Skip to main content

Human: Veterinary Technology Cross Over

  • Chapter
  • First Online:
Long Acting Animal Health Drug Products

Abstract

Emerging drug discovery technologies are helping us to break from the traditional simplistic cycle of animal experimentation for human applications with “spin off” benefits for veterinary medicine. A more coordinated effort can develop synergies. In this chapter we attempt to profile how those technologies harnessed independently for human or veterinary medicine have related features. We discuss shared approaches and requirements that are reaping benefits for both human and veterinary patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tsikas D (2010) Quantitative analysis of biomarkers, drugs and toxins in biological samples by immunoaffinity chromatography coupled to mass spectrometry or tandem mass spectrometry: a focused review of recent applications. J Chromatogr B Analyt Technol Biomed Life Sci 878:133–148

    CAS  Google Scholar 

  2. Maurer HH (2005) Multi-analyte procedures for screening for and quantification of drugs in blood, plasma, or serum by liquid chromatography-single stage or tandem mass spectrometry (LC-MS or LC-MS/MS) relevant to clinical and forensic toxicology. Clin Biochem 38:310–318

    CAS  Google Scholar 

  3. Brooks AL (2001) Biomarkers of exposure and dose: state of the art. Radiat Prot Dosimetry 97:39–46

    CAS  Google Scholar 

  4. Brooks AL, Lei XC, Rithidech K (2003) Changes in biomarkers from space radiation may reflect dose not risk. Adv Space Res 31:1505–1512

    Google Scholar 

  5. Nebbia C, Urbani A, Carletti M, Gardini G, Balbo A, Bertarelli D, Girolami F (2010) Novel strategies for tracing the exposure of meat cattle to illegal growth-promoters. Vet J 189:34–42

    Google Scholar 

  6. Gehring AG, Tu SI (2011) High-throughput biosensors for multiplexed food-borne pathogen detection. Annu Rev Anal Chem (Palo Alto Calif) 4:151–172

    CAS  Google Scholar 

  7. Ray S, Reddy PJ, Jain R, Gollapalli K, Moiyadi A, Srivastava S (2011) Proteomic technologies for the identification of disease biomarkers in serum: advances and challenges ahead. Proteomics 11:2139–2161

    CAS  Google Scholar 

  8. Shariat SF, Kattan MW, Vickers AJ, Karakiewicz PI, Scardino PT (2009) Critical review of prostate cancer predictive tools. Future Oncol 5:1555–1584

    Google Scholar 

  9. Gallagher EJ, Le Roith D, Bloomgarden Z (2009) Review of hemoglobin A(1c) in the management of diabetes. J Diabetes 1:9–17

    CAS  Google Scholar 

  10. Lapointe LC, Pedersen SK, Dunne R, Brown GS, Pimlott L, Gaur S, McEvoy A, Thomas M, Wattchow D, Molloy PL, Young GP (2012) Discovery and validation of molecular biomarkers for colorectal adenomas and cancer with application to blood testing. PLoS One 7:e29059

    CAS  Google Scholar 

  11. Bhattacharya S, Zhang Q, Carmichael PL, Boekelheide K, Andersen ME (2011) Toxicity testing in the 21 century: defining new risk assessment approaches based on perturbation of intracellular toxicity pathways. PLoS One 6:e20887

    CAS  Google Scholar 

  12. Keun HC (2007) Biomarker discovery for drug development and translational medicine using metabonomics. Ernst Schering Found Symp Proc (4):79–98

    Google Scholar 

  13. Schlotterbeck G, Ross A, Dieterle F, Senn H (2006) Metabolic profiling technologies for biomarker discovery in biomedicine and drug development. Pharmacogenomics 7:1055–1075

    CAS  Google Scholar 

  14. He QY, Chiu JF (2003) Proteomics in biomarker discovery and drug development. J Cell Biochem 89:868–886

    CAS  Google Scholar 

  15. Colatsky TJ, Higgins AJ, Bullard BR (2004) Editorial overview. Biomarker-enabled drug discovery: bridging the gap between disease and target knowledge. Curr Opin Investig Drugs 5:269–270

    Google Scholar 

  16. Gaines PJ, Powell TD, Walmsley SJ, Estredge KL, Wisnewski N, Stinchcomb DT, Withrow SJ, Lana SE (2007) Identification of serum biomarkers for canine B-cell lymphoma by use of surface-enhanced laser desorption-ionization time-of-flight mass spectrometry. Am J Vet Res 68:405–410

    CAS  Google Scholar 

  17. Doherty MK, Beynon RJ, Whitfield PD (2008) Proteomics and naturally occurring animal diseases: opportunities for animal and human medicine. Proteomics Clin Appl 2:135–141

    CAS  Google Scholar 

  18. Eckersall PD, Slater K, Mobasheri A (2009) Biomarkers in veterinary medicine: establishing a new international forum for veterinary biomarker research. Biomarkers 14:637–641

    CAS  Google Scholar 

  19. LaRosa SP, Opal SM (2011) Biomarkers: the future. Crit Care Clin 27:407–419

    Google Scholar 

  20. Rowland R, McShane H (2011) Tuberculosis vaccines in clinical trials. Expert Rev Vaccines 10:645–658

    CAS  Google Scholar 

  21. Baumgartner C, Osl M, Netzer M, Baumgartner D (2011) Bioinformatic-driven search for metabolic biomarkers in disease. J Clin Bioinforma 1(2):1–10

    Google Scholar 

  22. Suganuma T, Workman JL (2011) Signals and combinatorial functions of histone modifications. Annu Rev Biochem 80:473–499

    CAS  Google Scholar 

  23. Yun M, Wu J, Workman JL, Li B (2011) Readers of histone modifications. Cell Res 21:564–578

    CAS  Google Scholar 

  24. Rakyan VK, Down TA, Balding DJ, Beck S (2011) Epigenome-wide association studies for common human diseases. Nat Rev Genet 12:529–541

    CAS  Google Scholar 

  25. Lauerman LH (2004) Advances in PCR technology. Anim Health Res Rev 5:247–248

    Google Scholar 

  26. Backer LC, Grindem CB, Corbett WT, Cullins L, Hunter JL (2001) Pet dogs as sentinels for environmental contamination. Sci Total Environ 274:161–169

    CAS  Google Scholar 

  27. Reif JS (2011) Animal sentinels for environmental and public health. Public Health Rep 126(suppl 1):50–57

    Google Scholar 

  28. Kong DX, Li XJ, Zhang HY (2009) Where is the hope for drug discovery? Let history tell the future. Drug Discov Today 14:115–119

    Google Scholar 

  29. Gershell LJ, Atkins JH (2003) A brief history of novel drug discovery technologies. Nat Rev Drug Discov 2:321–327

    CAS  Google Scholar 

  30. Orkin M (1967) Animal models (spontaneous) for human disease. Experiments of nature. Arch Dermatol 95:524–531

    CAS  Google Scholar 

  31. Kitchen H (1968) Comparative biology: animal models of human hematologic disease. A review. Pediatr Res 2:215–229

    CAS  Google Scholar 

  32. McDonald MP, Overmier JB (1998) Present imperfect: a critical review of animal models of the mnemonic impairments in Alzheimer’s disease. Neurosci Biobehav Rev 22:99–120

    CAS  Google Scholar 

  33. Sartor RB (1997) Review article: How relevant to human inflammatory bowel disease are current animal models of intestinal inflammation? Aliment Pharmacol Ther 11(Suppl 3):89–96

    Google Scholar 

  34. van der Spoel TI, Jansen Of Lorkeers SJ, Agostoni P, van Belle E, Gyongyosi M, Sluijter JP, Cramer MJ, Doevendans PA, Chamuleau SA (2011) Human relevance of pre-clinical studies in stem cell therapy: systematic review and meta-analysis of large animal models of ischaemic heart disease. Cardiovasc Res 91:649–658

    Google Scholar 

  35. Steenrod WJ Jr (1962) A brief review of the history of diabetes from Aretaeus to insulin. Bull Mason Clin 16:26–30

    Google Scholar 

  36. Richter B, Neises G, Bergerhoff K (2002) Human versus animal insulin in people with diabetes mellitus. A systematic review. Endocrinol Metab Clin North Am 31:723–749

    CAS  Google Scholar 

  37. Brogden RN, Heel RC (1987) Human insulin. A review of its biological activity, pharmacokinetics and therapeutic use. Drugs 34:350–371

    CAS  Google Scholar 

  38. Horwitz DF (2000) Diagnosis and treatment of canine separation anxiety and the use of clomipramine hydrochloride (clomicalm). J Am Anim Hosp Assoc 36:107–109

    CAS  Google Scholar 

  39. Steiner I (2011) On human disease and animal models. Ann Neurol 70:343–344

    Google Scholar 

  40. Dorner AJ, Schaub R (2011) Evaluating the biological complexity of animal models of human disease and emerging therapeutic modalities. Curr Opin Pharmacol 10:531–533

    Google Scholar 

  41. Wendler A, Wehling M (2010) The translatability of animal models for clinical development: biomarkers and disease models. Curr Opin Pharmacol 10:601–606

    CAS  Google Scholar 

  42. van der Worp HB, Howells DW, Sena ES, Porritt MJ, Rewell S, O’Collins V, Macleod MR (2010) Can animal models of disease reliably inform human studies? PLoS Med 7:e1000245. doi:10.1371/journal.pmed.1000245

    Article  Google Scholar 

  43. Van Dam D, De Deyn PP (2011) Animal models in the drug discovery pipeline for Alzheimer’s disease. Br J Pharmacol 164:1285–1300

    Google Scholar 

  44. Yednock TA, Cannon C, Fritz LC, Sanchez-Madrid F, Steinman L, Karin N (1992) Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. Nature 356:63–66

    CAS  Google Scholar 

  45. Withrow SJ, Wilkins RM (2010) Cross talk from pets to people: translational osteosarcoma treatments. ILAR J 51:208–213

    CAS  Google Scholar 

  46. Hammer RE, Pursel VG, Rexroad CE Jr, Wall RJ, Bolt DJ, Ebert KM, Palmiter RD, Brinster RL (1985) Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315:680–683

    CAS  Google Scholar 

  47. Campbell KH (2002) Transgenic sheep from cultured cells. Methods Mol Biol 180:289–301

    Google Scholar 

  48. Rexroad CE Jr, Hammer RE, Bolt DJ, Mayo KE, Frohman LA, Palmiter RD, Brinster RL (1989) Production of transgenic sheep with growth-regulating genes. Mol Reprod Dev 1:164–169

    CAS  Google Scholar 

  49. Lai L, Park KW, Cheong HT, Kuhholzer B, Samuel M, Bonk A, Im GS, Rieke A, Day BN, Murphy CN, Carter DB, Prather RS (2002) Transgenic pig expressing the enhanced green fluorescent protein produced by nuclear transfer using colchicine-treated fibroblasts as donor cells. Mol Reprod Dev 62:300–306

    CAS  Google Scholar 

  50. Garrels W, Mates L, Holler S, Dalda A, Taylor U, Petersen B, Niemann H, Izsvák Z, Ivics Z, Kues WA (2011) Germline transgenic pigs by Sleeping Beauty transposition in porcine zygotes and targeted integration in the pig genome. PLoS One 6:e23573

    CAS  Google Scholar 

  51. Mozdziak PE, Petitte JN (2004) Status of transgenic chicken models for developmental ­biology. Dev Dyn 229:414–421

    CAS  Google Scholar 

  52. Salamanca-Gomez F (2009) A new biomedical model: a primate non-human transgenic model. Gac Med Mex 145:351–352

    Google Scholar 

  53. Chan AW (2009) Transgenic primate research paves the path to a better animal model: are we a step closer to curing inherited human genetic disorders? J Mol Cell Biol 1:13–14

    Google Scholar 

  54. Flint AP, Woolliams JA (2008) Precision animal breeding. Philos Trans R Soc Lond B Biol Sci 363:573–590

    CAS  Google Scholar 

  55. Halliday JE, Meredith AL, Knobel DL, Shaw DJ, Bronsvoort BM, Cleaveland S (2007) A framework for evaluating animals as sentinels for infectious disease surveillance. J R Soc Interface 4:973–984

    Google Scholar 

  56. Dunn DA, Pinkert CA, Kooyman DL (2005) Foundation review: Transgenic animals and their impact on the drug discovery industry. Drug Discov Today 10:757–767

    CAS  Google Scholar 

  57. Bobrow M (2011) Regulate research at the animal-human interface. Nature 475:448. doi:10.1038/475448a

    Article  CAS  Google Scholar 

  58. Abbott A (2011) Regulations proposed for animal-human chimaeras. Nature 475:438. doi:10.1038/475438a

    Article  CAS  Google Scholar 

  59. Yuvaraj S, Peppelenbosch MP, Bos NA (2007) Transgenic probiotica as drug delivery systems: the golden bullet? Expert Opin Drug Deliv 4:1–3

    CAS  Google Scholar 

  60. Oupicky D (2010) Polymeric biomaterials for gene and drug delivery. Pharm Res 27:2517–2519

    CAS  Google Scholar 

  61. Petkar KC, Chavhan SS, Agatonovik-Kustrin S, Sawant KK (2011) Nanostructured materials in drug and gene delivery: a review of the state of the art. Crit Rev Ther Drug Carrier Syst 28:101–164

    CAS  Google Scholar 

  62. Chaturvedi K, Ganguly K, Kulkarni AR, Kulkarni VH, Nadagouda MN, Rudzinski WE, Aminabhavi TM (2011) Cyclodextrin-based siRNA delivery nanocarriers: a state-of-the-art review. Expert Opin Drug Deliv 8:1455–1468

    CAS  Google Scholar 

  63. Geisbert TW, Lee AC, Robbins M, Geisbert JB, Honko AN, Sood V, Johnson JC, de Jong S, Tavakoli I, Judge A, Hensley LE, Maclachlan I (2010) Postexposure protection of non-human primates against a lethal Ebola virus challenge with RNA interference: a proof-of-concept study. Lancet 375:1896–1905

    CAS  Google Scholar 

  64. Lundquist S, Renftel M (2002) The use of in vitro cell culture models for mechanistic studies and as permeability screens for the blood-brain barrier in the pharmaceutical industry–background and current status in the drug discovery process. Vascul Pharmacol 38:355–364

    CAS  Google Scholar 

  65. Lai Y, Asthana A, Kisaalita WS (2011) Biomarkers for simplifying HTS 3D cell culture platforms for drug discovery: the case for cytokines. Drug Discov Today 16:293–297

    CAS  Google Scholar 

  66. Atienzar FA, Tilmant K, Gerets HH, Toussaint G, Speeckaert S, Hanon E, Depelchin O, Dhalluin S (2011) The use of real-time cell analyzer technology in drug discovery: defining optimal cell culture conditions and assay reproducibility with different adherent cellular models. J Biomol Screen 16:575–587

    CAS  Google Scholar 

  67. Olaharski AJ, Uppal H, Cooper M, Platz S, Zabka TS, Kolaja KL (2009) In vitro to in vivo concordance of a high throughput assay of bone marrow toxicity across a diverse set of drug candidates. Toxicol Lett 188:98–103

    CAS  Google Scholar 

  68. Lee MY, Park CB, Dordick JS, Clark DS (2005) Metabolizing enzyme toxicology assay chip (MetaChip) for high-throughput microscale toxicity analyses. Proc Natl Acad Sci USA 102:983–987

    CAS  Google Scholar 

  69. Wren JA, Gossellin J, Sunderland SJ (2007) Dirlotapide: a review of its properties and role in the management of obesity in dogs. J Vet Pharmacol Ther 30(Suppl 1):11–16

    CAS  Google Scholar 

  70. Yancey MF, Merritt DA, Lesman SP, Boucher JF, Michels GM (2010) Pharmacokinetic properties of toceranib phosphate (Palladia, SU11654), a novel tyrosine kinase inhibitor, in laboratory dogs and dogs with mast cell tumors. J Vet Pharmacol Ther 33:162–171

    CAS  Google Scholar 

  71. Gordon I, Paoloni M, Mazcko C, Khanna C (2009) The Comparative Oncology Trials Consortium: using spontaneously occurring cancers in dogs to inform the cancer drug development pathway. PLoSMed 6:e1000161

    Google Scholar 

  72. Hunter RP (2010) Interspecies allometric scaling. Handb Exp Pharmacol 199:139–157

    CAS  Google Scholar 

  73. Toutain PL, Ferran A, Bousquet-Melou A (2010) Species differences in pharmacokinetics and pharmacodynamics. Handb Exp Pharmacol 199:19–48

    CAS  Google Scholar 

  74. European Medicines Agency (2010) Guideline on the conduct of bioequivalence studies for veterinary medicinal products. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/10/WC500004305_OnlinePDF.pdf. Accessed, 13th Aug, 2012.

  75. Rathbone M, Brayden D (2009) Controlled release drug delivery in farmed animals: commercial challenges and academic opportunities. Curr Drug Deliv 6:383–390

    CAS  Google Scholar 

  76. Riviere JE (2007) The future of veterinary therapeutics: a glimpse towards 2030. Vet J 174:462–471

    CAS  Google Scholar 

  77. Brayden DJ, Oudot EJ, Baird AW (2010) Drug delivery systems in domestic animal species. Handb Exp Pharmacol 199:79–112

    CAS  Google Scholar 

  78. Schwartz RS (2004) Paul Ehrlich’s magic bullets. N Engl J Med 350:1079–1080

    CAS  Google Scholar 

  79. Jevsevar S, Kunstelj M, Porekar VG (2010) PEGylation of therapeutic proteins. Biotechnol J 5:113–128

    CAS  Google Scholar 

  80. Neumiller JJ, Campbell RK (2010) Technosphere insulin: an inhaled prandial insulin product. BioDrugs 24:165–172

    CAS  Google Scholar 

  81. Kahn CM (ed) (2005) The Merck veterinary manual, 9th edn. Merck & Co., Inc, Whitehouse station, NJ

    Google Scholar 

  82. Balimane PV, Chong S, Morrison RA (2000) Current methodologies used for evaluation of intestinal permeability and absorption. J Pharmacol Toxicol Methods 44:301–312

    CAS  Google Scholar 

  83. Bohets H, Annaert P, Mannens G, Van Beijsterveldt L, Anciaux K, Verboven P, Meuldermans W, Lavrijsen K (2001) Strategies for absorption screening in drug discovery and development. Curr Top Med Chem 1:367–383

    CAS  Google Scholar 

  84. Pelkonen O, Boobis AR, Gundert-Remy U (2001) In vitro prediction of gastrointestinal absorption and bioavailability: an experts’ meeting report. Eur J Clin Pharmacol 57:621–629

    CAS  Google Scholar 

  85. Antunes F, Andrade F, Ferreira D, van de Weert M, Nielsen HM, Sarmento B (2011) Models to predict intestinal absorption of therapeutic peptides and proteins. Curr Drug Metab PMID:21933113, Epub ahead of print

    Google Scholar 

  86. Fleischer S, Sharkey M, Mealey K, Ostrander EA, Martinez M (2008) Pharmacogenetic and metabolic differences between dog breeds: their impact on canine medicine and the use of the dog as a preclinical animal model. AAPS J 10:110–119

    CAS  Google Scholar 

  87. Samani NJ, Tomaszewski M, Schunkert H (2010) The personal genome—the future of personalised medicine? Lancet 375:1497–1498

    Google Scholar 

  88. Collins F (2010) Has the revolution arrived? Nature 464:674–675

    CAS  Google Scholar 

  89. Toutain PL (2010) Species differences in pharmacokinetics and pharmacodynamics. Handb Exp Pharmacol 199:19–48

    CAS  Google Scholar 

  90. Casal M, Haskins M (2006) Large animal models and gene therapy. Eur J Hum Genet 14:266–272

    CAS  Google Scholar 

  91. Bauer TR Jr, Adler RL, Hickstein DD (2009) Potential large animal models for gene therapy of human genetic diseases of immune and blood cell systems. ILAR J 50:168–186

    CAS  Google Scholar 

  92. Sleeper M, Bish LT, Haskins M, Ponder KP, Sweeney HL (2011) Status of therapeutic gene transfer to treat cardiovascular disease in dogs and cats. J Vet Cardiol 13:131–140

    Google Scholar 

  93. Baxby D (1965) Inoculation and vaccination: smallpox, cowpox and vaccinia. Med Hist 9:383–385

    CAS  Google Scholar 

  94. Pinelli NR, Hurren KM (2011) Efficacy and safety of long-acting glucagon-like peptide-1 receptor agonists compared with exenatide twice daily and sitagliptin in type 2 diabetes mellitus: a systematic review and meta-analysis. Ann Pharmacother 45:850–860

    CAS  Google Scholar 

  95. Norris SL, Lee N, Thakurta S, Chan BK (2009) Exenatide efficacy and safety: a systematic review. Diabet Med 26:837–846

    CAS  Google Scholar 

  96. Pinelli NR, Hurren KM (2011) Efficacy and safety of long-acting glucagon-like peptide-1 receptor agonists compared with exenatide twice daily and sitagliptin in type 2 diabetes mellitus: a systematic review and meta-analysis. Ann Pharmacother 45:850–860

    CAS  Google Scholar 

  97. Lavonas EJ, Schaeffer TH, Kokko J, Mlynarchek SL, Bogdan GM (2009) Crotaline Fab antivenom appears to be effective in cases of severe North American pit viper envenomation: an integrative review. BMC Emerg Med 9:13

    Google Scholar 

  98. Lovrecek D, Tomic S (2011) A century of antivenom. Coll Antropol 35:249–258

    Google Scholar 

  99. Kantha SS (1991) A centennial review; the 1890 tetanus antitoxin paper of von Behring and Kitasato and the related developments. Keio J Med 40:35–39

    CAS  Google Scholar 

  100. Domenech J, Lubroth J, Sumption K (2010) Immune protection in animals: the examples of rinderpest and foot-and-mouth disease. J Comp Pathol 142(Suppl 1):S120–S124

    CAS  Google Scholar 

  101. Morens DM, Holmes EC, Davis AS, Taubenberger JK (2011) Global rinderpest eradication: lessons learned and why humans should celebrate too. J Infect Dis 204:502–505

    Google Scholar 

  102. Liras A (2008) The variant Creutzfeldt-Jakob Disease: risk, uncertainty or safety in the use of blood and blood derivatives? Int Arch Med 1:9

    Google Scholar 

  103. Tocci LJ, Ewing PJ (2009) Increasing patient safety in veterinary transfusion medicine: an overview of pretransfusion testing. J Vet Emerg Crit Care (San Antonio) 19:66–73

    Google Scholar 

  104. Callan MB, Rentko VT (2003) Clinical application of a hemoglobin-based oxygen-carrying solution. Vet Clin North Am Small Anim Pract 33:1277–1293, vi

    Google Scholar 

  105. Hardy JD, Chavez CM (1968) The first heart transplant in man. Developmental animal investigations with analysis of the 1964 case in the light of current clinical experience. Am J Cardiol 22:772–781

    CAS  Google Scholar 

  106. Margreiter R (2006) Chimpanzee heart was not rejected by human recipient. Tex Heart Inst J 33:412

    Google Scholar 

  107. Brehm MA, Shultz LD, Greiner DL (2010) Humanized mouse models to study human diseases. Curr Opin Endocrinol Diabetes Obes 17:120–125

    Google Scholar 

  108. Shultz LD, Ishikawa F, Greiner DL (2007) Humanized mice in translational biomedical research. Nat Rev Immunol 7:118–130

    CAS  Google Scholar 

  109. Vandewoude S, Rollin BE (2009) Practical considerations in regenerative medicine research: IACUCs, ethics, and the use of animals in stem cell studies. ILAR J 51:82–84

    Google Scholar 

  110. Yingling GL, Nobert KM (2008) Regulatory considerations related to stem cell treatment in horses. J Am Vet Med Assoc 232:1657–1661

    Google Scholar 

  111. Pelegris P, Banitsas K, Orbach T, Marias K (2010) A novel method to detect heart beat rate using a mobile phone. Conf Proc IEEE Eng Med Biol Soc 5488–5491

    Google Scholar 

  112. Sanches JM, Pereira B and Paiva T (2010) Headset Bluetooth and cell phone based continuous central body temperature measurement system. Conf Proc IEEE Eng Med Biol Soc 2975–2978

    Google Scholar 

  113. Choi JS, Yi B, Park JH, Choi K, Jung J, Park SW, Rhee PL (2011) The uses of the smartphone for doctors: an empirical study from samsung medical center. Healthc Inform Res 17:131–138

    Google Scholar 

  114. Studdiford JS 3rd, Panitch KN, Snyderman DA, Pharr ME (1996) The telephone in primary care. Prim Care 23:83–102

    Google Scholar 

  115. Hartsfield SM (1999) Equipment for inhalant anesthesia. Vet Clin North Am Small Anim Pract 29:645–663, v–vi

    CAS  Google Scholar 

  116. Smith J, Tiner R (2011) Aerosol drug delivery: developments in device design and clinical use. Lancet 378:982, author reply

    Google Scholar 

  117. Scheuch G, Kohlhaeufl MJ, Brand P, Siekmeier R (2006) Clinical perspectives on pulmonary systemic and macromolecular delivery. Adv Drug Deliv Rev 58:996–1008

    CAS  Google Scholar 

  118. Kyles AE, Papich M, Hardie EM (1996) Disposition of transdermally administered fentanyl in dogs. Am J Vet Res 57:715–719

    CAS  Google Scholar 

  119. Lee DD, Papich MG, Hardie EM (2000) Comparison of pharmacokinetics of fentanyl after intravenous and transdermal administration in cats. Am J Vet Res 61:672–677

    CAS  Google Scholar 

  120. Naderi H, Matin MM, Bahrami AR (2011) Review article: Critical issues in tissue engineering: biomaterials, cell sources, angiogenesis, and drug delivery systems. J Biomater Appl 4:383–417

    Google Scholar 

  121. Ulery BD, Nair LS, Laurencin CT (2011) Biomedical applications of biodegradable polymers. J Polym Sci B Polym Phys 49:832–864

    CAS  Google Scholar 

  122. Vert M (2011) Degradable polymers in medicine: updating strategies and terminology. Int J Artif Organs 34:76–83

    CAS  Google Scholar 

  123. Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29:2941–2953

    CAS  Google Scholar 

  124. Power KA, Fitzgerald KT, Gallagher WM (2010) Examination of cell-host-biomaterial interactions via high-throughput technologies: a re-appraisal. Biomaterials 31:6667–6674

    CAS  Google Scholar 

  125. Currier RW, Steele JH (2011) One health-one medicine: unifying human and animal ­medicine within an evolutionary paradigm. Ann N Y Acad Sci 1230:4–11

    Google Scholar 

  126. Saunders LZ (2000) Virchow’s contributions to veterinary medicine: celebrated then, forgotten now. Vet Pathol 37:199–207

    CAS  Google Scholar 

  127. Zinsstag J, Schelling E, Waltner-Toews D, Tanner M (2010) From “one medicine” to “one health” and systemic approaches to health and well-being. Prev Vet Med 101:148–156

    Google Scholar 

Download references

Acknowledgments

The work is supported by Science Foundation Ireland grant 07/SRC/B1154.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Brayden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Controlled Release Society

About this chapter

Cite this chapter

Baird, A.W., Rathbone, M.J., Brayden, D.J. (2013). Human: Veterinary Technology Cross Over. In: Rathbone, M., McDowell, A. (eds) Long Acting Animal Health Drug Products. Advances in Delivery Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4439-8_16

Download citation

Publish with us

Policies and ethics