Skip to main content

Nanoplasmonic Structures in Optical Fibers

  • Chapter
  • First Online:
Nanoplasmonic Sensors

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

The intense research efforts on the development, fabrication, characterization, and application of metallic nanostructures and films that support surface plasmon resonance (SPR) constitute a field called nanoplasmonics. Although SPR biosensing is well established, the development of new nanoplasmonic approaches for biosensing is still a very active research area, as it can be attested by the range of topics covered in this book. The SPR approach is widely used in biochemistry and biomedical research, because it offers a “label-free” alternative for the detection and quantification of biomolecular interactions. The objective of this chapter is to focus on the approaches for the integration of the nanoplasmonic sensing elements to the optical fiber technology. Initially, selected examples of applications of optical fiber in analytical sciences are presented. Next, techniques used to fabricate optical fiber-based devices developed for SPR and SERS sensing are discussed. Examples of applications of optical fiber based plasmonic devices are provided. The field of optical fiber applications in nano- plasmonics has been in effervescence in the recent years, and the wide-coverage review of the field in this chapter is intended to give a more comprehensive understanding of the current state-of-the-art to the interested reader.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Homola J, Yee SS, Gauglitz G. Surface plasmon resonance sensors: review. Sens Actuators B Chem. 1999;54(1–2):3–15.

    Article  Google Scholar 

  2. Homola J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev. 2008;108(2):462–93.

    Article  CAS  Google Scholar 

  3. Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG. Nanostructured plasmonic sensors. Chem Rev. 2008;108(2):494–521.

    Article  CAS  Google Scholar 

  4. Kretschmann E, Raether H. Radiative decay of non radiative surface plasmon excited by light. Z. NATURFORSCH. PT. A. 1968;A23(12):2135.

    Google Scholar 

  5. Jung LS, Nelson KE, Stayton PS, Campbell CT. Binding and dissociation kinetics of wild-type and mutant streptavidins on mixed biotin-containing alkylthiolate monolayers. Langmuir. 2000;16(24):9421–32.

    Article  CAS  Google Scholar 

  6. Campbell CT, Kim G. SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics. Biomaterials. 2007;28(15):2380–92.

    Article  CAS  Google Scholar 

  7. Moskovits M. Surface-enhanced Raman spectroscopy: a brief retrospective. J Raman Spectrosc. 2005;36(6–7):485–96.

    Article  CAS  Google Scholar 

  8. Kelly K, Coronado E, Zhao L, Schatz G. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B. 2003;107(3):668–77.

    Article  CAS  Google Scholar 

  9. Lee B. Review of the present status of optical fiber sensors. Opt Fiber Technol. 2003;9(2):57–79.

    Article  CAS  Google Scholar 

  10. Wolfbeis OS. Fiber optic chemical sensors and biosensors. Anal Chem. 2000;72(12):81r–9.

    Article  CAS  Google Scholar 

  11. Wolfbeis OS. Fiber-optic chemical sensors and biosensors. Anal Chem. 2002;74(12):2663–77.

    Article  CAS  Google Scholar 

  12. Wolfbeis OS. Fiber-optic chemical sensors and biosensors. Anal Chem. 2004;76(12):3269–83.

    Article  CAS  Google Scholar 

  13. Wolfbeis OS. Fiber-optic chemical sensors and biosensors. Anal Chem. 2006;78(12):3859–73.

    Article  CAS  Google Scholar 

  14. Vo-Dinh T. Nanosensing at the single cell level. Spectrochim Acta B At Spectrosc. 2008;63(2):95–103.

    Article  Google Scholar 

  15. Wolfbeis OS. Materials for fluorescence-based optical chemical sensors. J Mater Chem. 2005;15(27–28):2657–69.

    Article  CAS  Google Scholar 

  16. Lee WB, Wu JY, Lee YI, Sneddon J. Recent applications of laser-induced breakdown spectrometry: a review of material approaches. Appl Spectrosc Rev. 2004;39(1):27–97.

    Article  CAS  Google Scholar 

  17. Benito MTJ, Ojeda CB, Rojas FS. Process analytical chemistry: applications of near infrared spectrometry in environmental and food analysis: an overview. Appl Spectrosc Rev. 2008;43(5):452–84.

    Article  Google Scholar 

  18. Markatos S, Zervas MN, Giles IP. Optical fiber surface-plasmon wave devices. Electron Lett. 1988;24(5):287–8.

    Article  Google Scholar 

  19. Johnstone W, Stewart G, Hart T, Culshaw B. Surface-plasmon polaritons in thin metal-films and their role in fiber optic polarizing devices. J Lightwave Technol. 1990;8(4):538–44.

    Article  CAS  Google Scholar 

  20. Sharma AK, Jha R, Gupta BD. Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. IEEE Sens J. 2007;7(7–8):1118–29.

    Article  Google Scholar 

  21. Jorgenson RC, Yee SS. A fiberoptic chemical sensor-based on surface-plasmon resonance. Sens Actuators B Chem. 1993;12(3):213–20.

    Article  CAS  Google Scholar 

  22. Homola J, Slavik R, Ctyroky J. Interaction between fiber modes and surface plasmon waves: spectral properties. Opt Lett. 1997;22(18):1403–5.

    Article  CAS  Google Scholar 

  23. Ko WS, Oh SB, Kim SH. Development of fiber type surface plasmon resonance sensor for protein detection. In Culshaw B, Marcus MA, Dakin JP, Crossley SD, Knee HE, editors. Industrial and highway sensors technology, Proceedings of SPIE, USA. Vol. 5272; 2003. pp. 100–9.

    Google Scholar 

  24. Themistos C, Rahman BMA, Rajarajan M, Kalli K, Grattan KTV. Characterization of surface-plasmon modes in metal-clad optical waveguides. Appl Opt. 2006;45(33):8523–30.

    Article  CAS  Google Scholar 

  25. Guieu V, Talaga D, Servant L, Sojic N, Lagugne-Labarthet F. Multitip-localized enhanced Raman scattering from a nanostructured optical fiber array. J Phys Chem C. 2009;113(3):874–81.

    Article  CAS  Google Scholar 

  26. Hassani A, Skorobogatiy M. Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics. Opt Express. 2006;14(24):11616–21.

    Article  CAS  Google Scholar 

  27. Hassani A, Gauvreau B, Fehri MF, Kabashin A, Skorobogatiy M. Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for application in the visible and near-IR. Electromagnetics. 2008;28(3):16.

    Article  Google Scholar 

  28. Hassani A, Skorobogatiy M. Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors. J Opt Soc Am B Opt Phys. 2007;24(6):1423–9.

    Article  CAS  Google Scholar 

  29. Cox FM, Argyros A, Large MCJ, Kalluri S. Surface enhanced Raman scattering in a hollow core microstructured optical fiber. Opt Express. 2007;15(21):13675–81.

    Article  CAS  Google Scholar 

  30. Peacock AC, Amezcua-Correa A, Yang JX, Sazio PJA, Howdle SM. Highly efficient surface enhanced Raman scattering using microstructured optical fibers with enhanced plasmonic interactions. Appl Phys Lett. 2008;92(14):141113.

    Article  Google Scholar 

  31. Yan H, Liu J, Yang CX, Jin GF, Gu C, Hou L. Novel index-guided photonic crystal fiber surface-enhanced Raman scattering probe. Opt Express. 2008;16(11):8300–5.

    Article  CAS  Google Scholar 

  32. Wang A, Docherty A, Kuhlmey BT, Cox FM, Large MCJ. Side-hole fiber sensor based on surface plasmon resonance. Opt Lett. 2009;34(24):3890–2.

    Article  CAS  Google Scholar 

  33. Lv Q, Huang DX, Yuan XH, Hou R. Fiber optic surface plasmon resonance sensors for imaging systems. Opt Eng. 2007;46(5):054403.

    Article  Google Scholar 

  34. Knight JC. Photonic crystal fibres. Nature. 2003;424(6950):847–51.

    Article  CAS  Google Scholar 

  35. Zolla F, Renversez G, Nicolet A, Kuhlmey B, Guenneau S, Felbacq D. Foundations of photonic crystal fibres. London: Imperial College Press; 2005. p. 326.

    Book  Google Scholar 

  36. Mullen KI, Carron KT. Surface-enhanced Raman-spectroscopy with abrasively modified fiber optic probes. Anal Chem. 1991;63(19):2196–9.

    Article  CAS  Google Scholar 

  37. Viets C, Hill W. Laser power effects in SERS spectroscopy at thin metal films. J Phys Chem B. 2001;105(27):6330–6.

    Article  CAS  Google Scholar 

  38. Viets C, Hill W. Fibre-optic SERS sensors with conically etched tips. J Mol Struct. 2001;563:163–6.

    Article  Google Scholar 

  39. Meriaudeau F, Wig A, Passian A, Downey T, Buncick M, Ferrell TL. Gold island fiber optic sensor for refractive index sensing. Sens Actuators B Chem. 2000;69(1–2):51–7.

    Article  Google Scholar 

  40. Viets C, Hill W. Comparison of fibre-optic SERS sensors with differently prepared tips. Sens Actuators B Chem. 1998;51:92–9.

    Article  Google Scholar 

  41. Stokes DL, Vo-Dinh T. Development of an integrated single-fiber SERS sensor. Sens Actuators B Chem. 2000;69(1–2):28–36.

    Article  Google Scholar 

  42. Demaria L, Martinelli M, Vegetti G. Fiberoptic sensor-based on surface-plasmon interrogation. Sens Actuators B Chem. 1993;12(3):221–3.

    Article  CAS  Google Scholar 

  43. Fontana E, Dulman HD, Doggett DE, Pantell RH. Surface plasmon resonance on a single mode optical fiber. IEEE Trans Instrum Meas. 1998;47(1):168–73.

    Article  Google Scholar 

  44. Jorgenson RC, Yee SS. Control of the dynamic-range and sensitivity of a surface-plasmon resonance based fiber optic sensor. Sens Actuators A Phys. 1994;43(1–3):44–8.

    Article  Google Scholar 

  45. Suzuki H, Sugimoto M, Matsui Y, Kondoh J. Effects of gold film thickness on spectrum profile and sensitivity of a multimode-optical-fiber SPR sensor. Sens Actuators B Chem. 2008;132(1):26–33.

    Article  Google Scholar 

  46. Obando LL, Booksh KS. Tuning dynamic range and sensitivity of white-light, multimode, fiber-optic surface plasmon resonance sensors. Anal Chem. 1999;71(22):5116–22.

    Article  CAS  Google Scholar 

  47. Obando LA, Gentleman DJ, Holloway JR, Booksh KS. Manufacture of robust surface plasmon resonance fiber optic based dip-probes. Sens Actuators B Chem. 2004;100(3):439–49.

    Article  Google Scholar 

  48. Chang YJ, Chen YC, Kuo HL, Wei PK. Nanofiber optic sensor based on the excitation of surface plasmon wave near fiber tip. J Biomed Opt. 2006;11(1):014032.

    Article  Google Scholar 

  49. Masson JF, Kim YC, Obando LA, Peng W, Booksh KS. Fiber-optic surface plasmon resonance sensors in the near-infrared spectral region. Appl Spectrosc. 2006;60(11):1241–6.

    Article  CAS  Google Scholar 

  50. Kim YC, Masson JF, Booksh KS. Single-crystal sapphire-fiber optic sensors based on surface plasmon resonance spectroscopy for in situ monitoring. Talanta. 2005;67(5):908–17.

    Article  CAS  Google Scholar 

  51. Scaffidi JP, Gregas MK, Seewaldt V, Vo-Dinh T. SERS-based plasmonic nanobiosensing in single living cells. Anal Bioanal Chem. 2009;393(4):1135–41.

    Article  CAS  Google Scholar 

  52. Chaigneau M, Balaa K, Minea T, Louarn G. Plasmon resonance microsensor for droplet analysis. Opt Lett. 2007;32(16):2435–7.

    Article  CAS  Google Scholar 

  53. Kurihara K, Ohkawa H, Iwasaki Y, Niwa O, Tobita T, Suzuki K. Fiber-optic conical microsensors for surface plasmon resonance using chemically etched single-mode fiber. Anal Chim Acta. 2004;523(2):165–70.

    Article  CAS  Google Scholar 

  54. Janunts NA, Baghdasaryan KS, Nerkararyan KV, Hecht B. Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip. Opt Commun. 2005;253(1–3):118–24.

    Article  CAS  Google Scholar 

  55. Ding W, Andrews SR, Maier SA. Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip. Phys Rev A. 2007;75(6):063822.

    Article  Google Scholar 

  56. White DJ, Stoddart PR. Nanostructured optical fiber with surface-enhanced Raman scattering functionality. Opt Lett. 2005;30(6):598–600.

    Article  Google Scholar 

  57. White DJ, Mazzolini AP, Stoddart PR. Fabrication of a range of SERS substrates on nanostructured multicore optical fibres. J Raman Spectrosc. 2007;38(4):377–82.

    Article  CAS  Google Scholar 

  58. Guieu V, Lagugne-Labarthet F, Servant L, Talaga D, Sojic N. Ultrasharp optical-fiber nanoprobe array for Raman local-enhancement imaging. Small. 2008;4(1):96–9.

    Article  CAS  Google Scholar 

  59. Shevchenko YY, Albert J. Plasmon resonances in gold-coated tilted fiber Bragg gratings. Opt Lett. 2007;32(3):211–3.

    Article  CAS  Google Scholar 

  60. Spackova B, Piliarik M, Kvasnicka P, Themistos C, Rajarajan M, Homola J. Novel concept of multi-channel fiber optic surface plasmon resonance sensor. Sens Actuators B Chem. 2009;139:199–203.

    Article  Google Scholar 

  61. Kitahama Y, Itoh T, Aoyama J, Nishikata K, Ozaki Y. SERRS fiber probe: fabrication of silver nanoparticles at the aperture of an optical fiber used for SNOM. Chem Commun. 2009;43:6563–5.

    Article  Google Scholar 

  62. Zheng XL, Guo DW, Shao YL, Jia SJ, Xu SP, Zhao B, Xu WQ, Corredor C, Lombardi JR. Photochemical modification of an optical fiber tip with a silver nanoparticle film: a SERS chemical sensor. Langmuir. 2008;24(8):4394–8.

    Article  CAS  Google Scholar 

  63. Lucotti A, Zerbi G. Fiber-optic SERS sensor with optimized geometry. Sens Actuators B Chem. 2007;121(2):356–64.

    Article  Google Scholar 

  64. Lan XW, Han YK, Wei T, Zhang YN, Jiang L, Tsai HL, Xiao H. Surface-enhanced Raman-scattering fiber probe fabricated by femtosecond laser. Opt Lett. 2009;34(15):2285–7.

    Article  CAS  Google Scholar 

  65. Polwart E, Keir RL, Davidson CM, Smith WE, Sadler DA. Novel SERS-active optical fibers prepared by the immobilization of silver colloidal particles. Appl Spectrosc. 2000;54(4):522–7.

    Article  CAS  Google Scholar 

  66. Lee PC, Meisel D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem. 1982;86(17):3391–5.

    Article  CAS  Google Scholar 

  67. Andrade GFS, Fan M, Brolo AG. Multilayer silver nanoparticles-modified optical fiber tip for high performance SERS remote sensing. Biosens Bioelectron. 2010;25:2270–5.

    Article  CAS  Google Scholar 

  68. Fan M, Brolo AG. Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit. Phys Chem Chem Phys. 2009;11:7381–9.

    Article  CAS  Google Scholar 

  69. Mitsui K, Handa Y, Kajikawa K. Optical fiber affinity biosensor based on localized surface plasmon resonance. Appl Phys Lett. 2004;85(18):4231–3.

    Article  CAS  Google Scholar 

  70. Volkan M, Stokes DL, Tuan VD. Surface-enhanced Raman of dopamine and neurotransmitters using sol–gel substrates and polymer-coated fiber-optic probes. Appl Spectrosc. 2000;54(12):1842–8.

    Article  CAS  Google Scholar 

  71. Lin TJ, Lou CT. Reflection-based localized surface plasmon resonance fiber-optic probe for chemical and biochemical sensing at high-pressure conditions. J Supercrit Fluids. 2007;41(2):317–25.

    Article  CAS  Google Scholar 

  72. Xie ZG, Tao J, Lu YH, Lin KQ, Yan J, Wang P, Ming H. Polymer optical fiber SERS sensor with gold nanorods. Opt Commun. 2009;282(3):439–42.

    Article  CAS  Google Scholar 

  73. Nikoobakht B, El-Sayed MA. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater. 2003;15(10):1957–62.

    Article  CAS  Google Scholar 

  74. Zamuner M, Talaga D, Deiss F, Guieu V, Kuhn A, Ugo P, Sojic N. Fabrication of a macroporous microwell array for surface-enhanced Raman scattering. Adv Funct Mater. 2009;19(19):3129–35.

    Article  CAS  Google Scholar 

  75. Chen SQ, Han L, Schulzgen A, Li HB, Li L, Moloney JV, Peyghambarian N. Local electric field enhancement and polarization effects in a surface-enhanced Raman scattering fiber sensor with chessboard nanostructure. Opt Express. 2008;16(17):13016–23.

    Article  CAS  Google Scholar 

  76. Dhawan A, Gerhold MD, Muth JF. Plasmonic structures based on subwavelength apertures for chemical and biological sensing applications. IEEE Sens J. 2008;8(5–6):942–50.

    Article  CAS  Google Scholar 

  77. Dhawan A, Muth JF. Engineering surface plasmon based fiber-optic sensors. Mater Sci Eng B. 2008;149(3):237–41.

    Article  CAS  Google Scholar 

  78. Dhawan A, Muth JF, Leonard DN, Gerhold MD, Gleeson J, Vo-Dinh T, Russell PE. Focused in beam fabrication of metallic nanostructures on end faces of optical fibers for chemical sensing applications. J Vac Sci Technol B. 2008;26:2168–73.

    Article  CAS  Google Scholar 

  79. Dhawan A, Gerhold M, Madison A, Fowlkes J, Russell PE, Vo-Dinh T, Leonard DN. Fabrication of nanodot plasmonic waveguide structures using FIB milling and electron beam-induced deposition. Scanning. 2009;31(4):139–46.

    Article  CAS  Google Scholar 

  80. Gordon R, Sinton D, Kavanagh KL, Brolo AG. A new generation of sensors based on extraordinary optical transmission. Acc Chem Res. 2008;41(8):1049–57.

    Article  CAS  Google Scholar 

  81. Andrade GFS, Hayashi JG, Rahman MM, Cordeiro CMB, Brolo AG. Au nanohole arrays on optical fiber tips as SPR and SERS chemical and bio-sensors; 2012. Submitted for publication.

    Google Scholar 

  82. Brolo AG, Arctander E, Gordon R, Leathem B, Kavanagh KL. Nanohole-enhanced Raman scattering. Nano Lett. 2004;4(10):2015–8.

    Article  CAS  Google Scholar 

  83. Grabarek Z, Gergely J. Zero-length crosslinking procedure with the use of active esters. Anal Biochem. 1990;185(1):131–5.

    Article  CAS  Google Scholar 

  84. Smythe EJ, Dickey MD, Bao JM, Whitesides GM, Capasso F. Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection. Nano Lett. 2009;9(3):1132–8.

    Article  CAS  Google Scholar 

  85. Kostovski G, White DJ, Mitchell A, Austin MW, Stoddart PR. Nanoimprinted optical fibres: biotemplated nanostructures for SERS sensing. Biosens Bioelectron. 2009;24:1531–5.

    Article  CAS  Google Scholar 

  86. Amezcua-Correa A, Yang J, Finlayson CE, Peacock AC, Hayes JR, Sazio PJA, Baumberg JJ, Howdle SM. Surface-enhanced Raman scattering using microstructured optical fiber substrates. Adv Funct Mater. 2007;17(13):2024–30.

    Article  CAS  Google Scholar 

  87. Oo MKK, Han Y, Martini R, Sukhishvili S, Du H. Forward-propagating surface-enhanced Raman scattering and intensity distribution in photonic crystal fiber with immobilized Ag nanoparticles. Opt Lett. 2009;34(7):968–70.

    Article  CAS  Google Scholar 

  88. Oo MKK, Han Y, Kanka J, Sukhishvili S, Du H. Structure fits the purpose: photonic crystal fibers for evanescent-field surface-enhanced Raman spectroscopy. Opt Lett. 2010;35(4):466–8.

    Article  CAS  Google Scholar 

  89. de Matos CJ, Cordeiro CMB, Andrade GFS, Brolo AG, Brito-Silva AM, Temperini MLA, Galembeck A, de Araújo CB. Creating and fixing a metal nanoparticle layer on the holes of microstructured fibers for plasmonic applications. In CLEO/QLES conference on photonic applications of systems technologies, San Jose, CA, USA; 2008.

    Google Scholar 

  90. Florous NJ, Saitoh K, Koshiba M. Numerical modeling of cryogenic temperature sensors based on plasmonic oscillations in metallic nanoparticles embedded into photonic crystal fibers. IEEE Photonics Technol Lett. 2007;19(5–8):324–6.

    Article  Google Scholar 

  91. Hautakorpi M, Mattinen M, Ludvigsen H. Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber. Opt Express. 2008;16(12):8427–32.

    Article  Google Scholar 

  92. Hassani A, Skorobogatiy M. Photonic crystal fiber-based plasmonic sensors for the detection of biolayer thickness. J Opt Soc Am B Opt Phys. 2009;26(8):1550–7.

    Article  CAS  Google Scholar 

  93. Kejalakshmy N, Rahman BMA, Agrawal A, Tanvir HM, Grattan KTV. Metal-coated defect-core photonic crystal fiber for THz propagation. J Lightwave Technol. 2009;27(11):1631–7.

    Article  CAS  Google Scholar 

  94. Yu X, Zhang Y, Pan SS, Shum P, Yan M, Leviatan Y, Li CM. A selectively coated photonic crystal fiber based surface plasmon resonance sensor. J Opt A Pure Appl Opt. 2010;12(1):015005.

    Google Scholar 

  95. Orellana G, Haigh D. New trends in fiber-optic chemical and biological sensors. Curr Anal Chem. 2008;4(4):273–95.

    Article  CAS  Google Scholar 

  96. Crane LG, Wang DX, Sears LM, Heyns B, Carron K. SERS surfaces modified with a 4-(2-pyridylazo)resorcinol disulfide derivative—detection of copper, lead, and cadmium. Anal Chem. 1995;67(2):360–4.

    Article  CAS  Google Scholar 

  97. Stokes DL, Chi ZH, Vo-Dinh T. Surface-enhanced-Raman-scattering-inducing nanoprobe for spectrochemical analysis. Appl Spectrosc. 2004;58(3):292–8.

    Article  CAS  Google Scholar 

  98. Kim YC, Banerji S, Masson JF, Peng W, Booksh KS. Fiber-optic surface plasmon resonance for vapor phase analyses. Analyst. 2005;130(6):838–43.

    Article  CAS  Google Scholar 

  99. Kunz U, Katerkamp A, Reinhard R, Spener F, Cammann K. Sensing fatty acid binding protein with planar and fiber-optical surface plasmon resonance spectroscopy devices. Sens Actuators B Chem. 1996;32(2):149–55.

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by operating grants from NSERC and by the NSERC Strategic Network for Bioplasmonic Systems (BiopSys), Canada. G.F.S.A. thanks Canadian Bureau for International Education—Department of Foreign Affairs and International Trade (CBIE-DFAIT) of Canada for a post-doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre G. Brolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Andrade, G.F.S., Brolo, A.G. (2012). Nanoplasmonic Structures in Optical Fibers. In: Dmitriev, A. (eds) Nanoplasmonic Sensors. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3933-2_12

Download citation

Publish with us

Policies and ethics