Skip to main content

Tongue Structure and Function

  • Chapter
  • First Online:
Craniofacial Muscles

Abstract

The mammalian tongue is essential for normal respiration, swallowing, oral transport, emesis, coughing and, in humans, speech production. To achieve these behaviors, tongue musculature produces myriad changes in tongue shape and in concert with other head and neck structures a wide range of tongue movement speeds. Head and neck muscles are often described as having unconventional kinematic and mechanical demands. They may be required to apply prolonged, continuous force, as the activation of genioglossus to maintain airway patency, and they may be required to change force very rapidly, as the extraocular muscles during saccade. In this chapter, we describe the neuromuscular specialization that facilitates tongue behavior, and contrast this with typical limb function, in which the muscles undergo cyclical motion during relatively infrequent behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Dissection, histological, and MRI investigations have produced detailed descriptions of tongue muscle organization in relatively few mammal species (primarily cat, dog, human, and rat). Primary descriptions in the human are those of Abd-El-Malek (1939) and Gaige et al. (2007) for the adult and Barnwell (1977 and related) for the fetal tongue. For organization of tongue musculature in non-mammals see Herrel et al. (2001) and Nishikawa et al. (1999).

  2. 2.

    Most tongue muscles have complex architecture the details of which may differ substantially between species (e.g., minimal lateral longitudinal muscle fibers in the anterior cat tongue, Hellstrand 1980). Cross-species differences in tongue muscle organization have not been studied in detail and can offer insights into neuromuscular bases of tongue movement.

Abbreviations

MyHC-emb:

MyHCembryonic

MyHCeom:

MyHCextraocular

MyHC-neo:

MyHCneonatal

MyHC-st:

MyHCslowtonic

References

  • Abd-El-Malek S (1938) A contribution to the study of the movements of the tongue in animals, with special reference to the cat. J Anat 73(pt 1):15–30

    PubMed  CAS  Google Scholar 

  • Abd-El-Malek S (1939) On the relationship between the epiphysis cerebri and the reproductive system. J Anat 73(pt 3):419–423

    PubMed  CAS  Google Scholar 

  • Abd-El-Malek S (1955) Observations on the movements of the human tongue. II. J Egypt Med Assoc 38(12):743–771

    PubMed  CAS  Google Scholar 

  • Agbulut O, Noirez P et al (2003) Myosin heavy chain isoforms in postnatal muscle development of mice. Biol Cell 95(6):399–406

    Article  PubMed  CAS  Google Scholar 

  • Aldes LD (1995) Subcompartmental organization of the ventral (protrusor) compartment in the hypoglossal nucleus of the rat. J Comp Neurol 353(1):89–108

    Article  PubMed  CAS  Google Scholar 

  • Andersen JL (2003) Muscle fibre type adaptation in the elderly human muscle. Scand J Med Sci Sports 13(1):40–47

    Article  PubMed  Google Scholar 

  • Arvidsson J, Aldskogius H (1982) Effect of repeated hypoglossal nerve lesions on the number of neurons in the hypoglossal nucleus of adult rats. Exp Neurol 75(2):520–524

    Article  PubMed  CAS  Google Scholar 

  • Ausoni S, Gorza L et al (1990) Expression of myosin heavy chain isoforms in stimulated fast and slow rat muscles. J Neurosci 10(1):153–160

    PubMed  CAS  Google Scholar 

  • Baer T, Alfonso PJ, Honda K (1988) Electromyography of the tongue muscles during vowels in/apvp/environment. Ann Bull RILP 22:7–19

    Google Scholar 

  • Bailey EF, Fridel KW et al (2007a) Sleep/wake firing patterns of human genioglossus motor units. J Neurophysiol 98(6):3284–3291

    Article  PubMed  Google Scholar 

  • Bailey EF, Rice AD et al (2007b) Firing patterns of human genioglossus motor units during voluntary tongue movement. J Neurophysiol 97(1):933–936

    Article  PubMed  Google Scholar 

  • Barnwell YM (1977) The morphology of musculus styloglossus in fifteen-week human fetuses. Int J Oral Myol 3(2):8–46

    PubMed  CAS  Google Scholar 

  • Biewener AA, Soghikian GW et al (1985) Regulation of respiratory airflow during panting and feeding in the dog. Respir Physiol 61(2):185–195

    Article  PubMed  CAS  Google Scholar 

  • Binder MD, Mendell LM (1990) The segmental motor system. Oxford University Press, New York

    Google Scholar 

  • Buckingham M, Bajard L et al (2003) The formation of skeletal muscle: from somite to limb. J Anat 202(1):59–68

    Article  PubMed  Google Scholar 

  • Carrasco DI, English AW (1999) Mechanical actions of compartments of the cat hamstring muscle, biceps femoris. Prog Brain Res 123:397–403

    Article  PubMed  CAS  Google Scholar 

  • Chanaud CM, Pratt CA et al (1991) Functionally complex muscles of the cat hindlimb. II. Mechanical and architectural heterogeneity within the biceps femoris. Exp Brain Res 85(2):257–270

    Article  PubMed  CAS  Google Scholar 

  • Chiarandini DJ, Stefani E (1979) Electrophysiological identification of two types of fibres in rat extraocular muscles. J Physiol 290(2):453–465

    PubMed  CAS  Google Scholar 

  • Connor NP, Russell JA et al (2009) Effect of tongue exercise on protrusive force and muscle fiber area in aging rats. J Speech Lang Hear Res 52(3):732–744

    Article  PubMed  Google Scholar 

  • Cruz-Jentoft AJ, Baeyens JP et al (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on sarcopenia in older people. Age Ageing 39(4):412–423

    Article  PubMed  Google Scholar 

  • d’Albis A, Chanoine C et al (1990) Muscle-specific response to thyroid hormone of myosin isoform transitions during rat postnatal development. Eur J Biochem 193(1):155–161

    Article  PubMed  Google Scholar 

  • Daugherty M, Luo Q et al (2012) Myosin heavy chain composition of the human genioglossus muscle. J Speech Lang Hear Res 55(2):609–625

    Article  PubMed  Google Scholar 

  • Delbono O (2003) Neural control of aging skeletal muscle. Aging Cell 2(1):21–29

    Article  PubMed  CAS  Google Scholar 

  • DePaul R, Abbs JH (1996) Quantitative morphology and histochemistry of intrinsic lingual muscle fibers in Macaca fascicularis. Acta Anat (Basel) 155(1):29–40

    Article  CAS  Google Scholar 

  • DuBrul EL (1976) Biomechanics of speech sounds. Ann N Y Acad Sci 280:631–642

    Article  CAS  Google Scholar 

  • Felton SM, Gaige TA et al (2008) Associating the mesoscale fiber organization of the tongue with local strain rate during swallowing. J Biomech 41(8):1782–1789

    Article  PubMed  Google Scholar 

  • Gai WP, Blumbergs PC et al (1992) Age-related loss of dorsal vagal neurons in Parkinson’s disease. Neurology 42(11):2106–2111

    Article  PubMed  CAS  Google Scholar 

  • Gaige TA, Benner T et al (2007) Three dimensional myoarchitecture of the human tongue determined in vivo by diffusion tensor imaging with tractography. J Magn Reson Imaging 26(3):654–661

    Article  PubMed  Google Scholar 

  • Gilbert RJ, Napadow VJ et al (2007) Anatomical basis of lingual hydrostatic deformation. J Exp Biol 210(pt 23):4069–4082

    Article  PubMed  Google Scholar 

  • Gilliam EE, Goldberg SJ (1995) Contractile properties of the tongue muscles: effects of hypoglossal nerve and extracellular motoneuron stimulation in rat. J Neurophysiol 74(2):547–555

    PubMed  CAS  Google Scholar 

  • Gordon T, Thomas CK et al (2004) The resilience of the size principle in the organization of motor unit properties in normal and reinnervated adult skeletal muscles. Can J Physiol Pharmacol 82(8–9):645–661

    Article  PubMed  CAS  Google Scholar 

  • Granberg I, Lindell B et al (2010) Capillary supply in relation to myosin heavy chain fibre composition of human intrinsic tongue muscles. Cells Tissues Organs 192(5):303–313

    Article  PubMed  CAS  Google Scholar 

  • Hellstrand E (1980) Morphological and histochemical properties of tongue muscles in cat. Acta Physiol Scand 110(2):187–198

    Article  PubMed  CAS  Google Scholar 

  • Hellstrand E (1981) Contraction times of the cat’s tongue muscles measured by light reflection. Innervation of individual tongue muscles. Acta Physiol Scand 111(4):417–423

    Article  PubMed  CAS  Google Scholar 

  • Henneman E, Somjen G et al (1965) Functional significance of cell size in spinal motoneurons. J Neurophysiol 28:560–580

    PubMed  CAS  Google Scholar 

  • Herrel A, Meyers JJ et al (2001) Functional implications of supercontracting muscle in the chameleon tongue retractors. J Exp Biol 204(pt 21):3621–3627

    PubMed  CAS  Google Scholar 

  • Herrmann U, Flanders M (1998) Directional tuning of single motor units. J Neurosci 18(20):8402–8416

    PubMed  CAS  Google Scholar 

  • Hiiemae KM, Palmer JB (2003) Tongue movements in feeding and speech. Crit Rev Oral Biol Med 14(6):413–429

    Article  PubMed  Google Scholar 

  • Hiiemae KM, Hayenga SM et al (1995) Patterns of tongue and jaw movement in a cinefluorographic study of feeding in the macaque. Arch Oral Biol 40(3):229–246

    Article  PubMed  CAS  Google Scholar 

  • Hind JA, Nicosia MA et al (2001) Comparison of effortful and noneffortful swallows in healthy middle-aged and older adults. Arch Phys Med Rehabil 82(12):1661–1665

    Article  PubMed  CAS  Google Scholar 

  • Hodges SH, Anderson AL et al (2004) Remodeling of neuromuscular junctions in aged rat genioglossus muscle. Ann Otol Rhinol Laryngol 113(3 pt 1):175–179

    PubMed  Google Scholar 

  • Inoue M, Ariyasinghe S et al (2004) Extrinsic tongue and suprahyoid muscle activities during mastication in freely feeding rabbits. Brain Research 1021:173–182

    Google Scholar 

  • Kelly RG, Jerome-Majewska LA et al (2004) The del22q11.2 candidate gene Tbx1 regulates branchiomeric myogenesis. Hum Mol Genet 13(22):2829–2840

    Article  PubMed  CAS  Google Scholar 

  • Kier WM, Smith KK (1989) Tongues tentacles and trunks the biomechanics of movement in muscular hydrostats. Zool J Linn Soc 83(4):307–324

    Article  Google Scholar 

  • Kjellgren D, Thornell LE, Virtanen I, Pedrosa-Domellöf F (2004) Laminin isoforms in human extraocular muscles. Invest Ophthalmol Vis Sci 45:4233–4239

    Google Scholar 

  • Lu JW, Kubin L (2009) Electromyographic activity at the base and tip of the tongue across sleep-wake states in rats. Respir Physiol Neurobiol 167(3):307–315

    Article  PubMed  Google Scholar 

  • Maas H, Baan GC et al (2001) Intermuscular interaction via myofascial force transmission: effects of tibialis anterior and extensor hallucis longus length on force transmission from rat extensor digitorum longus muscle. J Biomech 34(7):927–940

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto A, Nagatomo F et al (2007) Cell size and oxidative enzyme activity of rat biceps brachii and triceps brachii muscles. J Physiol Sci 57(5):311–316

    Article  PubMed  Google Scholar 

  • McLoon LK, Park HN, Kim JH, Pedrosa-Domellöf F, Thompson LV (2011) A continuum of myofibers in adult rabbit extraocular muscle: force, shortening velocity, and patterns of myosin heavy chain colocalization. J Appl Physiol 111:1178–1189

    Google Scholar 

  • Mijailovich SM, Stojanovic B et al (2010) Derivation of a finite-element model of lingual deformation during swallowing from the mechanics of mesoscale myofiber tracts obtained by MRI. J Appl Physiol 109(5):1500–1514

    Article  PubMed  Google Scholar 

  • Miyawaki K, Hirose H, Ushijima T, Sawashima M, Hirose H et al (1975) A preliminary report on the electromyographic study of the activity of lingual muscles. Ann Bull RILP 9:91–106

    Google Scholar 

  • Mu L, Sanders I (1999) Neuromuscular organization of the canine tongue. Anat Rec 256(4):412–424

    Article  PubMed  CAS  Google Scholar 

  • Mu L, Sanders I (2010) Human tongue neuroanatomy: nerve supply and motor endplates. Clinical Anatomy 23:777–791

    Google Scholar 

  • Nakayama M (1991) Histological study on aging changes in the human tongue. Nippon Jibiinkoka Gakkai Kaiho 94(4):541–555

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa KC, Kier WM et al (1999) Morphology and mechanics of tongue movement in the African pig-nosed frog Hemisus marmoratum: a muscular hydrostatic model. J Exp Biol 202(Pt 7):771–780

    PubMed  CAS  Google Scholar 

  • O’Kusky JR, Norman MG (1995) Sudden infant death syndrome: increased number of synapses in the hypoglossal nucleus. J Neuropathol Exp Neurol 54(5):627–634

    Article  PubMed  Google Scholar 

  • Oda K (1986) Motor innervation and acetylcholine receptor distribution of human extraocular muscle fibres. J Neurol Sci 74(2–3):125–133

    Article  PubMed  CAS  Google Scholar 

  • Oliven A, Carmi N et al (2001) Age-related changes in upper airway muscles morphological and oxidative properties. Exp Gerontol 36(10):1673–1686

    Article  PubMed  CAS  Google Scholar 

  • Perie S, St Guily JL et al (1997) Innervation of adult human laryngeal muscle fibers. J Neurol Sci 149(1):81–86

    Article  PubMed  CAS  Google Scholar 

  • Perie S, St Guily JL et al (1999) Comparison of perinatal and adult multi-innervation in human laryngeal muscle fibers. Ann Otol Rhinol Laryngol 108(7 pt 1):683–688

    PubMed  CAS  Google Scholar 

  • Pette D (2001) Historical perspectives: plasticity of mammalian skeletal muscle. J Appl Physiol 90(3):1119–1124

    PubMed  CAS  Google Scholar 

  • Rahnert JA, Sokoloff AJ et al (2010) Sarcomeric myosin expression in the tongue body of humans, macaques and rats. Cells Tissues Organs 191(5):431–442

    Article  PubMed  CAS  Google Scholar 

  • Rosser BW, Waldbillig DM et al (1995) Myosin heavy chain expression within the tapered ends of skeletal muscle fibers. Anat Rec 242(4):462–470

    Article  PubMed  CAS  Google Scholar 

  • Rother P, Wohlgemuth B et al (2002) Morphometrically observable aging changes in the human tongue. Ann Anat 184(2):159–164

    Article  PubMed  Google Scholar 

  • Saboisky JP, Butler JE et al (2006) Tonic and phasic respiratory drives to human genioglossus motoneurons during breathing. J Neurophysiol 95(4):2213–2221

    Article  PubMed  Google Scholar 

  • Saito H, Itoh I (2007) The three-dimensional architecture of the human styloglossus especially its posterior muscle bundles. Ann Anat 189(3):261–267

    Article  PubMed  Google Scholar 

  • Sato I, Suzuki M et al (1990) A histochemical study of lingual muscle fibers in rat. Okajimas Folia Anat Jpn 66(6):405–415

    PubMed  CAS  Google Scholar 

  • Schiaffino S, Sandri M et al (2007) Activity-dependent signaling pathways controlling muscle diversity and plasticity. Physiology (Bethesda) 22:269–278

    Article  CAS  Google Scholar 

  • Slaughter K, Li H et al (2005) Neuromuscular organization of the superior longitudinalis muscle in the human tongue. 1. Motor endplate morphology and muscle fiber architecture. Cells Tissues Organs 181(1):51–64

    Article  PubMed  Google Scholar 

  • Snow LM, McLoon LK et al (2005) Adult and developmental myosin heavy chain isoforms in soleus muscle of aging Fischer Brown Norway rat. Anat Rec A Discov Mol Cell Evol Biol 286(1):866–873

    PubMed  Google Scholar 

  • Sokoloff AJ (2000) Localization and contractile properties of intrinsic longitudinal motor units of the rat tongue. J Neurophysiol 84(2):827–835

    PubMed  CAS  Google Scholar 

  • Sokoloff AJ, Deacon TW (1992) Musculotopic organization of the hypoglossal nucleus in the cynomolgus monkey, Macaca fascicularis. J Comp Neurol 324(1):81–93

    Article  PubMed  CAS  Google Scholar 

  • Sokoloff AJ, Siegel SG et al (1999) Recruitment order among motoneurons from different motor nuclei. J Neurophysiol 81(5):2485–2492

    PubMed  CAS  Google Scholar 

  • Sokoloff AJ, Li H et al (2007) Limited expression of slow tonic myosin heavy chain in human cranial muscles. Muscle Nerve 36(2):183–189

    Article  PubMed  CAS  Google Scholar 

  • Sokoloff AJ, Daugherty M et al (2010) Myosin heavy-chain composition of the human hyoglossus muscle. Dysphagia 25(2):81–93

    Article  PubMed  Google Scholar 

  • Stal PS, Lindman R (2000) Characterisation of human soft palate muscles with respect to fibre types, myosins and capillary supply. J Anat 197(pt 2):275–290

    Article  PubMed  Google Scholar 

  • Stal P, Marklund S et al (2003) Fibre composition of human intrinsic tongue muscles. Cells Tissues Organs 173(3):147–161

    Article  PubMed  CAS  Google Scholar 

  • Stone M, Lundberg A (1996) Three-dimensional tongue surface shapes of English consonants and vowels. J Acoust Soc Am 99(6):3728–3737

    Article  PubMed  CAS  Google Scholar 

  • Sturrock RR (1991) Stability of motor neuron and interneuron number in the hypoglossal nucleus of the ageing mouse brain. Anat Anz 173(2):113–116

    PubMed  CAS  Google Scholar 

  • Sutlive TG, Shall MS et al (2000) Contractile properties of the tongue’s genioglossus muscle and motor units in the rat. Muscle Nerve 23(3):416–425

    Article  PubMed  CAS  Google Scholar 

  • Takemoto H (2001) Morphological analyses of the human tongue musculature for three-dimensional modeling. J Speech Lang Hear Res 44(1):95–107

    Article  PubMed  CAS  Google Scholar 

  • Tellis CM, Rosen C et al (2004) Anatomy and fiber type composition of human interarytenoid muscle. Ann Otol Rhinol Laryngol 113(2):97–107

    PubMed  Google Scholar 

  • Thexton AJ, Crompton AW (1989) Effect of sensory input from the tongue on jaw movement in normal feeding in the opossum. J Exp Zool 250(3):233–243

    Article  PubMed  CAS  Google Scholar 

  • Totosy de Zepetnek JE, Zung HV et al (1992) Innervation ratio is an important determinant of force in normal and reinnervated rat tibialis anterior muscles. J Neurophysiol 67(5):1385–1403

    PubMed  CAS  Google Scholar 

  • Tsuiki S, Ono T et al (2000) Functional divergence of human genioglossus motor units with respiratory-related activity. Eur Respir J 15(5):906–910

    Article  PubMed  CAS  Google Scholar 

  • Volz LM, Mann LB et al (2007) Biochemistry of anterior, medial, and posterior genioglossus muscle in the rat. Dysphagia 22(3):210–214

    Article  PubMed  Google Scholar 

  • Yu F, Stal P et al (2002) Human single masseter muscle fibers contain unique combinations of myosin and myosin binding protein C isoforms. J Muscle Res Cell Motil 23(4):317–326

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Audrey Jernigan for illustrations. This work was supported by grant DC005017 from the National Institute on Deafness and Other Communication Disorders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Sokoloff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sokoloff, A., Burkholder, T. (2012). Tongue Structure and Function. In: McLoon, L., Andrade, F. (eds) Craniofacial Muscles. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4466-4_12

Download citation

Publish with us

Policies and ethics