Skip to main content

Development of Bioabsorbable Interference Screws: How Biomaterials Composition and Clinical and Retrieval Studies Influence the Innovative Screw Design and Manufacturing Processes

  • Chapter
  • First Online:
Biologically Responsive Biomaterials for Tissue Engineering

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 1))

Abstract

The current development of bioresorbable materials provided the support for improvement of the clinical performance of the interference screws used during knee-ligament reconstruction. In general, commercially available biodegradable interference screws used in clinical practice are chemically based on degradable, but now a trend to use biodegradable composite materials using the same synthetic biodegradable polymers as matrix reinforced with biodegradable ceramics could be observed. Hydroxyapatite or tricalcium phosphate are used as ceramics in order to reduce the foreign body reaction and increase osteoconduction and mechanical properties of the biodegradable composite materials. In our study several new design features of an innovative interference screw were proposed in order to ameliorate press-fit fixation without damaging the graft based on clinical experience, retrieval analysis of some failed screw, and finite element simulation. We proposed a self-tapping screw with conical shape and three cutting flutes at the distal end and cylindrical shape at the proximal end. The clinical performance of an interference screw is assured by the combination between the clinical technique, screw design, and biodegradable composite material properties, which guarantees the integrity of the screw during insertion, the tissue regrowth, and the stability of fixation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bach BR Jr, Jones GT, Sweet FA, Hager CA (1994) Arthroscopy-assisted anterior cruciate ligament reconstruction using patellar tendon substitution. Two to four-year follow-up results. Am J Sports Med 22:758–767

    Article  Google Scholar 

  2. Kurosaka M, Yoshiya S, Andrish JT (1987) A biomechanical comparison of different surgical techniques of graft fixation in anterior cruciate ligament reconstruction. Am J Sports Med 15:225–229

    Article  CAS  Google Scholar 

  3. Lambert KL (1983) Vascularized patellar tendon graft with rigid internal fixation for anterior cruciate ligament insufficiency. Clin Orthop 172:85–89

    Google Scholar 

  4. Kurzweil PR, Frogameni AD, Jackson DW (1995) Tibial interference screw removal following anterior cruciate ligament reconstruction. Arthroscopy 11:289–291

    Article  CAS  Google Scholar 

  5. Sidhu DS, Wroble RR (1997) Intraarticular migration of a femoral interference fit screw. A complication of anterior cruciate ligament reconstruction. Am J Sports Med 25:268–271

    Article  CAS  Google Scholar 

  6. Caborn DNM, Coen M, Neef R, Hamilton D, Nyland J, Johnson DL (1998) Quadrupled semitendinosus-gracilis autograft fixation in the femoral tunnel: a comparison between a metal and a bioabsorbable interference screw. Arthroscopy 14:241–245

    Article  CAS  Google Scholar 

  7. Caborn DNM, Urban WP Jr, Johnson DL, Nyland J, Pienkowski D (1997) Biomechanical comparison between BioScrew and titanium alloy interference screws for bone-patellar tendon-bone graft fixation in anterior cruciate ligament reconstruction. Arthroscopy 13:229–232

    Article  CAS  Google Scholar 

  8. Johnson LL, van Dyk GE (1996) Metal and biodegradable interference screws: comparison of failure strength. Arthroscopy 12:452–456

    Article  CAS  Google Scholar 

  9. Kaeding C, Farr J, Kavanaugh T, Pedroza A (2005) A prospective randomized comparison of bioabsorbable and titanium anterior cruciate ligament interference screws. Arthroscopy 21:147–151

    Article  Google Scholar 

  10. Marti C, Imhoff AB, Bahrs C, Romero J (1997) Metallic versus bioabsorbable interference screws for fixation of bone-patellar tendon-bone autograft in arthroscopic anterior cruciate ligament reconstruction. A preliminary report. Knee Surg Sports Traumatol Arthrosc 5:217–221

    Article  CAS  Google Scholar 

  11. Pena F, Grøntvedt T, Brown GA, Aune AK, Engebretsen L (1996) Comparison of failure strength between metallic and absorbable interference screws. Influence of insertion torque, tunnel-bone block gap, bone mineral density, and interference. Am J Sports Med 24:329–334

    Article  CAS  Google Scholar 

  12. Walton M (1999) Absorbable and metal interference screws: comparison of graft security during healing. Arthroscopy 15:818–826

    Article  CAS  Google Scholar 

  13. Weiler A, Windhagen HJ, Raschke MJ, Laumeyer A, Hoffmann RF (1998) Biodegradable interference screw fixation exhibits pull-out force and stiffness similar to titanium screws. Am J Sports Med 26:119–126

    Article  CAS  Google Scholar 

  14. Bush-Joseph CA, Bach BR Jr (1998) Migration of femoral interference screw after anterior cruciate ligament reconstruction. Am J Knee Surg 11:32–34

    CAS  Google Scholar 

  15. Fabbriciani C, Mulas PD, Ziranu F, Deriu L, Zarelli D, Milano G (2005) Mechanical analysis of fixation methods for anterior cruciate ligament reconstruction with hamstring tendon graft. An experimental study in sheep knees. Knee 12:135–138

    Article  Google Scholar 

  16. Fu FH, Bennett C, Ma CB (2000) Current trends in anterior cruciate ligament reconstruction. Part II: Operative procedures and clinical correlations. Am J Sports Med 28:124–130

    CAS  Google Scholar 

  17. Weimann A, Rodieck M, Zantop T, Hassenpflug J, Petersen W (2005) Primary stability of hamstring graft fixation with biodegradable suspension versus interference screws. Arthroscopy 21:266–274

    Article  Google Scholar 

  18. Appelt A, Baier M (2007) Recurrent locking of knee joint caused by intraarticular migration of bioabsorbable tibial interference screw after arthroscopic ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 15:378–380

    Article  Google Scholar 

  19. Lembeck B, Wülker N (2005) Severe cartilage damage by broken poly-l-lactic acid (PLLA) interference screw after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 13: 283–286

    Article  Google Scholar 

  20. Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopaedic devices. Biomaterials 21:2335–2346

    Article  CAS  Google Scholar 

  21. Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798

    Article  CAS  Google Scholar 

  22. Park A, Cima LG (1996) In vitro cell response to differences in poly-L-lactide crystallinity. J Biomed Res 31:117–130

    Article  CAS  Google Scholar 

  23. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431

    Article  CAS  Google Scholar 

  24. Chujo K, Kobayashi H, Suzuki J, Tokuhara S (1967) Physical and chemical characteristics polyglycolide. Die Makromolekulare Chemie 100:267–270

    Article  CAS  Google Scholar 

  25. Konan S, Haddad FS (2009) A clinical review of bioabsorbable interference screws and their adverse effects in anterior cruciate ligament reconstruction surgery. Knee 16:6–13

    Article  CAS  Google Scholar 

  26. Vert M, Li SM, Spenlehauer G, Guerin P (1992) Bioresorbability and biocompatibility of aliphatic polyesters. J Mater Sci Mater Med 3:432–446

    Article  CAS  Google Scholar 

  27. Sinha VR, Bansal K, Kaushik R, Kumria R, Trehan A (2004) Poly-ε-caprolactone microspheres and nanospheres: an overview. Int J Pharm 278:1–23

    Article  CAS  Google Scholar 

  28. Hench LL, Wilson J (1993) An introduction to bioceramics, 1st edn. World Scientific Publishing, Singapore

    Book  Google Scholar 

  29. Shikinami Y, Okuno M (1999) Bioresorbable devices made of forged composites of hydroxyapatite and poly L-lactde (PLLA): Part I. Basic characteristics. Biomaterials 20:859–877

    Article  CAS  Google Scholar 

  30. Yasunaga T, Matsusue Y, Furukawa T, Shikinami Y, Okuno M, Nakamura T (1999) Bonding behaviour of ultrahigh strength unsintered hydroxyapatite particles/poly(L-lactide) composites to surface of tibial cortex in rabbits. J Biomed Mater Res 47:412–419

    Article  CAS  Google Scholar 

  31. Famery R, Richard N, Boch P (1994) Preparation of alpha-tricalcium and beta-tricalcium phosphate ceramics, with and without magnesium addition. Ceram Int 20:327–336

    Article  CAS  Google Scholar 

  32. Jarcho M (1981) Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop Relat Res 157:259–278

    CAS  Google Scholar 

  33. Mathieu LM, Bourban PE, Månson JA (2006) Processing of homogeneous ceramic/polymer blends for bioresorbable composites. Compos Sci Technol 66:1606–1614

    Article  CAS  Google Scholar 

  34. Blum MF, Garth WP, Lemons JE (1995) The effect of graft rotation on attachment site separation distances in ACL reconstruction. Am J Sports Med 23:282–287

    Article  CAS  Google Scholar 

  35. Brodie JT, Torpey BM, Donald GD 3rd, Bade HA 3rd (1996) Femoral interference screw placement through the tibial tunnel: a radiographic evaluation of interference screw divergence angles after endoscopic anterior cruciate ligament reconstruction. Arthroscopy 12:435–440

    Article  CAS  Google Scholar 

  36. Abshire BB, McLain RF, Valdevit A, Kambic HE (2001) Characteristics of pullout failure in conical and cylindrical pedicle screws after full insertion and backout. Spine J 1:408–414

    Article  CAS  Google Scholar 

  37. Asnis SE, Ernberg JJ, Bostrom MP, Wright TM, Harrington RM, Tencer A, Peterson M (1996) Cancellous bone screw thread design and holding power. J Orthop Trauma 10:462–469

    Article  CAS  Google Scholar 

  38. Battula S, Schoenfeld A, Vrabec G, Njus GO (2006) Experimental evaluation of the holding power/stiffness of the self-tapping bone screws in normal and osteoporotic bone material. Clin Biomech 2:533–537

    Article  Google Scholar 

  39. Brown GA, McCarthy T, Bourgeault CA, Callahan DJ (2000) Mechanical performance of standard and cannulated 4.0-mm cancellous bone screws. J Orthop Res 18:307–312

    Article  CAS  Google Scholar 

  40. Chapman JR, Harrington RM, Lee KM, Anderson PA, Tencer AF, Kowalski D (1996) Factors affecting the pullout strength of cancellous bone screws. J Biomech Eng 118:391–398

    Article  CAS  Google Scholar 

  41. Chizari M, Wang B, Snow M (2007) Experimental and numerical analysis of screw fixation in anterior cruciate ligament reconstruction. Proceedings of the World Congress on Engineering, London, UK

    Google Scholar 

  42. Herrera A, Martínez F, Iglesias D, Cegońino J, Ibarz E, Gracia L (2010) Fixation strength of biocomposite wedge interference screw in ACL reconstruction: effect of screw length and tunnel/screw ratio. A controlled laboratory study. BMC Musculoskelet Disord 11:139–146

    Article  Google Scholar 

  43. Kissel CG, Friedersdorf SC, Foltz DS, Snoeyink T (2003) Comparison of pullout strength of small-diameter cannulated and solid-core screws. J Foot Ankle Surg 42:334–338

    Article  Google Scholar 

  44. Mann CJ, Costi JJ, Stanley RM, Dobson PJ (2005) The effect of screw taper on interference fit during load to failure at the soft tissue/bone interface. Knee 12:370–376

    Article  Google Scholar 

  45. Patel PS, Shepherd DE, Hukins DW (2010) The effect of screw insertion angle and thread type on the pullout strength of bone screws in normal and osteoporotic cancellous bone models. Med Eng Phys 32:822–828

    Article  Google Scholar 

  46. Ricci WM, Tornetta P 3rd, Petteys T, Gerlach D, Cartner J, Walker Z, Russell TA (2010) A comparison of screw insertion torque and pullout strength. J Orthop Trauma 24:374–378

    Article  Google Scholar 

  47. Yerby S, Scott CC, Evans NJ, Messing KL, Carter DR (2001) Effect of cutting flute design on cortical bone screw insertion torque and pullout strength. J Orthop Trauma 15:216–221

    Article  CAS  Google Scholar 

  48. Weiler A, Hoffman RFG, Siepe CJ, Kolbeck SF, Südkamp NP (2000) The influence of screw geometry on hamstring tendon interference fit fixation. Am J Sports Med 28:356–359

    CAS  Google Scholar 

  49. Weiler A, Hoffmann RF, Stähelin AC, Bail HJ, Siepe CJ, Südkamp NP (1998) Hamstring tendon fixation using interference screws: a biomechanical study in calf tibial bone. Arthroscopy 14:29–37

    Article  CAS  Google Scholar 

  50. Hansson S, Werke M (2003) The implant thread as a retention element in cortical bone: the effect of thread size and thread profile: a finite element study. J Biomech 36:1247–1258

    Article  CAS  Google Scholar 

  51. Hou SM, Hsu CC, Wang JL, Chao CK, Lin J (2004) Mechanical tests and finite element models for bone holding power of tibial locking screws. Clin Biomech 19:738–745

    Article  Google Scholar 

  52. Hsu CC, Chao CK, Wang JL, Hou SM, Tsai YT, Lin J (2006) Multiobjective optimization of tibial locking screw design using a genetic algorithm: evaluation of mechanical performance. J Orthop Res 24:908–916

    Article  Google Scholar 

  53. Ashman RB, Rho JY, Turner CH (1989) Anatomical variation of orthotropic elastic moduli of the proximal human tibia. J Biomech 22:895–900

    Article  CAS  Google Scholar 

  54. Choi K, Kuhn JL, Ciarelli MJ, Goldstein SA (1990) The elastic moduli of human suchondral, trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus. J Biomech 23:1103–1113

    Article  CAS  Google Scholar 

  55. Standard handbook of biomedical engineering and design (2003) In: Kutz M (ed) Bone mechanics, Chapter 8. McGraw-Hill, New York, pp 1–23

    Google Scholar 

  56. Williams JL, Lewis JL (1982) Properties and an anisotropic model of cancellous bone from the proximal tibial epiphysis. J Biomech Eng 104:50–56

    Article  CAS  Google Scholar 

  57. Bessho M, Ohnishi I, Matsuyama J, Imai K, Nakamura K (2007) Prediction of strength and strain of the proximal femur by a CT based finite element method. J Biomech 40:1745–1753

    Article  Google Scholar 

  58. Jovanović JD, Jovanović ML (2010) Finite element modeling of the vertebra with geometry and material properties retrieve from CT-scan data. Facta Universitatis: Mech Eng 8:19–26

    Google Scholar 

  59. Perez MA, Fornell P, Garcia-Aznar JM, Doblaret M (2007) Validation of bone remodelling models applied to different bone types using Mimics. Available online at: www.materialise.com/download/

  60. DeCoster TA, Heetderks DB, Downey DJ, Ferries JS, Jones W (1990) Optimizing bone screw pullout force. J Orthop Trauma 4:169–174

    Article  CAS  Google Scholar 

  61. Costi JJ, Kelly AJ, Hearn TC, Martin DK (2001) Comparison of torsional strengths of ­bioabsorbable screws for anterior cruciate ligament reconstruction. Am J Sports Med 29:575–580

    CAS  Google Scholar 

  62. Buelow JU, Siebold R, Ellermann A (2002) A prospective evaluation of tunnel enlargement in anterior cruciate ligament reconstruction with hamstrings: extracortical versus anatomical fixation. Knee Surg Sports Traumatol Arthrosc 10:80–85

    Article  Google Scholar 

  63. Koranyi E, Bowman E, Knecht CD, Jansen M (1970) Holding power of orthopaedic screws in bone. Clin Orthop 72:283–286

    CAS  Google Scholar 

  64. Wang Y, Mori R, Ozoe N, Nakai T, Uchio Y (2009) Proximal half angle of the screw thread is a critical design variable affecting the pull-out strength of cancellous bone screws. Clin Biomech 24(9):781–785

    Article  Google Scholar 

  65. Black KP, Saunders MM, Stube KC, Moulton MJ, Jacobs CR (2000) Effects of interference fit screw length on tibial tunnel fixation for anterior cruciate ligament reconstruction. Am J Sports Med 28:846–849

    CAS  Google Scholar 

  66. Lima SA, Cha JY, Hwang CJ (2008) Insertion torque of orthodontic miniscrews according to changes in shape, diameter and length. Angle Orthod 78:234–240

    Article  Google Scholar 

  67. Selby JB, Johnson DL, Hester P, Caborn DN (2001) Effect of screw length on bioabsorbable interference screw fixation in a tibial bone tunnel. Am J Sports Med 29:614–619

    CAS  Google Scholar 

  68. Schatzker J, Sanderson R, Murnaghan JP (1975) The holding power of orthopaedic screws in vivo. Clin Orthop 108:115–122

    Article  Google Scholar 

  69. Rubel I, Fornari E, Miller B, Hayes W (2006) Are self tapping screw similar? A biomechanical study. J Bone Joint Surg Br 88-B:30

    Google Scholar 

  70. Bucholz RW, Jones A (1991) Fractures of the shaft of the femur. J Bone Joint Surg Am 73:1561

    CAS  Google Scholar 

  71. Gausepohl T, Möhring R, Pennig D, Koebke J (2001) Fine thread versus coarse thread. A comparison of the maximum holding power. Injury 32:1–7

    Article  Google Scholar 

  72. Lavi A (2010) Internal fixation using cannulated screws. Technical paper available online: http://www.vilex.com/html/products/technical_training/internal_fixation_paper.html

  73. Hoffmann R, Weiler A, Helling HJ, Ktek C, Rehm KE (1997) Local foreign-body reactions to biodegradable implants. A classification. Unfallchirg 100:658–666

    Article  CAS  Google Scholar 

  74. Harrington IJ (1976) A bioengineering analysis of force actions at the knee in normal and pathological gait. Biomed Eng 11:167–172

    CAS  Google Scholar 

  75. Törmälä P (1992) Biodegradable self-reinforced composite materials: manufacturing structure and mechanical properties. Clin Mater 10:29–34

    Article  Google Scholar 

  76. http://www.qmed.com/mpmn/medtechpulse/fraunhofer-implant-material-promotes-bone-growth

  77. Zhou W (2010) Selective laser sintering of poly(L-lactide)/carbonated hydroxyapatite porous scaffolds for bone tissue engineering, Tissue Engineering, Chapter 9. University of Hong Kong, Hong Kong, pp 179–204. ISBN 978-953-307-079-7

    Google Scholar 

  78. Williams JM, Adewunmi A, Schek RM, Flanagann CL, Krebsbach PH, Feinberg SE, Hollister SJ, Das S (2005) Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26(23):4817–4827

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iulian Antoniac .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Antoniac, I., Laptoiu, D., Popescu, D., Cotrut, C., Parpala, R. (2013). Development of Bioabsorbable Interference Screws: How Biomaterials Composition and Clinical and Retrieval Studies Influence the Innovative Screw Design and Manufacturing Processes. In: Antoniac, I. (eds) Biologically Responsive Biomaterials for Tissue Engineering. Springer Series in Biomaterials Science and Engineering, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4328-5_6

Download citation

Publish with us

Policies and ethics