Skip to main content

Structure and Function of the Laryngeal and Pharyngeal Muscles

  • Chapter
  • First Online:
Craniofacial Muscles

Abstract

The muscles of the pharynx and larynx subserve critical airway, deglutitive and communication functions. The laryngeal muscles protect the lower airway from invasion and allow voice production for the purposes of communication. The muscles of the pharynx serve deglutitive functions by creating appropriate pressures to receive and propel a bolus and to shape the airway to modulate resonance during voice and speech production. Thus, the laryngeal and pharyngeal muscles are critically important to survival and to communication. The structure and function of these muscles are summarized in Table 9.1. A subset of these muscles will be discussed in this chapter as related to voice, swallowing, and airway functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrade FA (2010) Extraocular muscle metabolism. In: Dartt DA (ed) Encyclopedia of the eye, vol 2. Academic, Oxford, pp 105–110

    Chapter  Google Scholar 

  • Asanau A, Timoshenko AP, Prades JM, Galusca B, Martin C, Feasson L (2011) Posterior cricoarytenoid bellies: relationship between their function and histology. J Voice 25(2):e67–e73

    Article  PubMed  Google Scholar 

  • Atkinson JE (1978) Correlation analysis of the physiological factors controlling fundamental voice frequency. J Acoust Soc Am 63(1):211–222

    Article  PubMed  CAS  Google Scholar 

  • Baer T, Gay T, Niimi S (1976) Control of the fundamental frequency, intensity, and register of phonation. HLSRSR 45/46:205–210

    Google Scholar 

  • Belafsky PC (2010) Manual control of the upper esophageal sphincter. Laryngoscope 120(suppl 1):S1–S16

    Article  PubMed  Google Scholar 

  • Belafsky PC, Rees CJ, Allen J, Leonard RJ (2010) Pharyngeal dilation in cricopharyngeus muscle dysfunction and zenker diverticulum. Laryngoscope 120(5):889–894

    PubMed  Google Scholar 

  • Burnett TA, Mann EA, Cornell SA, Ludlow CL (2003) Laryngeal elevation achieved by neuromuscular stimulation at rest. J Appl Physiol 94(1):128–134

    PubMed  Google Scholar 

  • Burnett TA, Mann EA, Stoklosa JB, Ludlow CL (2005) Self-triggered functional electrical stimulation during swallowing. J Neurophysiol 94(6):4011–4018

    Article  PubMed  Google Scholar 

  • Collett PW, Brancatisano AP, Engel LA (1986) Upper airway dimensions and movements in bronchial asthma. Am Rev Respir Dis 133(6):1143–1149

    PubMed  CAS  Google Scholar 

  • Collier R (1975) Physiological, correlates of intonation patterns. J Acoust Soc Am 58(1):249–256

    Article  PubMed  CAS  Google Scholar 

  • Connor NP, Suzuki T, Lee K, Sewall GK, Heisey DM (2002) Neuromuscular junction changes in aged rat thyroarytenoid muscle. Ann Otol Rhinol Laryngol 111:579–586

    PubMed  Google Scholar 

  • D’Antona G, Megighian A, Bortolotto S, Pellegrino MA, Marchese-Ragona R, Staffieri A et al (2002) Contractile properties and myosin heavy chain isoform composition in single fibres of human laryngeal muscles. J Muscle Res Cell Motil 23(3):187–195

    Article  PubMed  Google Scholar 

  • Davis MV, Merati AL, Jaradeh SS, Blumin JH (2007) Myosin heavy chain composition and fiber size of the cricopharyngeus muscle in patients with achalasia and normal subjects. Ann Otol Rhinol Laryngol 116:643–646

    PubMed  Google Scholar 

  • DelGaudio JM, Sciote JJ, Carroll WR, Escalmado RM (1995) Atypical myosin heavy chain in rat laryngeal muscle. Ann Otol Rhinol Laryngol 104(3):237–245

    PubMed  CAS  Google Scholar 

  • Erickson D, Liberman M, Niimi S (1977) The geniohyoid and the role of the strap muscle. Haskins Lab Status Report in Speech Research (HLSRSR) SR-49:103–110

    Google Scholar 

  • Faaborg-Andersen K (1957) Electromyographic investigation of intrinsic laryngeal muscles in humans. Acta Physiol Scand 140S:1–149

    Google Scholar 

  • Faaborg-Andersen K, Sonninen A (1960) The function of the extrinsic laryngeal muscles at different pitch: an electromyographic and roentgenologic investigation. Acta Otolaryngol 51:89–93

    Article  Google Scholar 

  • Feinstein B, Lindegard B, Nyman E, Wohlfart G (1955) Morphologic studies of motor units in normal human muscles. Acta Anat 23:127–142

    Article  PubMed  CAS  Google Scholar 

  • Gambino DR, Malmgren LT, Gacek RR (1990) Age-related changes in the neuromuscular junctions in the human posterior cricoarytenoid muscles: a quantitative study. Laryngoscope 100:262–268

    Article  PubMed  CAS  Google Scholar 

  • Goyal RK, Martin SB, Shapiro J, Spechler SJ (1993) The role of cricopharyngeus muscle in pharyngoesophageal disorders. Dysphagia 8(3):252–258

    Article  PubMed  CAS  Google Scholar 

  • Halum SL, Shemirani NL, Merati AL, Jaradeh S, Toohill RJ (2006) Electromyography findings of the cricopharyngeus in association with ipsilateral pharyngeal and laryngeal muscles. Ann Otol Rhinol Laryngol 115(4):312–316

    PubMed  Google Scholar 

  • Hammond CS, Davenport PW, Hutchison A, Otto RA (1997) Motor innervation of the cricopharyngeus muscle by the recurrent laryngeal nerve. J Appl Physiol 83(1):89–94

    PubMed  CAS  Google Scholar 

  • Han Y, Wang J, Fischman DA, Biller HF, Sanders I (1999) Slow tonic muscle fibers in the thyroarytenoid muscles of human vocal folds: a possible specialization for speech. Anat Rec 256(2):146–157

    Article  PubMed  CAS  Google Scholar 

  • Hast MH (1969) The primate larynx: a comparative physiological study of intrinsic muscles. Acta Otolaryngol 67:84–92

    Article  PubMed  CAS  Google Scholar 

  • Hinrichsen C, Dulhunty A (1982) The contractile properties, histochemistry, ultrastructure and electrophysiology of the cricothyroid and posterior cricoarytenoid muscles in the rat. J Muscle Res Cell Motil 3(2):169–190

    Article  PubMed  CAS  Google Scholar 

  • Hirano M (1969) Recent advance in laryngeal electromyography in human. Kurume Med J 16(3):119–126

    Article  PubMed  CAS  Google Scholar 

  • Hiss SG, Huckabee ML (2005) Timing of pharyngeal and upper esophageal sphincter pressures as a function of normal and effortful swallowing in young healthy adults. Dysphagia 20(2):149–156

    Article  PubMed  Google Scholar 

  • Hixon TJ, Weismer G, Hoit JD (2008) Preclinical speech science. Plural Publishing, San Diego

    Google Scholar 

  • Hoffman MR, Ciucci MR, Mielens JD, Jiang JJ, McCulloch TM (2010) Pharyngeal swallow adaptations to bolus volume measured with high-resolution manometry. Laryngoscope 120:2367–2373

    Article  PubMed  Google Scholar 

  • Hoh JF (2005) Laryngeal muscle fibre types. Acta Physiologica Scandinavica 183(2):133–149

    Article  PubMed  CAS  Google Scholar 

  • Hong KH, Ye M, Kim YM, Kevorkian KF, Berke GS (1997) The role of strap muscles in phonation—in vivo canine laryngeal model. J Voice 11(1):23–32

    Article  PubMed  CAS  Google Scholar 

  • Hwang K, Grossman MI, Ivy AC (1948) Nervous control of the cervical portion of the esophagus. Am J Physiol 154(2):343–357

    PubMed  CAS  Google Scholar 

  • Inagi K, Schultz E, Ford CN (1998) An anatomic study of the rat larynx: establishing the rat model for neuromuscular function. Otolaryngol Head Neck Surg 118:74–81

    Article  PubMed  CAS  Google Scholar 

  • Jung HH, Han SH, Choi JO (1999) Expression of myosin heavy chain mRNA in rat laryngeal muscles. Acta Otolaryngol 119(3):396–402

    Article  PubMed  CAS  Google Scholar 

  • Kahrilas PJ (1997) Upper esophageal sphincter function during anterograde and retrograde transit. Am J Med 103(5A):56S–60S

    Article  PubMed  CAS  Google Scholar 

  • Kenyon EL (1992) Significance of the extrinsic musculature of the larynx. J Am Med Assoc 79:428–431

    Article  Google Scholar 

  • Kersing W, Jennekens FG (2004) Age-related changes in human thyroarytenoid muscles: a histological and histochemical study. Eur Arch Otorhinolaryngol 261(7):386–392

    Article  PubMed  CAS  Google Scholar 

  • Kirchner JA (1958) The motor activity of the cricopharyngeus muscle. Laryngoscope 68(7):1119–1159

    PubMed  CAS  Google Scholar 

  • Kuna ST, Insalaco G (1990) Respiratory-related intrinsic laryngeal muscle activity in normal adults. Prog Clin Biol Res 345:117–124

    PubMed  CAS  Google Scholar 

  • Kuna ST, Insalaco G, Woodson GE (1988) Thyroarytenoid muscle activity during wakefulness and sleep in normal adults. J Appl Physiol 65(3):1332–1339

    PubMed  CAS  Google Scholar 

  • Kuna ST, Smickley JS, Insalaco G (1990) Posterior cricoarytenoid muscle activity during wakefulness and sleep in normal adults. J Appl Physiol 68(4):1746–1754

    PubMed  CAS  Google Scholar 

  • Kuna ST, Insalaco G, Villeponteaux RD (1991) Arytenoideus muscle activity in normal adult humans during wakefulness and sleep. J Appl Physiol 70(4):1655–1664

    PubMed  CAS  Google Scholar 

  • Lang IM, Shaker R (1997) Anatomy and physiology of the upper esophageal sphincter. Am J Med 103(5A):50S–55S

    Article  PubMed  CAS  Google Scholar 

  • Lund WS (1965) A study of the cricopharyngeal sphincter in man and in the dog. Ann R Coll Surg Engl 37(4):225–246

    PubMed  CAS  Google Scholar 

  • Lundy DS, Smith C, Colangelo L, Sullivan PA, Logemann JA, Lazarus CL et al (1999) Aspiration: cause and implications. Otolaryngol Head Neck Surg 120(4):474–478

    Article  PubMed  CAS  Google Scholar 

  • Mathieu-Costello O, Szewczak JM, Logemann RB, Agey PJ (1992) Geometry of blood-tissue exchange in bat flight muscle compared with bat hindlimb and rat soleus muscle. Am J Physiol 262(6 pt 2):R955–R965

    PubMed  CAS  Google Scholar 

  • McCulloch TM, Hoffman MR, Ciucci MR (2010) High-resolution manometry of pharyngeal swallow pressure events associated with head turn and chin tuck. Ann Otol Rhinol Laryngol 119(6):369–376

    PubMed  Google Scholar 

  • McMullen CA, Andrade FH (2006) Contractile dysfunction and altered metabolic profile of the aging rat thyroarytenoid muscle. J Appl Physiol 100(2):602–608

    Article  PubMed  Google Scholar 

  • McMullen CA, Andrade FH (2009) Functional and morphological evidence of age-related denervation in rat laryngeal muscles. J Gerontol A Biol Sci Med Sci 64:435–442

    Article  PubMed  Google Scholar 

  • Merati AL, Bodine SC, Bennett T, Jung H-H, Furuta H, Ryan AF (1996) Identification of a novel myosin heavy chain gene expressed in the rat larynx. Biochim Biophys Acta 1306:153–159

    Article  PubMed  Google Scholar 

  • Mu L, Sanders I (1998) Neuromuscular organization of the human upper esophageal sphincter. Ann Otol Rhinol Laryngol 107(5 pt 1):370–377

    PubMed  CAS  Google Scholar 

  • Mu L, Sanders I (2002) Muscle fiber-type distribution pattern in the human cricopharyngeus muscle. Dysphagia 17:87–96

    Article  PubMed  Google Scholar 

  • Nagai H, Ota F, Connor NP (2005) Effect of deficits in laryngeal sensation on laryngeal muscle biochemistry. Ann Otol Rhinol Laryngol 114(5):352–360

    PubMed  Google Scholar 

  • Nasri S, Beizai P, Ye M, Sercarz JA, Kim YM, Berke GS (1997) Cross-innervation of the thyroarytenoid muscle by a branch from the external division of the superior laryngeal nerve. Ann Otol Rhinol Laryngol 106:594–598

    PubMed  CAS  Google Scholar 

  • Niimi S, Horiguchi S, Kobayashi N (1991) F0 raising role of the sternothyroid muscle—an electromyographic study of two tenors. In: Gauffin NJ, Hammarberg B (eds) Vocal fold physiology. Singular Publishing Group, San Diego, pp 183–188

    Google Scholar 

  • Palmer J (1989) Electromyography of the muscles of oropharyngeal swallowing: basic concepts. Dysphagia 3:192–198

    Article  PubMed  CAS  Google Scholar 

  • Perie S, St Guily JL, Callard P, Sebille A (1997) Innervation of adult human laryngeal muscle fibers. J Neurol Sci 149:81–86

    Article  PubMed  CAS  Google Scholar 

  • Perie S, St Guily JL, Sebille A (1999) Comparison of perinatal and adult multi-innervation in human laryngeal muscle fibers. Ann Otol Rhinol Laryngol 108(7 pt 1):683–688

    PubMed  CAS  Google Scholar 

  • Perie S, Agbulut O, St Guily JL, Butler-Browne GS (2000) Myosin heavy chain expression in human laryngeal muscle fibers. A biochemical study. Ann Otol Rhinol Laryngol 109(2):216–220

    PubMed  CAS  Google Scholar 

  • Plant RL (1998) Anatomy and physiology of swallowing in adults and geriatrics. Otolaryngol Clin North Am 31(3):477–488

    Article  PubMed  CAS  Google Scholar 

  • Powers S, Howley E (2004) Exercise physiology: theory and application to fitness and performance, 5th edn. McGraw-Hill, New York

    Google Scholar 

  • Ren M, Mu L (2005) Intrinsic properties of the adult human mylohyoid muscle: neural organization, fiber-type distribution, and myosin heavy chain expression. Dysphagia 20:182–194

    Article  PubMed  Google Scholar 

  • Rosen M, Malmgren LT, Gacek RR (1983) Three-dimensional computer reconstruction of the distribution of neuromuscular junctions in the thyroarytenoid muscle. Ann Otol Rhinol Laryngol 92:424–429

    PubMed  CAS  Google Scholar 

  • Rosenfield DB, Miller RH, Sessions RB, Patten BM (1982) Morphologic and histochemical characteristics of laryngeal muscle. Arch Otolaryngol 108(10):662–666

    Article  PubMed  CAS  Google Scholar 

  • Sanders I, Mu L (1998) Anatomy of the human internal superior laryngeal nerve. Anat Rec 252:646–656

    Article  PubMed  CAS  Google Scholar 

  • Sanders I, Mu L, Wu BL, Biller HF (1993) The intramuscular nerve supply of the human lateral cricoarytenoid muscle. Acta Otolaryngol 113(5):679–682

    Article  PubMed  CAS  Google Scholar 

  • Sanes JR, Lichtman JW (1999) Development of the vertebrate neuromuscular junction. Annu Rev Neurosci 22:389–442

    Article  PubMed  CAS  Google Scholar 

  • Sapir S, Campbell C, Larson C (1981) Effect of geniohyoid, cricothyroid and sternothyroid muscle stimulation on voice fundamental frequency of electrically elicited phonation in rhesus macaque. Laryngoscope 91(3):457–468

    Article  PubMed  CAS  Google Scholar 

  • Sasaki CT, Kim YH, Sims HS, Czibulka A (1999) Motor innervation of the human cricopharyngeus muscle. Ann Otol Rhinol Laryngol 108(12):1132–1139

    PubMed  CAS  Google Scholar 

  • Sciote JJ, Morris TJ, Brandon CA, Horton MJ, Rosen C (2002) Unloaded shortening velocity and myosin heavy chain variations in human laryngeal muscle fibers. Ann Otol Rhinol Laryngol 111(2):120–127

    PubMed  Google Scholar 

  • Shin T, Hirano M, Maeyama T, Nozoe I, Ohkubo H (1981) The function of the extrinsic laryngeal muscles. In: Stevens K, Hirano M (eds) Vocal fold physiology. Tokyo: University of Tokyo Press, pp 171–180

    Article  PubMed  CAS  Google Scholar 

  • Shiotani A, Flint PW (1998a) Expression of extraocular-superfast-myosin heavy chain in rat laryngeal muscles. Neuroreport 9(16):3639–3642

    Article  PubMed  CAS  Google Scholar 

  • Shiotani A, Flint PW (1998b) Myosin heavy chain composition in rat laryngeal muscles after denervation. Laryngoscope 108(8 pt 1):1225–1229

    Article  PubMed  CAS  Google Scholar 

  • Shiotani A, Jones RM, Flint PW (1999a) Postnatal development of myosin heavy chain isoforms in rat laryngeal muscles. Ann Otol Rhinol Laryngol 108(5):509–515

    PubMed  CAS  Google Scholar 

  • Shiotani A, Westra WH, Flint PW (1999b) Myosin heavy chain composition in human laryngeal muscles. Laryngoscope 109(9):1521–1524

    Article  PubMed  CAS  Google Scholar 

  • Shipp T (1975) Vertical laryngeal position during continuous and discrete vocal frequency change. J Speech Hear Res 18:707–718

    PubMed  CAS  Google Scholar 

  • Sonninen AA (1956) The role of the external laryngeal muscles in length-adjustment of the vocal cords in singing: phoniatric, roentgenologic and experimental studies of the mechanism of pitch change in the voice with special reference to the function of the sternothyroid. Acta Otolaryngol Suppl 130:1–102

    PubMed  CAS  Google Scholar 

  • Soussi-Yanicostas N, Barbet JP, Laurent-Winter C, Barton P, Butler-Browne GS (1990) Transition of myosin isozymes during development of human masseter muscle: persistence of developmental isoforms during postnatal stage. Development 108(2):239–249

    PubMed  CAS  Google Scholar 

  • Sundman E, Ansved T, Margolin G, Kuylenstierna R, Eriksson LI (2004) Fiber-type composition and fiber size of the human cricopharyngeal muscle and the pharyngeal constrictor muscle. Acta Anaesthesiol Scand 48:423–429

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Connor NP, Lee K, Bless DM, Ford CN, Inagi K (2002) Age-related alterations in myosin heavy chain isoforms in rat intrinsic laryngeal muscles. Ann Otol Rhinol Laryngol 111(11):962–967

    PubMed  Google Scholar 

  • Titze IR (1994) Principles of voice production. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Ueda N, Ohyama M, Harvey J, Ogura J (1972) Influence of certain extrinsic laryngeal muscles on artificial voice production. Laryngoscope 82:468–482

    Google Scholar 

  • Vaiman M, Eviatar E, Segal S (2004) Evaluation of normal deglutition with the help of rectified surface electromyography records. Dysphagia 19(2):125–132

    Article  PubMed  Google Scholar 

  • Van Daele DJ, McCulloch TM, Palmer PM, Langmore SE (2005) Timing of glottic closure during swallowing: a combined electromyographic and endoscopic analysis. Ann Otol Rhinol Laryngol 114(6):478–487

    PubMed  Google Scholar 

  • van Lunteren E, Strohl KP (1986) The muscles of the upper airways. Clin Chest Med 7(2): 171–188

    PubMed  Google Scholar 

  • Vilkman E, Sonninen A, Hurme P, Korkko P (1996) External laryngeal frame function in voice production revisited: a review. J Voice 10(1):78–92

    Article  PubMed  CAS  Google Scholar 

  • Widmaier EP, Raff H, Strang KT (2004) Vander, Sherman, and Luciano’s human physiology: the mechanisms of body function, 9th edn. McGraw-Hill, Boston

    Google Scholar 

  • Wieczorek DF, Periasamy M, Butler-Browne GS, Whalen RG, Nadal-Ginard B (1985) Co-expression of multiple myosin heavy chain genes, in addition to a tissue-specific one, in extraocular musculature. J Cell Biol 101(2):618–629

    Article  PubMed  CAS  Google Scholar 

  • Woodson G (1999) Laryngeal and pharyngeal function part one: breathing and speech. In: Cummings CW, Fredrickson JM, Harker LA, Krause CJ, Richardson MA, Schuller DE (eds) Otolaryngology head and neck surgery, 3rd edn. Mosby, St. Louis

    Google Scholar 

  • Wu YZ, Baker MJ, Crumley RL, Blanks RH, Caiozzo VJ (1998) A new concept in laryngeal muscle: multiple myosin isoform types in single muscle fibers of the lateral cricoarytenoid. Otolaryngol Head Neck Surg 118(1):86–94

    Article  PubMed  CAS  Google Scholar 

  • Wu YZ, Crumley RL, Armstrong WB, Caiozzo VJ (2000) New perspectives about human laryngeal muscle: single-fiber analyses and interspecies comparisons. Arch Otolaryngol Head Neck Surg 126(7):857–864

    PubMed  CAS  Google Scholar 

  • Yoshihara T, Ishii T, Iwata M, Nomoto M (1998) Ultrastructural and histochemical study of the motor end plates of the intrinsic laryngeal muscles in amyotrophic lateral sclerosis. Ultrastruct Pathol 22:121–126

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadine P. Connor Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vinney, L.A., Connor, N.P. (2012). Structure and Function of the Laryngeal and Pharyngeal Muscles. In: McLoon, L., Andrade, F. (eds) Craniofacial Muscles. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4466-4_9

Download citation

Publish with us

Policies and ethics