet. 2007;81(1):87–103.

    Article  PubMed  CAS  Google Scholar 

  87. Kurtz B, Thibault HB, Raher MJ, et al. Nitric oxide synthase 3 deficiency limits adverse ventricular remodeling after pressure overload in insulin resistance. Am J Physiol Heart Circ Physiol. 2011;301(5):H2093–101.

    Article  PubMed  CAS  Google Scholar 

  88. McKeigue PM, Shah B, Marmot MG. Relation of central obesity and insulin resistance with high diabetes prevalence and cardiovascular risk in South Asians. Lancet. 1991;337(8738):382–6.

    Article  PubMed  CAS  Google Scholar 

  89. Pan WH, Cedres LB, Liu K, et al. Relationship of clinical diabetes and asymptomatic hyperglycemia to risk of coronary heart disease mortality in men and women. Am J Epidemiol. 1986;123(3):504–16.

    PubMed  CAS  Google Scholar 

  90. Goran MI, Ball GD, Cruz ML. Obesity and risk of type 2 diabetes and cardiovascular disease in children and adolescents. J Clin Endocrinol Metab. 2003;88(4):1417–27.

    Article  PubMed  CAS  Google Scholar 

  91. Lehto S, Ronnemaa T, Haffner SM, Pyorala K, Kallio V, Laakso M. Dyslipidemia and hyperglycemia predict coronary heart disease events in middle-aged patients with NIDDM. Diabetes. 1997;46(8):1354–9.

    Article  PubMed  CAS  Google Scholar 

  92. Sowers JR, Epstein M, Frohlich ED. Diabetes, hypertension, and cardiovascular disease: an update. Hypertension. 2001;37(4):1053–9.

    Article  PubMed  CAS  Google Scholar 

  93. Zhou X, Ma L, Habibi J, et al. Nebivolol improves diastolic dysfunction and myocardial remodeling through reductions in oxidative stress in the Zucker obese rat. Hypertension. 2010;55(4):880–8.

    Article  PubMed  CAS  Google Scholar 

  94. Ren J, Kelley RO. Cardiac health in women with metabolic syndrome: clinical aspects and pathophysiology. Obesity (Silver Spring). 2009;17(6):1114–23.

    CAS  Google Scholar 

  95. Ren J, Bode AM. Altered cardiac excitation-contraction coupling in ventricular myocytes from spontaneously diabetic BB rats. Am J Physiol Heart Circ Physiol. 2000;279(1):H238–44.

    PubMed  CAS  Google Scholar 

  96. Wold LE, Ceylan-Isik AF, Ren J. Oxidative stress and stress signaling: menace of diabetic cardiomyopathy. Acta Pharmacol Sin. 2005;26(8):908–17.

    Article  PubMed  CAS  Google Scholar 

  97. Boudina S, Abel ED. Diabetic cardiomyopathy revisited. Circulation. 2007;115(25):3213–23.

    Article  PubMed  Google Scholar 

  98. Nishio Y, Kanazawa A, Nagai Y, Inagaki H, Kashiwagi A. Regulation and role of the mitochondrial transcription factor in the diabetic rat heart. Ann N Y Acad Sci. 2004;1011:78–85.

    Article  PubMed  CAS  Google Scholar 

  99. St-Pierre J, Lin J, Krauss S, et al. Bioenergetic analysis of peroxisome proliferator-activated receptor gamma coactivators 1alpha and 1beta (PGC-1alpha and PGC-1beta) in muscle cells. J Biol Chem. 2003;278(29):26597–603.

    Article  PubMed  CAS  Google Scholar 

  100. Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science. 2005;307(5708):384–7.

    Article  PubMed  CAS  Google Scholar 

  101. Peterson LR, Herrero P, Schechtman KB, et al. Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women. Circulation. 2004;109(18):2191–6.

    Article  PubMed  Google Scholar 

  102. Diamant M, Lamb HJ, Groeneveld Y, et al. Diastolic dysfunction is associated with altered myocardial metabolism in asymptomatic normotensive patients with well-controlled type 2 diabetes mellitus. J Am Coll Cardiol. 2003;42(2):328–35.

    Article  PubMed  CAS  Google Scholar 

  103. Scheuermann-Freestone M, Madsen PL, Manners D, et al. Abnormal cardiac and skeletal muscle energy metabolism in patients with type 2 diabetes. Circulation. 2003;107(24):3040–6.

    Article  PubMed  CAS  Google Scholar 

  104. Sharma S, Adrogue JV, Golfman L, et al. Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart. FASEB J. 2004;18(14):1692–700.

    Article  PubMed  CAS  Google Scholar 

  105. Mercer JR, Cheng KK, Figg N, et al. DNA damage links mitochondrial dysfunction to atherosclerosis and the metabolic syndrome. Circ Res. 2010;107(8):1021–31.

    Article  PubMed  CAS  Google Scholar 

  106. Barker DJ. The developmental origins of chronic adult disease. Acta Paediatr Suppl. 2004;93(446):26–33.

    PubMed  CAS  Google Scholar 

  107. Bulteau AL, Szweda LI, Friguet B. Mitochondrial protein oxidation and degradation in response to oxidative stress and aging. Exp Gerontol. 2006;41(7):653–7.

    Article  PubMed  CAS  Google Scholar 

  108. Lee JY, Jung GY, Heo HJ, et al. 4-Hydroxynonenal induces vascular smooth muscle cell apoptosis through mitochondrial generation of reactive oxygen species. Toxicol Lett. 2006;166(3): 212–21.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Marín-García, J. (2013). The Role of Mitochondria in the Metabolic Syndrome and Insulin Resistance. In: Mitochondria and Their Role in Cardiovascular Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4599-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4599-9_21

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-4598-2

  • Online ISBN: 978-1-4614-4599-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics