Skip to main content

Bioceramics for Osteogenesis, Molecular and Cellular Advances

  • Chapter
  • First Online:
Regenerative Biology of the Spine and Spinal Cord

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 760))

Abstract

The remarkable need for bone tissue replacement in clinical situations, its limited availability and some major drawbacks of autologous (from the patient) and allogeneic (from a donor) bone grafts are driving researchers to search for alternative approaches for bone repair. In order to develop an appropriate bone substitute, one should understand bone structure and properties and its growth, which will guide researchers to select the optimal conditions for tissue culture and implantation. It’s well accepted that bioceramics are excellent candidates as bone replacement with osteogenesis, osteoinduction and osteoconduction capacity. Therefore, the molecular and cellular interactions that take place at the surface of bioceramics and their relevance in osteogenesis excites many researchers to delve deeper into this line of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hench LL and Wilson J. In: An Introduction to Bioceramics. Singapore, World Scientific Publishing Co. Pte. Ltd, 1993:406.

    Google Scholar 

  2. Park JB and Bronzino JD. In: Biomaterials: Principles and Applications. Boca Raton: CRC Press, 2003.

    Google Scholar 

  3. Hench LL. Bioceramics: From concept to clinic. J Am Ceram Soc 1991; 74(7):1487–1510.

    Article  CAS  Google Scholar 

  4. Heness G and Ben-Nissan B. Innovative Bioceramics. Materials Forum 2004; 27:104–114.

    CAS  Google Scholar 

  5. Veljovic D, Jancic-Hajneman R, Balac I. The effect of the shape and size of the pores on the mechanical properties of porous HAP-based bioceramics. Ceramics International 2011; 37(2):471–479.

    Article  CAS  Google Scholar 

  6. Navarro M, Michiardi A, Castano O. Biomaterials in orthopaedics. J R Soc Interface 2008; 5(27):1137–1158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kokubo T. In: Bioceramics and their Clinical Applications. Cambridge: Woodhead Publishing Limited, 2008:760.

    Book  Google Scholar 

  8. Dubok VA. Bioceramics: Yesterday, today, tomorrow. Poroshkovaya Metallurgiya 2000; (7–8):69–87.

    Google Scholar 

  9. Lobo SE, Arinzeh TL. Biphasic calcium phosphate ceramics for bone regeneration and tissue engineering applications. Materials 2010; 38:15–826.

    Google Scholar 

  10. Colilla M, Manzano M and Vallet-Regí M. Recent advances in ceramic implants as drug delivery systems for biomedical applications. Int J Nanomedicine 2008; 3(4):403–414.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Daoquan T, Xiya Z. Research and development of bioceramics (II). Journal of Wuhan University of Technology 1998; 13(2):55–61.

    CAS  Google Scholar 

  12. Barrère F, Blitterswijk CA, Groot K. Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics. International Journal of Medicine 2006; 1(3):317–332.

    Google Scholar 

  13. Best SM, Porter AE, Thian ES. Bioceramics: Past, present and for the future. J Eur Ceram Soc 2008; 28(7):1319–1327.

    Article  CAS  Google Scholar 

  14. Pattanayak DK, Rao BT, Mohan TRR. Calcium phosphate bioceramics and bioceramic composites. Journal of Sol-Gel Science and Technology 2010; 1–16.

    Google Scholar 

  15. Hong Y, Fan H, Li B. Fabrication, biological effects and medical applications of calcium phosphate nanoceramics. Materials Science and Engineering 2010; 70(3–6):225–242.

    Article  CAS  Google Scholar 

  16. Li S, Izui H, Okano M. Densification, Microstructure, and Behavior of Hydroxyapatite Ceramics Sintered by using Spark Plasma Sintering. Journal of Engineering Materials and Technology, Transactions of the ASME 2008; 130(3):0310121–0310127.

    Article  CAS  Google Scholar 

  17. Lin K, Pan J, Chen Y. Adsorption of phenol from aqueous solution by hydroxyapatite nanopowders. Part II: Kinetic, equilibrium and thermodynamic studies. ICBBE 2008, 1:3119–3122.

    Google Scholar 

  18. Morks MF, Kobayashi A. Mictostructural characterization and mechanical properties of plasma sprayed hydroxyapatite coatings. Ceramic Transactions 2007; 198:389–394.

    CAS  Google Scholar 

  19. Heleno RA, Wagner NS, Branco JRT. Performance evaluation of hydroxyapatite coatings thermally sprayed on surgical fixation pins. Key Eng Mat 2009; 396–398:69–75.

    Google Scholar 

  20. Jiang W, Wang WD, Shi XH. The effects of hydroxyapatite coatings on stress distribution near the dental implant-bone interface. Appl Surf Sci 2008; 255(2):273–275.

    Article  CAS  Google Scholar 

  21. Pietrasik J, Szustakiewicz K, Zaborski M. Hydroxyapatite: An environmentally friendly filler for elastomers. Mol Cryst Liq Cryst 2008; 483:172–178.

    Article  CAS  Google Scholar 

  22. Roeder RK, Converse GL, Kane RJ. Hydroxyapatite-reinforced polymer biocomposites for synthetic bone substitutes. JOM 2008; 60(3):38–45.

    Article  CAS  Google Scholar 

  23. Dupraz AMP, de Wijn JR, Meer SATvd. Characterization of silane-treated hydroxyapatite powders for use as filler in biodegradable composites. J Biomed Mater Res 1996; 30(2):231–238.

    Article  CAS  PubMed  Google Scholar 

  24. Morgan JP, Dauskardt RH. Notch strength insensitivity of self-setting hydroxyapatite bone cements. J Mater Sci: Mater Med 2003; 14(7):647–653.

    CAS  Google Scholar 

  25. Friedman CD, Costantino PD, Takagi S. BoneSourceTM hydroxyapatite cement: A novel biomaterial for craniofacial skeletal tissue engineering and reconstruction. J Biomed Mat Res 1998; 43(4):428–432.

    Article  CAS  Google Scholar 

  26. Zhang Y, Xu HHK, Takagi S. In-situ hardening hydroxyapatite-based scaffold for bone repair. J Mater Sci: Mater Med 2006; 17(5):437–445.

    Google Scholar 

  27. Renghini C, Girardin E, Fomin AS. Plasma sprayed hydroxyapatite coatings from nanostructured granules. Mat Sci Eng B-Solid 2008; 152(1–3):86–90.

    Article  CAS  Google Scholar 

  28. Sandeep G, Varma HK, Kumary TV. Characterization of novel bioactive glass coated hydroxyapatite granules in correlation with in vitro and in vivo studies. Trends in Biomaterials and Artificial Organs 2006; 19(2):99–107.

    Google Scholar 

  29. Bellucci D, Cannillo V, Sola A. A New Potassium-Based Bioactive Glass: Sintering Behaviour and Possible Applications for Bioceramic Scaffolds. Ceram Int 2011; 37(1):145–157.

    Article  CAS  Google Scholar 

  30. Wang M. Bioactive calcium phosphates and nanocomposite scaffolds for bone tissue engineering. In: Narayan R, McKittrick J, eds. Advances in Bioceramics and Biotechnology, Vol. 218. Hoboken, John Wiley and Sons 2010: 175–183.

    Google Scholar 

  31. Ioku K. Tailored bioceramics of calcium phosphates for regenerative medicine. J Ceram Soc Jpn 2010; 118(1381):775–783.

    Article  CAS  Google Scholar 

  32. Feito MJ, Lozano RM, Alcaide M. Immobilization and Bioactivity Evaluation of FGF-1 and FGF-2 on Powdered Silicon-Doped Hydroxyapatite and their Scaffolds for Bone Tissue Engineering. J Mater Sci Mater Med 2010; 1–12.

    Google Scholar 

  33. Duan B, and Wang M. Immobilization of heparin on gelatin modified three-dimensional osteoconductive Ca-P/PHBV nanocomposite scaffolds. In: Narayan R, McKittrick J, eds. Advances in Bioceramics and Biotechnology, Vol. 218. Hoboken, John Wiley and Sons 2010:43–51.

    Google Scholar 

  34. Bai F, Wang Z, Lu J. The correlation between the internal structure and vascularization of controllable porous bioceramic materials in vivo: A quantitative study. Tissue Eng Part A 2010; 16(12):3791–3803.

    Article  CAS  PubMed  Google Scholar 

  35. Deisinger U. Generating porous ceramic scaffolds: Processing and properties. Key Eng Mat 2010; 441:155–179.

    Article  CAS  Google Scholar 

  36. Shu C, Wenjuan Z, Xu G. Dissolution behavior and bioactivity study of glass ceramic scaffolds in the system of CaO-P2O5-Na2O-ZnO prepared by sol-gel technique. Mater Sci Eng C 2010; 30(1):105–111.

    Article  CAS  Google Scholar 

  37. Oliveira JM, Silva SS, Malafaya PB. Macroporous hydroxyapatite scaffolds for bone tissue engineering applications: Physicochemical characterization and assessment of rat bone marrow stromal cell viability. J Biomed Mater Res-A 2009; 91(1):175–186.

    Article  PubMed  CAS  Google Scholar 

  38. Tian J, Dong L, Wang C. Tissue engineering scaffolds of bioceramics and new bone growth, Key Eng Mat 2008; 368:1161–1165.

    Article  Google Scholar 

  39. Kundu B, Lemos A, Soundrapandian C. Development of porous HAp and-TCP scaffolds by starch consolidation with foaming method and drug-chitosan bilayered scaffold based drug delivery system. J Mater Sci: Mater Med 2010; 21(11):2955–2969.

    CAS  Google Scholar 

  40. Mourino V, Boccaccini AR. Bone tissue engineering therapeutics: Controlled drug delivery in three-dimensional scaffolds. J R Soc Interface 2010; 7(43):209–227.

    Article  CAS  PubMed  Google Scholar 

  41. Mickiewicz RA. Polymer-calcium phosphate composites for use as an injectable bone substitute. Massachusetts Institute of Technology 1998; 4–14.

    Google Scholar 

  42. Currey JD. Mechanical properties of vertebrate hard tissues. P I Mech Eng H 1998; 212:399–411.

    Article  CAS  Google Scholar 

  43. Qin T, Yang Z, Mo X. Chemical Composition and Mechanical Properties of Bio-Derived Compact Bone Scaffolds. Key Eng Mat 2006; 309–311(II):891–894.

    Article  Google Scholar 

  44. Athanasiou KA, Zu CF, Lanctot DR. Fundamentals of biomechanics in tissue engineering of bone. Tissue Eng 2000; 6:361–381.

    Article  CAS  PubMed  Google Scholar 

  45. Ravaglioli A, and Krajewski A. Bioceramics: Materials, Properties, Applications. London, New York: Chapman and Hall 1991.

    Google Scholar 

  46. Petite H, and Quarto R. Engineered Bone. Austin: Landes Bioscience 2005: 225.

    Book  Google Scholar 

  47. Weiner S, Addadi L and Wagner HD. Materials design in biology. Mat Sci Eng C — Biomim 2000; 11(1):1–8.

    Article  Google Scholar 

  48. Cao W, Hench LL. Bioactive materials. Ceram Int 1996; 22(6):493–507.

    Article  CAS  Google Scholar 

  49. Wilson J, Clark AE, Douek E. Bioceramics. Turku, Butterworth-Heinemann Ltd 1994: 415–422.

    Book  Google Scholar 

  50. Epple M, and Baeuerlein E. Handbook of Biomineralization. Weinheim, Wiley-VCH Verlag GmbH and Co 2009: 424.

    Google Scholar 

  51. Hamadouche M, Sedel L. Ceramics in orthopedics. J Bone Joint Surg Br 2000; 82-B(8):1095–1099.

    Article  Google Scholar 

  52. Keeting PE, Oursler MJ, Wiegand KE. Zeolite an increase proliferation, differentiation, and transforming growth factoĂŸ production in normal adult human osteoblast-like cells in vitro. J Bone Miner Res 1992; 7(11):1281–1289.

    Article  CAS  PubMed  Google Scholar 

  53. Ducheyne P, Radin S, King L. Effect of calcium phosphate ceramic composition and structure on in vitro behavior. I. Dissolution. J Biomed Mater Res 1993; 27(1):25–34.

    Article  CAS  PubMed  Google Scholar 

  54. Radin SR, Ducheyne P. Effect of bioactive ceramic composition and structure on in vitro behavior. III. Porous versus dense ceramics. J Biomed Mater Res 1994; 28(11):1303–1309.

    Article  CAS  PubMed  Google Scholar 

  55. Kontonasaki E, Zorba T, Papadopoulou L. Hydroxy carbonate apatite formation on particulate bioglass in vitro as a function of time. Crys Res Technol 2002; 37(11):1165–1171.

    Article  CAS  Google Scholar 

  56. Xin R, Leng Y, Chen J. A comparative study of calcium phosphate formation on bioceramics in vitro and in vivo. Biomaterials 2005; 26(33):6477–6486.

    Article  CAS  PubMed  Google Scholar 

  57. Chatzistavrou X, Chrissafis K, Kontorasaki E. Sintered hydroxyapatite/bioactive glass composites: Thermal Analysis and Bioactivity. Key Eng Mat 2006; 309–311:167–170.

    Article  CAS  Google Scholar 

  58. Santos JD, Jha LJ, Monteiro FJ. In vitro calcium phosphate formation on SiO2-Na2O-CaO-P2O5 glass reinforced hydroxyapatite composite: A study by XPS analysis. J Mater Sci: Mater Med 1996; 7(3):181–185.

    CAS  Google Scholar 

  59. Jha LJ, Santos JD, Knowles JC. Characterization of apatite layer formation on P2O5-CaO, P2O5-CaO-Na2O, and P2O5-CaO-Na2O-Al2O3 glass hydroxyapatite composites. J Biomed Mater Res 1996; 31(4):481–486.

    Article  CAS  PubMed  Google Scholar 

  60. Lee E, Kim H, Kim H. Production of hydroxyapatite/bioactive glass biomedical composites by the hot-pressing technique. J Am Ceram Soc 2006; 89(11):3593–3596.

    Article  CAS  Google Scholar 

  61. Skipper LJ, Sowrey FE, Pickup DM. Structural studies of bioactivity in sol-gel-derived glasses by x-ray spectroscopy. J Biomed Mater Res-A 2004; 70A(2):354–360.

    Article  CAS  Google Scholar 

  62. Skipper LJ, Sowrey FE, Pickup DM. The atomic-scale interaction of bioactive glasses with simulated body fluid. Mater Sci Forum 2005; 480–481: 21–26.

    Article  CAS  Google Scholar 

  63. Kokubo T. Bioactive glass ceramics: Properties and applications. Biomaterials 1991; 12:155–163.

    Article  CAS  PubMed  Google Scholar 

  64. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006; 27(15):2907–2915.

    Article  CAS  PubMed  Google Scholar 

  65. Ohgushi H, Caplan AI. Stem cell technology and bioceramics: From cell to gene engineering. J Biomed Mater Res 1999; 48(6):913–927.

    Article  CAS  PubMed  Google Scholar 

  66. Silver IA, Deas J, Erecinska M. Interactions of bioactive glasses with osteoblasts in vitro: effects of 45S5 bioglass, and 58S and 77S bioactive glasses on metabolism, intracellular ion concentrations and cell viability. Biomaterials 2001; 22(2):175–185.

    Article  CAS  PubMed  Google Scholar 

  67. Ozawa S, Kasugai S. Evaluation of implant materials (hydroxyapatite, glass-ceramics, titanium) in rat bone marrow stromal cell culture. Biomaterials 1996; 17(1):23–29.

    Article  CAS  PubMed  Google Scholar 

  68. Vrouwenvelder WCA, Groot CG, de Groot K. Histological and biochemical evaluation of osteoblasts cultured on bioactive glass, hydroxylapatite, titanium alloy, and stainless steel. J Biomed Mater Res 1993; 27(4):465–475.

    Article  CAS  PubMed  Google Scholar 

  69. Huang Y, Jin X, Zhang X. In vitro and in vivo evaluation of akermanite bioceramics for bone regeneration. Biomaterials 2009; 30(28):5041–5048.

    Article  CAS  PubMed  Google Scholar 

  70. Demirkiran H, Mohandas A, Dohi M. Bioactivity and mineralization of hydroxyapatite with bioglass as sintering aid and bioceramics with Na3Ca6(PO4)5 and Ca5(PO4)2SiO4 in a silicate matrix. Mat Sci Eng C-Biomim 2010; 30(2):263–272.

    Article  CAS  Google Scholar 

  71. Kotobuki N, Ioku K, Kawagoe D. In vitro osteogenic activity of rat mesenchymal cells cultured on transparent-tricalcium phosphate ceramics. Key Eng Mat 2005; 284–286:663–666.

    Google Scholar 

  72. Koller MR, Palsson BO, and Masters JRW. Human Cell Culture Volume IV: Primary Hematopoietic Cells. New York, Kluwer Academic Publishers 2002: 342.

    Book  Google Scholar 

  73. Krebsbach PH, Kuznetsov SA, Bianco P. Bone marrow stromal cells: Characterization and clinical application. Crit Rev Oral Biol M 1999; 10(2):165–181.

    Article  CAS  Google Scholar 

  74. Meijer GJ, Bruijn JD, Koole R et al. Cell-cased bone tissue engineering. Plos Medicine; 2007; 4(2):260–264.

    Article  Google Scholar 

  75. Fröhlich M, Grayson WL, Wan LQ. Tissue engineered bone grafts: Biological requirements, tissue culture and clinical relevance. Current Stem Cell Research and Therapy 2008; 3(4):254–264.

    Article  PubMed  Google Scholar 

  76. Oh S, Oh N, Appleford M. Bioceramics for tissue engineering applications-A review. Am J Biochem Biotechnol 2006; 2(2):49–56.

    Article  CAS  Google Scholar 

  77. Bock G, and Goode J. Tissue Engineering of Cartilage and Bone. Chichester, John Wiley and Sons Inc: 2003:251.

    Book  Google Scholar 

  78. Zhang Z, Teoh SH, Teo EY. A comparison of bioreactors for culture of fetal mesenchymal stem cells for bone tissue engineering. Biomaterials 2010; 31(33):8684–8695.

    Article  CAS  PubMed  Google Scholar 

  79. Chen H, Hu Y. Bioreactors for tissue engineering. Biotechnol Lett 2006; 28(18):1415–1423.

    Article  CAS  PubMed  Google Scholar 

  80. Albee FH. Studies in bone growth. Triple calcium phosphate as a stimulus to osteogenesis. Ann Surg 1920; 732–736.

    Google Scholar 

  81. Nihouannen D, Duval L, Lecomte A. Interactions of total bone marrow cells with increasing quantities of macroporous calcium phosphate ceramic granules. J Mater Sci: Mater Med 2007; 18:1983–1990.

    CAS  Google Scholar 

  82. Fathi MH, Hanifi A, Mortazavi V. Preparation and bioactivity evaluation of bone-like hydroxyapatite nanopowder. J Mater Process Tech 2008; 202(1–3):536–542.

    Article  CAS  Google Scholar 

  83. Eniwumide JO, Yuan H, Cartmell SH. Ectopic bone formation in bone marrow stem cell seeded calcium phosphate scaffolds as compared to autograft and (cell seeded) allograft. European Cells and Materials 2007; 1430–1439.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Demirkiran, H. (2012). Bioceramics for Osteogenesis, Molecular and Cellular Advances. In: Jandial, R., Chen, M.Y. (eds) Regenerative Biology of the Spine and Spinal Cord. Advances in Experimental Medicine and Biology, vol 760. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4090-1_9

Download citation

Publish with us

Policies and ethics